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Abstract

Lifelong language learning aims to stream
learning NLP tasks while retaining knowledge
of previous tasks. Previous works based on
the language model and following data-free
constraint approaches have explored format-
ting all data as "begin token (B) + context (C) +
question (Q) + answer (A)" for different tasks.
However, they still suffer from catastrophic for-
getting and are exacerbated when the previous
task’s pseudo data is insufficient for the follow-
ing reasons: (1) The model has difficulty gener-
ating task-corresponding pseudo data, and (2)
A is prone to error when A and C are separated
by Q because the information of the C is dimin-
ished before generating A. Therefore, we pro-
pose the Ask Question First and Replay Ques-
tion (AQF-RQ), including a novel data format
"BQCA" and a new training task to train pseudo
questions of previous tasks. Experimental re-
sults demonstrate that AQF-RQ makes it easier
for the model to generate more pseudo data that
match corresponding tasks, and is more robust
to both sufficient and insufficient pseudo-data
when the task boundary is both clear and un-
clear. AQF-RQ can achieve only 0.36% lower
performance than multi-task learning.

1 Introduction

Lifelong learning is the capacity of human beings
to acquire, reconstruct, strengthen, and transfer
knowledge (Ring, 1997). Human beings can learn
new knowledge while consolidating old knowledge
by first detecting and learning the distinctions be-
tween old and new knowledge and then simplifying
the old and new knowledge based on leveraging
the common points. This concept is critical for en-
couraging machines to learn NLP tasks in a similar
way that people do. In the application of NLP, new
data are continuously acquired and categorized as
either new data for existing tasks or new data for
new tasks. For new data of existing tasks, the tra-
ditional method, known as isolated learning (Chen
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Figure 1: Illustration of the difference between asking
questions before reading and asking after reading.

and Liu, 2018), is to retrain the model with the old
data appended with new data. For data from new
tasks, multi-task learning (MTL) integrates data
from previous and new tasks to retrain the model.
Both of these methods are limited to assuming that
all new and old data can be obtained during train-
ing. However, the reality is that tasks are acquired
and trained in the stream, which makes the model
suffer from catastrophic forgetting (Ring, 1997;
McCloskey and Cohen, 1989; French, 1999) (i.e.
forgetting previously learned tasks/knowledge).

Lifelong language learning (LLL), which this pa-
per focuses on, aims to learn a stream of NLP tasks
with lifelong learning. LAMOL (Sun et al., 2019)
has recently proposed implementing a language
model for LLL by formatting all data as QA-style
and generating pseudo data instead of real data for
previous tasks in order to prevent catastrophic for-
getting. Many works (Chuang et al., 2020; Sun
et al., 2020; Kanwatchara et al., 2021) have inves-
tigated how to improve it through methods that
require more computing resources or additional
parameters (e.g. knowledge distillation or adding
sub-networks). In this paper, we refer to these
works as LAMOL-based methods. In LAMOL-
based methods, each example is consist of four
segments: task-specific or task-independent token
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[TASK]/[GEN] (B), context (C), question (Q), and
answer (A). Then each example is formatted as
"B+C+Q+A" ("BCQA"). LAMOL has a gap be-
tween MTL that is regarded as the upper bound of
LLL. Other LAMOL-based methods require more
computing resources or additional parameters but
still have a gap between MTL especially pseudo
samples is unsufficient. Therefore, the "BCQA"
format is useful but not train-efficient enough for
reasons below: (1) generating task-corresponding
pesudo data is hard because the similar C can be
found in distinct tasks; (2) the C’s information is
diminished when A is generated due to the fact that
A and C are separated by Q.

To generate more task-corresponding pseudo
data for previous tasks and tighten the relation-
ship between the C and the A, we proposed the Ask
Question First (AQF) and Replay Question (RQ).

The AQF formats all data into a novel format:
"B+Q+C+A" ("BQCA"), which is consistent with
human reading comprehension behavior. Ques-
tions are more than just questions; they direct our
learning. As is shown in Fig.1, when people do
reading comprehension, they usually read the ques-
tions first, then read the articles with the questions,
and pay attention to what can answer the ques-
tions while reading. This is an efficient reading and
learning method, which known as metacognition
(Flavell, 1979), has been researched in the field of
education and psychology. There are two benefits
to applying the "BQCA" format: (1) It’s easier to
generate pseudo-data that matches the correspond-
ing task because the Q has different but limited
types for each task. (2) The model is more stable
when there isn’t enough pseudo data because the A
is right next to the C. Furthermore, the model can
pay more attention to important information in the
C with the help of the Q.

The RQ introduce a novel training task to help
model generate more task-corresponding pseudo
data. In the "BQCA" format, generating the cor-
rect Q is crucial for generating task-corresponding
pseudo-data. However, the Q of the previous may
be covered by the new task since we cannot pre-
dict the number and type of Q of the new task. In
order to strengthen the generation of the Q of the
previous task, we generate pseudo-problems of the
previous task to train the model.

The contributions of our paper are listed below:
(1) We proposed the Ask Question First and Re-

play Question (AQF-RQ1) to alleviate catastrophic
forgetting when the pseudo data is sufficient and in-
sufficient without additional computation resources
and parameters. (2) We proposed a novel data for-
mat "BQCA" to make data train-efficient and gen-
erating corresponding pseudo data easier. (3) We
proposed a novel training task to help the model
generate correct questions and then generate more
task-corresponding pseudo data.

2 Related Work

Lifelong language learning (LLL) is an essential
step in promoting the realization of general arti-
ficial intelligence in the field of NLP. (Liu et al.,
2019; Mi et al., 2020; Huang et al., 2021) have
studied LLL on a single type of NLP task by regu-
larization or replaying real data. Recently, LAMOL
(Sun et al., 2019) uses a language model (LM) to
learn various kinds of NLP tasks in QA-style. In
LAMOL, the pseudo-data generated by the model
is trained together with the new task to alleviate
catastrophic forgetting. Many works explored the
enhancement of LAMOL with additional compu-
tation resources or adding sub-networks. L2KD
(Chuang et al., 2020), DnR (Sun et al., 2020) and
DFSD (Wang et al., 2022) distilled parts or all lay-
ers of the model to improve LAMOL. ARPER (Mi
et al., 2020) applied regualarization on parameters
with prioritized exemplar replay. Rational-LAMOL
(Kanwatchara et al., 2021) applied critical freez-
ing guided by rationale information which is ob-
tained by human or unsupervised rationale gener-
ation (Chang et al., 2020). (Madotto et al., 2021)
applied Adapter (Houlsby et al., 2019) to plug into
pretrain language model. Those are effective but
require more computational resources (e.g., distilla-
tion and regularization) or new parameters (such as
adding sub-networks for new tasks). We aspire to
improve without increasing our resources. Conse-
quently, based on the metacognition (Flavell, 1979;
Bowler, 2010; Braithwaite and Sprague, 2021) pro-
posed in education and psychology, we propose
a more training-efficient and robust data format:
first ask questions, then observe the context, finally
answer the questions. In addition, we introduce re-
play questions to strengthen the model’s attention
to questions.

1https://github.com/CodeHan/AQF-RQ

https://github.com/CodeHan/AQF-RQ
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Figure 2: Illustration of QA/LM/RQ task with the
"BQCA" format.

3 Methodology

In this section, we first introduce LAMOL in Sec-
tion 3.1. Then, our proposed Ask Question First
(AQF) is detailed in Section 3.2. Thirdly, we intro-
duce the Replay Questions in Section 3.3. Finally,
we summarize the training objectives in our paper
in Section 3.4.

3.1 LAMOL
LAMOL (Sun et al., 2019) proposed using a sin-
gle language model for lifelong language learn-
ing. A stream of various NLP tasks is learned by
GPT-2 (Radford et al., 2019) with joint training of
the language model (LM) task and the question-
answering (QA) task. In LAMOL, all tasks are
formatted QA-style. Each example can consist of
four segments: task-specific or task-independent to-
ken [TASK]/[GEN] (B), context (C), question (Q),
and answer (A). In this way, the LM task is to gen-
erate "C+Q+A" by inputting [TASK]/[GEN], and
the QA task is to generate "A" by inputting "C+Q".
The loss of LAMOL is calculated as below:

LLAMOL = LQA + λLLM (1)

where λ is the weight of the LM task.
With the help of the LM task, the [TASK]/[GEN]

can be used as the first token to input the model
and generate the pseudo sample by greedy decod-
ing. From the second task on, pseudo samples of
previous tasks are generated in this way and jointly
trained with the new task dataset to alleviate catas-
trophic forgetting. Let denote the set of pseudo
samples as Pi = {psj |i, j ∈ N+, 1 ≤ j < i},
where psj represents the pseudo data of j-th task.

The number of pseudo samples of previous tasks
is determined by the size of the new task and a hy-
perparameter sampling ratio γ ∈ (0, 1]. Assuming
that T = {T1, T2, . . . , TN} represents N tasks to be
learned. Let |Dt|, t ∈ [2, N ] denote the size of t-th
task. LAMOL generates |psi| = γ

t−1 |Dt| pseudo-
samples for each previously learned task. Then, Dt

is joined with Pt to train the model. However, the
performance of LAMOL still has a gap between

Case ID Content Cor.

1 BT1+CT1+QT1+AT1 ✓

2 BT1+CT2+QT2+AT2 ✗

3 BT2+CT2+QT2+AT2 ✓

4 BT2+CT1+QT1+AT1 ✗

Table 1: The cases of the pseudo sample after the model
learning two tasks in turn with "BCQA" format. Cor. is
the abbreviation of "corresponding".

multi-task learning (MTL), which is regarded as the
upper bound of lifelong learning, since not each
pseudo sample is tied to [TASK]/[GEN]. In this
paper, we propose Ask Question First (AQF) and
replaying questions to make data train-efficient and
shorten the gap between MTL.

3.2 Ask Question First

Ask Question First (AQF) is a novel data format
that makes the model imitate the process of hu-
man reading comprehension to learn knowledge
from the training set efficiently. LAMOL proposed
a data format, "B+C+Q+A" ("BCQA"), which is
useful but not train-efficient enough. All pseudo
samples are generated starting with [TASK]/[GEN].
However, [TASK]/[GEN] is not strongly tied with
the C of the tasks because the context is complex
and volatile for the task. Different tasks can have
similar contexts. Therefore, [TASK]/[GEN] is easy
to be biased to the new task resulting in pseudo
samples not corresponding to their tasks when
more tasks are learned. These non-corresponding
pseudo-samples jointly trained with the new task
will aggravate the catastrophic forgetting of the
model. Otherwise, the C’s information is dimin-
ished when A is generated due to the fact that A and
C are separated by Q.

To generate more corresponding pseudo samples,
we propose AQF format all data as "B+Q+C+A"
("BQCA") which is simple yet efficient to make
the model learn knowledge from the training set
efficiently. We choose the task-specific token to
analyze why our proposed "BQCA" is better than
the naive "BCQA". Assuming that the model has
learned two tasks T1 and T2, pseudo samples of
T1 and T2 needed to be generated before training
the new task. Two types of task-specific tokens
B1 and B2 are inputted to the model to generate
pseudo samples with greedy decoding. There are
four main kinds of pseudo samples that can be ob-
tained as shown in Table 1. Case 1 and Case 3
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are nice pseudo samples that can alleviate catas-
trophic forgetting, but Case 2 and Case 4 are terri-
ble ones that can aggravate catastrophic forgetting.
Ideally, pseudo samples, which we denote as task-
corresponding pseudo-samples Pc, like Case 1 and
Case 3 are what we expect to generate. However, in
fact, due to catastrophic forgetting, Case 2 and Case
4 also appear. These pseudo samples like case 2 and
case 4 are denoted as the not task-corresponding
samples Pnc. The probability of generating Pnc

is positively correlated with the severity of catas-
trophic forgetting. Therefore, the model will form
a vicious circle: forgetting old tasks and generating
Pnc with greater probability. For pseudo samples
start with task-specific token, the psi consists of
corresponding pseudo data psci and not correspond-
ing pseudo data psnci (i.e. psi = {psci , psnci }).

In LAMOL-based methods, they used GPT-2
(Radford et al., 2019) for experiments. GPT-2 is an
autoregressive model that can only obtain informa-
tion before the current position, and then predict the
words. Therefore, the probability of our proposed
"BQCA" format and naive "BCQA" format can be
calculated by Eq.(2) and Eq.(3), respectively:

PAQF = P (BQCA) (2)

= P (A|BQC)P (C|BQ)P (Q|B)P (B)

Pnaive = P (BCQA) (3)

= P (A|BCQ)P (Q|BC)P (C|B)P (B)

As shown in Eq.(2) and Eq.(3), P (B) is a con-
stant because it is given as the first token. Next,
P (Q|B) and P (C|B) affect the quality of the gen-
erated pseudo data. To obtain Pc, the Q or C should
be generated to be corresponding to the given B,
then the remaining generation has a greater proba-
bility correspond to B.

Then we first consider P (Q|B) and P (C|B).
Let ΘN denote the parameters of the model af-
ter learning N tasks in turn. Assuming two tasks
have been learned on the condition of sufficient
pseudo samples (i.e. large γ) in turn, P (Q|B)
and P (C|B) can be written as, P (Q|B,Θ2) and
P (C|B,Θ2). In the dataset of a task, there are
thousands of kinds of C, but there are only lim-
ited kinds of Q. For a simplest classification task,
only one fixed Q is needed. For example, in the
SST (Radford et al., 2017), all Q is "is review is
positive or negative?". For complex tasks, such as
SRL (He et al., 2017), it is mainly based on lim-
ited types of Q such as what, where, why, when,

how etc, but it is still smaller than that of C. There-
fore, P (Q|B,Θ2) and P (C|B,Θ2) are inversely
proportional to the vocabulary sizes of Q and C,
respectively. Let VQ = {wQ

i |i ∈ [1, |VQ|]} and
VC = {wC

i |i ∈ [1, |VC |]} denote the vocabulary
of Q and C, respectively. wQ

i and wC
i denotes the

word in the vocabulary of Q and C, respectively.
According to the above analysis, it can be obtained
that |VQ| ≪ |VC |. For most words, since their prob-
ability is inversely proportional to the size of the vo-
cabulary, we can conclude that P (wQ) ≫ P (wC).
Slight noise perturbations, such as shifts from the
data distribution of the new task, can make P (wC)
more susceptible than P (wQ). On the other hand,
different tasks may have similar C due to a large
number of similar common phrases, but the Q is
almost different in what the questions pay attention
to. Therefore, we can conclude that:

PB1(w
T1
Q ) ≥ PB1(w

T2
Q ) > PB1(w

T1
C ) ≥ PB1(w

T2
C )

(4)

PB2(w
T2
Q ) ≥ PB2(w

T1
Q ) > PB2(w

T2
C ) ≥ PB2(w

T1
C )

(5)

where the subscript B1 or B2 means the probabil-
ity on the condition of B1 or B2. Then, we can
conclude that:

P (QT1 |BT1 ,Θ2) > P (CT1 |BT1 ,Θ2) (6)

P (QT2 |BT2 ,Θ2) > P (CT2 |BT2 ,Θ2) (7)

It can be concluded that generating Q first is more
stable than generating C.

On the condition that the Q or C is correspond-
ing to the B, we analysis the P (C|BQ,Θ2) and
P (Q|BC,Θ2). With the help of GPT-2, a Trans-
former decoder-based model, the current token can
pay more attention to the information before the
current position. When the previous adjacent con-
tent contains enough information, the generated
token strongly correlates with the previous con-
tent. Therefore, P (CT1 |BT1QT1 ,Θ2) is close to
P (QT1 |BT1CT1 ,Θ2), and P (CT2 |BT2QT2 ,Θ2) is
close to P (QT2 |BT2CT2 ,Θ2).

Finally, P (A|BQC) and the P (A|BCQ) are
trained with the QA task. It can be ignored from
the perspective of generating task-corresponding
pseudo-samples. However, correct "A" is easier
to obtain on the condition of correct "BQC" than
correct "BCQ" because the "C" is right next to "A"
in "BQC". In "BQC", "Q" can help the model pay
more attention to the important information in "C"
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and then have a larger probability of generating the
correct "A".

From the above analysis, we can conclude that
P (Q|B) and P (C|B) play main role on generating
task-corresponding pseudo-samples Pc according
to PAQF and Pnaive, respectively. As shown in
Eq.(6) and Eq.(7), P (Q|B) are better than P (C|B)
for generating Pc after sufficient pseudo samples
being joint trained.

3.3 Replay Questions
Replay Questions (RQ) is proposed to strengthen
the probability of generating task-corresponding Q
when given B. Based on Eq.(4), PB1(w

T1
Q ) greater

than or equal to PB1(w
T2
Q ) on the condition of suffi-

cient pseudo samples being joint trained. However,
the situation PB1(w

T2
Q ) > PB1(w

T1
Q ) may happen

when the amount of pseudo samples is much less
than that of the new task (i.e. |D2| ≫ γ|D2|).
Since P (Q|B) plays a main role in PAQF , we pro-
pose to replay questions to make P (Qi|Bi) larger
than P (Qj ̸=i|Bi).

As shown in Fig.2, RQ is to generate the
questions of pseudo samples that start with
[TASK]/[GEN] but have no end token. Since the
object of RQ is to make the model generate task-
corresponding pseudo-samples, RQ should not sup-
ply the information about the end of the sentence.

3.4 Training
In summary, our proposed AQF is applied to both
the LM task and the QA task. Otherwise, we ex-
pand the training objective with our proposed RQ.
The final training objective is shown as Eq.(8).

L = LAQF
QA (D,P)+λLAQF

LM (D,P)+ηLAQF
RQ (P)

(8)
where λ and η denotes the weight of the LM task
and the RQ task.

4 Experiment Setup

4.1 Datasets
To be comparable with previous works, we chose
four different kinds of tasks from DecaNLP (Mc-
Cann et al., 2018) and five sequence-generation
tasks (Chuang et al., 2020) from different domains.
Details are summarized in the Table 7 in Appendix
A. The SQuAD is a question-answering dataset
with 12 main types of questions and other count-
less types of questions. SST is a sentiment anal-
ysis dataset with one question. SRL is a seman-
tic role labeling dataset with 6 types of questions.

Tasks
Format BCQA BQCA (ours)

SQuAD 72.3 81.1
SST 90.9 92.2
SRL 70.4 73.9
WOZ 84.9 86.7

E2ENLG 48.8 49.2
RNNLG (rest) 64.0 64.6

RNNLG (hotel) 65.4 66.4
RNNLG (tv) 70.8 71.6

RNNLG (laptop) 73.0 73.2

Table 2: The results on each task with single task learn-
ing (only the QA task is trained). The format "BCQA"
was applied in previous LAMOL-based methods. Better
performance in boldface.

WOZ is a goal-oriented dialogue dataset with one
question. E2ENLG (Novikova et al., 2017) and
RNNLG (rest/hotel/tv/laptop) (Wen et al., 2015)are
sequence generation tasks with one question for dif-
ferent domains.

4.2 Baselines

(i) Finetune: Finetune GPT-2 individually based
on the task order. (ii) LAMOL (Sun et al., 2019):
Training the model with the "BCQA" format data.
LAMOLG and LAMOLT indicate that the be-
gin token is the task-independent token [GEN]
and the ask-specified token [TASK], respectively.
LAMOLR indicates that the model replays real
data from previous tasks instead of pseudo data.
(iii) L2KD (Chuang et al., 2020): An improved
version of LAMOL with distillation. Firstly, train-
ing a single-task model on the new task to obtain
the teacher model. Then the teacher model is dis-
tilled to the model trained on the previous tasks.
This model uses the task-specified token. All the
LAMOL-based baselines were studied upon the
"BCQA" format of LAMOL. We only select L2KD
on behalf of other LAMOL-based baselines be-
cause of a lack of computation resources. (iv) Mul-
titask: Training all tasks simultaneously. Multitask
learning is often regarded as the upper bound of
lifelong learning.

4.3 Implementation Detail

For fairness comparation. we implement experi-
ments following LAMOL2. GPT-2 with 12 layers
is selected as the language model. All experiments
are run on a single Tesla P100 (12GB). Each task is
trained for 9 epochs. The pseudo data is generated

2https://github.com/jojotenya/LAMOL

https://github.com/jojotenya/LAMOL
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by greedy deocde. The other hyperparameter set-
tings are the same as for LAMOL and are detailed
in the Table 6 in the Appendix B.

5 Experiments

In this section, we experiment our proposed Ask
Question First and Replay Question (AQF-RQ) an
on three settings: (1) single task learning in Section
5.1; (2) different types of tasks in Section 5.2; (3)
the same types of tasks in different domains in
Section 5.3. Finally, we explore the effectiveness
of our proposed AQF in Section 5.4.

5.1 Single Task

To validate our proposed AQF that format all task
into new data format "BQCA", we experiment on
each dataset independently. Each task is only
trained by the QA task. As shown in Table 2,
our proposed "BQCA" format beats "BCQA" for-
mat which is applied in previous LAMOL-based
methods on each task. It exhibits that our "BQCA"
format has the ability to increase the performance
of a variety of different kinds of tasks, particu-
larly those that were originally question-answering
types (e.g. SQuAD, SRL). The SQuAD is im-
proved significantly with the "BQCA" format scor-
ing 8.8 percentage points higher than the "BCQA"
format. For SRL, 3.5 percentage points of improve-
ment come from the "BQCA" format compared
with the "BCQA" format. For SST and WOZ, the
"BQCA" format can improve by 1.3 and 1.8 percent-
age points respectively. For five generation tasks,
"BQCA" format is slightly better than "BCQA".

There are two reasons why our proposed
"BQCA" format can improve the aforementioned
tasks to a certain extent: (1) Due to the charac-
teristics of autoregression and the mask attention
mechanism of the Transformers Decoder, first Q
and then C can enable the model to obtain more
accurate attention information from C based on Q.
(2) The A is right next to the C, which reduces the
information loss caused by the excessive length of
the historical text in comparison to "BCQA" where
the A and the C are gapped by the Q.

5.2 Different Types of Tasks

For a fair comparison, we conduct experiments
on three different tasks in DecaNLP following
LAMOL (Sun et al., 2019). To observe the per-
formance in the case of sufficient and insufficient
pseudo data, we select the sampling ratio γ = 0.2

and γ = 0.05 for experiments. Meanwhile, we con-
duct experiments on the condition of task-specific
token [TASK] (denoted by the subscript T ) and
task-independent token [GEN] (denoted by the sub-
script G) to verify if our proposed AQF-RQ is ro-
bust when the task boundary is clear or unclear.

5.2.1 Performance
As shown in Table 3, Finetune, which is a baseline
for other methods, suffers serious catastrophic for-
getting and has large gap bewteen multitask learn-
ing. Let’s first observe the situation where the
pseudo data is sufficient (i.e. γ = 0.2). LAMOL0.2

G

and LAMOL0.2
T have good performance and are

similar, indicating that in this case, the "BCQA"
format is robust to clear and unclear task bound-
aries, but still 3 percentage points lower than MTL.
However, AQF-RQ does better than LAMOL by
2.7 percentage points when the boundary is clear
and by 2.3 percentage points when the boundary
is not clear. AQF-RQ is only 0.3-0.6% worse than
MTL. It is worth noting that AQF-RQ outperforms
multi-task learning in the three task orders: SST-
SRL-WOZ, SST-WOZ-SRL, and WOZ-SRL-SST.
This indicates that AQF-RQ can not only better
alleviate catastrophic forgetting but also further
strengthen forward transfer between tasks.

When the pseudo data is insufficient (i.e. γ =
0.05), the performance of LAMOL drops signif-
icantly, falling 6.5-7.6 percentage points lower
than that of multitask learning. Furthermore,
LAMOL0.05

T differs from LAMOL0.05
G , indicat-

ing that LAMOL is not robust enough for clear
and unclear task boundaries when the amount of
pseudo data is insufficient. Although LAMOL’s
job boundary is apparent, our proposed AQF-RQ
can improve by 4.7 and 5.5 percentage points com-
pared to LAMOL. This illustrates that even when
the amount of pseudo data is insufficient, AQF-
RQ is still robust to both clear and unclear task
boundaries, as evidenced by AQF-RQ0.05

T and AQF-
RQ0.05

G . It is also worth noting that AQF-RQ0.05
T >

AQF-RQ0.05
G >LAMOL0.2

G >LAMOL0.2
T , which

means that AQF-RQ is more data-efficient and still
performs better than LAMOL with a 75% reduction
in the amount of pseudo data.

5.2.2 Distribution of Pseudo Data
The another main objective of our proposed AQF-
RQ is to generate more corresponding-task pseudo
data. Ideally, the ratio of pseudo data for each task
is 1:1, which means |psi| = |psj |, i ̸= j. We can
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Methods SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST Avg. Std.

Finetune 42.8 25.2 58.8 32.2 25.6 36.2 36.8 11.6

LAMOL0.05
T 77.3 76.9 78.1 74.7 73.4 75.8 76.0 1.6

LAMOL0.05
G 79.6 78.9 73.1 73.7 68.6 75.7 74.9 3.4

AQF-RQ0.05
T 81.6 80.8 80.3 80.0 80.6 80.7 80.7 1.1

AQF-RQ0.05
G 82.2 81.3 78.9 79.0 79.2 81.7 80.4 2.9

LAMOL0.2
T 79.4 79.9 80.1 78.7 79.8 79.0 79.5 0.5

LAMOL0.2
G 80.0 80.7 79.6 78.7 78.4 80.5 79.7 0.8

AQF-RQ0.2
T 82.2 83.0 81.4 81.6 82.2 82.9 82.2 0.5

AQF-RQ0.2
G 82.8 82.7 80.9 80.9 82.3 82.4 82.0 0.8

Multitask 82.5

Table 3: The results on [SST, SRL, and WOZ]. Each column is the average score of a task order on three tasks. Avg.
means that the average score on 6 task orders of [SST, SRL, and WOZ]. In the column "Methods", The subscripts T
and G indicate the task-specific token [TASK] and task-independent token [GEN], respectively. The superscript
indicates the value of sampling ratio γ.

Methods
SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST

|ps1| : |ps2|

LAMOL0.05
G 27:99 23:297 7:119 3:343 19:301 6:340

AQF-RQ0.05
G 17:109 12:308 22:104 29:317 70:250 168:178

LAMOL0.2
G 292:216 319:963 128:380 284:1100 225:1057 388:996

AQF-RQ0.2
G 253:255 255:1027 239:269 603:781 712:570 648:736

Methods
SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST

|psc1| : |psnc
1 |/|psnc

2 | : |psc2|

LAMOL0.05
T 54:9/1:62 11:149/2:158 51:12/0:63 22:151/1:172 60:100/0:160 139:34/0:173

AQF-RQ0.05
T 63:0/0:63 160:0/0:160 63:0/2:61 173:0/0:173 160:0/0:160 172:1/1:172

LAMOL0.2
T 247:7/9:245 478:163/5:636 250:4/0:254 537:155/6:686 635:6/4:637 678:14/5:687

AQF-RQ0.2
T 254:0/0:254 641:0/0:641 254:0/0:254 692:0/0:692 641:0/0:641 692:0/0:692

Table 4: The results of pseudo data distribution after learning two tasks on [SST, SRL, and WOZ]. psi represents the
pseudo data of i-th task. The subscripts c and nc indicate whether the pseudo data is correspond to the task or not.

determine which task the pseudo data belongs to
according to the Q because the Q for various tasks
is distinct (see Table 7). For task-specific token
[TASK], a pseudo sample is task-corresponding
if the Q is correspond to the [TASK]. For task-
indepedent token [GEN], we can not judge whether
a pseudo sample corresponds to the task because
of unclear task boundary. In this paper, we applied
this Q-based judgment method to count the dis-
tribution of pseudo data after learning the second
task.

As shown in Table 4, AQF-RQ can generate
more pseudo data of the first task for most task or-
ders when applying task-indepedent token [GEN].
Looking at the Table 3 together, it can be observed
that the performance will be better if the ratio
of the pseudo data of different tasks is closer to
1:1. For SRL-SST-WOZ, SRL-WOZ-SST, WOZ-
SST-SRL, and WOZ-SRL-SST, AQF-RQ gener-
ates more pseudo data than LAMOL for the first

task; hence, AQF-RQ outperforms LAMOL sig-
nificantly. When γ = 0.05, AQF-RQ is 5.3-
10.6 percentage points higher than LAMOL. When
γ = 0.05, AQF-RQ is 1.3-3.9 percentage points
higher than LAMOL. This is due to the fact that,
under the AQF-proposed "BQCA" format, Q can
be used to help the model pay more attention to the
useful details in C, and then A being immediately
next to C can further generate A more accurately.

The benefit of AQF-RQ to produce pseudo
data is also significant when the sentence starts
with the task-specific token [TASK]. As shown
in the Table 4, the pseudo samples generated by
AQF-RQ are task-corresponding in the majority
of task orders, except SRL-SST-WOZ and WOZ-
SRL-SST, where one or two pseudo samples are
not task-corresponding. The amount of not task-
corresponding pseudo samples in AQF-RQ is sub-
stantially smaller than in LAMOL, giving AQF-RQ
a 1.3-3.9 percentage point advantage over LAMOL.
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Methods SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST Avg.

LAMOLT 79.4 79.9 80.1 78.7 79.8 79.0 79.5
w/ AQF 82.1 83.0 81.3 80.9 80.7 81.2 81.5

LAMOLG 80.0 80.7 79.6 78.7 78.4 80.5 79.7
w/ AQF 82.3 81.5 81.3 80.4 78.8 81.3 80.9

LAMOLR 81.8 80.6 81.6 81.2 80.4 80.5 81.0
w/ AQF 82.5 81.9 82.3 82.4 82.7 82.7 82.4

L2KD 80.1 79.6 79.5 79.7 79.9 80.4 79.9
w/ AQF 81.9 82.4 80.3 80.8 80.1 80.1 80.9

Multitask∗ 81.5
w/ AQF 82.5

Table 5: The results of effectiveness of the Ask Question First (AQF) on [SST, SRL, and WOZ] when sampling
ratio γ = 0.2. Multitask∗ represents that model applies the "BCQA" format for multitask learning.

The above experimental results demonstrate that
not only does AQF-RQ generate better pseudo-data,
but the "BQCA" format is also more data-efficient
and robust for lifelong language learning.

5.3 Generation for Different Domains

We conducted experiments on five sequence gen-
eration tasks for different domains by comparing
LAMOLT , LAMOLG, and L2KD with AQF-RQ.
The result is similar to Section 5.2.1 and is detailed
in Appendix C. AQF-RQ is not only better than
LAMOL-based baselines on performance but can
also forward/backward transfer more knowledge
among the same task but different domains.

5.4 Effectiveness of the Ask Question First

To verify the effectiveness of our proposed AQF,
we experimentally apply AQF to each baseline:
LAMOLT , LAMOLG, LAMOLR, and L2KD. In
Section 3.2, we stated that AQF is used better when
the pseudo data is sufficient. Therefore, we set
γ = 0.2 for experiments. This value is also the
best setting for those baselines.

As shown in the Table 5, applying AQF to each
baseline resulted in varying degrees of improve-
ment. LAMOLT has the most noticeable improve-
ment, with a 2 percentage point increase. This
demonstrates that having the A close to the C using
the "BQCA" format proposed by AQF can reduce
information attenuation caused by the A being far
away from the C. For example, the C and the A are
separated by the Q in the "BCQA" format. This ben-
efit is more obvious when the task boundary is clear
(i.e. the sentence starts with [TASK]). [TASK] can
tighten the bond between "BQC" and "A".

Applying AQF improves LAMOLG by 1.2 per-
centage points, which is less than LAMOL T . It

is because the generated pseudo data is still biased
toward new tasks due to the unclear task boundary
(the sentence begins with the task-independent to-
ken [GEN]). However, thanks to the A being next
to the C in the "BQCA" format, it is still capable of
learning from a small amount of pseudo data.

For LAMOLR, AQF can enhance the model by
1.4 percentage points, which is only 0.1% behind
multi-task learning. LAMOLR uses the real data
of the old task instead of the generated pseudo data
when learning new tasks, so this further demon-
strates that the "BQCA"format proposed by AQF
is more conducive to lifelong language learning: it
can use Q to help the model pay more attention to
the important information in C, then further makes
the generation of A more accurate.

For L2KD, the application of AQF improves the
model by one percentage point, demonstrating that
AQF is still applicable to the previous LAMOL-
based enhanced approaches and is capable of effec-
tively applied to other LAMOL-based studies.

For MTL, AQF can bring an improvement of 1
percentage point. At the same time, the improve-
ment of each baseline demonstrates that the im-
provement brought by AQF is comprehensive: it
is not only conducive to alleviating catastrophic
forgetting but also improves the upper bound of
the model. Therefore, we believe that AQF has the
potential to apply LLL to real-world scenarios.

6 Effectiveness of the Replay Questions

Since the Replay QuestionsRQ is proposed based
on AQF, we verify and analyze the effectiveness
of the RQ based on Table 3 and 5. The AQF-
RQ performance in Table 3 subtracts the corre-
sponding LAMOL+AQF performance in Table
5 is the gains obtained by AQF-RQ come from
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the RQ step. Therefore, RQ0.2
G = AQF-RQ0.2

G -
LAMOL+AQF0.2

G = 1.1, and RQ0.2
T = AQF-RQ0.2

T

- LAMOL+AQF0.2
T = 0.7. It demonstrates that the

RQ step based on the AQF can help the model gen-
erate more task-corresponding pseudo samples by
making P (Qi|Bi) > P (Qj ̸=i|Bi).

7 Conclusion and Future Work

This work proposed AQF-RQ which is a simple
yet efficient and robust lifelong language learning
method. We propose a new question-first data for-
mat that is train-efficient without additional com-
putational resources and new parameters. In AQF’s
"BQCA" format, generating Q first makes it easier
to generate task-corresponding pseudo-data, and A
is more accurate because A is next to C. In addi-
tion, RQ can strengthen the model’s attention to the
problem, so that the model has a greater probability
of generating task-corresponding questions, and
further generates more task-corresponding pseudo-
data. AQF-RQ effectively alleviates catastrophic
forgetting, only 0.36% lower than multi-task learn-
ing. Due to a lack of computing resources, we did
not experiment on larger datasets and longer task
orders, which we leave as future work. In addition,
we will investigate ways to enhance performance
when the task boundary is unclear.
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hyperparameter value

optimizer AdamW
adam epsilon 1× 10−4

learning rate 1× 10−4

weight of RQ task η = 0.2
weight of LM task λ = 0.25
max gradient norm 1.0
learning rate schedule warmup linear
warmup ratio 0.005
max length 1024
top-k sampling k=20

Table 6: The main hyperparameters in our experiment.

A Datasets

As we can not obtain test set of SQuAD since it
is hidden from the host, we use development set
for testing. For other tasks, we use the correspond-
ing test set. A normalized F1 (nF1) metric that
lower text and remove punctuation and articles, is
used to evaluate SQuAD and SRL. The exact match
(EM) is used to evaluate SST. The turn-based di-
alogue state EM (dsEM) is used for WOZ. The
ROUGE is used to evaluate E2ENLG and RNNLG
(rest/hotel/tv/laptop)The size of each dataset is de-
tailed in Table 7.

As shown in Table 7, SST, WOZ, E2ENLG and
RNNLG (rest/hotel/tv/laptop) only have one ques-
tion. The SQuAD has mainly 12 types of questions
and other countless types of questions. SRL has 6
types of questions.

B Hyperparameter

The main hyperparameters in our experiments are
detailed in Table 6.

C Sequence Generation for Different
Domains

We conducted experiments on five sequence gen-
eration tasks for different domains by comparing
LAMOLT , LAMOLG, and L2KD with AQF-RQ.
Experiments are conducted with sufficient pseudo
data (i.e. γ=0.2). Following L2KD, we select the
task order from hard to easy: E2ENLG-RNNLG
(rest) - RNNLG (hotel) - RNNLG (tv) - RNNLG
(laptop). As shown in the Fig.3, we can observe
that all models perform well except for Finetune
and LAMOLG. However, AQF-RQ can still out-
perform other baselines. When learning the same
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Dataset #Train #Test Metric Question Type Question

different types of tasks

SQuAD 87599 10570 nF1 12+∞
what/who/whose/whom/when/
where/how/why/which/if/do/is . . .
+ other countless types of questions

SST 6920 1821 EM 1 is this review negative or positive?

SRL 6414 2201 nF1 6
what/who/whose/whom/
when/where/how/why . . .

WOZ 2536 1646 dsEM 1 what is the change in state?

suquence generation for different domains
E2ENLG 6000 2000

ROUGE 1 what is the natural language form?
RNNLG (rest) 6228 1039
RNNLG (hotel) 6446 1075
RNNLG (tv) 8442 1407
RNNLG (laptop) 7944 2649

Table 7: The summarized results for datasets.

type of tasks in different domains, first we expect
that previous tasks can promote the learning of new
tasks. This is known as the forward transfer. In
terms of the forward transfer, AQF-RQ is better at
acquiring knowledge from previous tasks that is
beneficial to new tasks. The second is backward
transfer, which refers to learning new tasks while
consolidating and strengthening previous tasks. It
can be observed that AQF-RQ also has better back-
ward transfer. For example, from the fourth task
RNNLG.tv on, the backward transfer of AQF-RQ
on the previous tasks is higher than other base-
lines. As the number of learned tasks increases, the
unclear task boundary gradually becomes signif-
icantly weaker than the clear task boundary. For
LAMOLG, the performance on E2ENLG begins to
drop significantly from the fourth task RNNLG.tv.
But our AQF-RQG remains on an upward trend.
According to the above analysis, it can be con-
cluded that AQF-RQ has stronger forward transfer
and backward transfer capabilities in different do-
mains of the same type of task.
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Figure 3: Results on sequence generation tasks for five different domains when γ = 0.2.


