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Abstract

In this research, we present pilot experiments
to distil monolingual models from a jointly
trained model for 102 languages (mBERT). We
demonstrate that it is possible for the target lan-
guage to outperform the original model, even
with a basic distillation setup. We evaluate
our methodology for 6 languages with varying
amounts of resources and belonging to different
language families.

1 Introduction

The introduction of the Transformer architecture,
which aims to solve sequence-to-sequence tasks
while also handling long-range dependencies re-
lying on self-attention (Vaswani et al., 2017), has
caused a huge improvement on the state-of-the-
art for a wide range of natural language process-
ing tasks. Despite the clear gain in performance,
these pre-trained language models are extremely
data- and computation-hungry and their sizes keep
growing at an incredible speed. For example,
RoBERTa (Liu et al., 2019) is trained on a text
corpus of 160 GB, and the recent collaboration of
Microsoft and Nvidia resulted in a language model
containing 530 billion parameters that was trained
on 270 billion tokens (Smith et al., 2022). Besides
the ethical questions on sustainability raised by
the NLP community, these huge language models
also pose a lot of operational challenges, as they
require massive amounts of training data, com-
putation power and storage capacity. More im-
portantly, the limits on training data also intro-
duce limits on the languages these models can
work with. Consequently, English has been the
default language newer transformers have been
trained on. More recently, much attention has
been devoted to multilingual aspects, especially
with the advent of joint models like mBERT (De-
vlin et al., 2019) and XLM (Conneau and Lam-
ple, 2019). However, the percentage of data used

to train joint models for low-resourced languages
when compared to English is orders of magni-
tudes lesser and results in poorer representations
for lower-resourced languages (Wu and Dredze,
2020). Moreover, when language representations
for a specific low-resourced language are needed,
there are no available monolingual models for a
lot of these languages, and the entire large jointly-
trained model needs to be loaded. More recently,
a lot of attention is paid to sustainability for trans-
formers, resulting in various approaches like prun-
ing, weight sharing and distillation to reduce the
size of large models. Previous research has shown
good results for task-specific distillation, distilla-
tion from larger English BERT models and dis-
tillation from mBERT into a smaller multilingual
model (see Section 2). In this paper, we attempt
to combine these two research directions and distil
smaller monolingual transformers from mBERT.
Our hypothesis was that distilling would help to
improve the representations for a target language,
as the model can focus its prediction power on the
target language, instead of attempting to accommo-
date 101 other languages. To the best of our knowl-
edge, this is the first research presenting results
for distilling monolingual student models from
mBERT. Not only are we able to successfully distil
smaller monolingual models from mBERT, we also
demonstrate that these smaller models outperform
mBERT for the distilled language. We experiment
with student models for well-resourced (Dutch,
French), middle-resourced (Hindi, Hebrew) and
low-resourced (Swahili, Slovenian) languages from
very diverse language families and attempt to un-
derstand how a student model can outperform a
teacher model in a distillation setup.

2 Related Research

While models that generate Deep Contextualized
Representations like ELMo (Peters et al., 2018),
BERT (Devlin et al., 2019) and GPT (Brown
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et al., 2020) have pushed the state-of-the-art for
downstream tasks in English, the improvements
for medium- and low-resourced languages have
not been as significant. Trained models on large
monolingual corpora are abundant for English and
other Western European languages, but they are
extremely scarce for under-resourced languages
(having small Wikipedias to train language models
on). Although joint models trained for multiple
languages like mBERT (Devlin et al., 2019) and
XLM (Conneau and Lample, 2019) have been an
excellent alternative to monolingual models, and
even perform better than monolingual models due
to additional supervision, these large joint models
also come with drawbacks. Wu et al. (2020) show
that a majority of languages in mBERT are under-
represented and have poor performance on down-
stream tasks. This can be attributed to multiple rea-
sons, like minimal monolingual data compared to
English and other Western European languages, a
small percentage share when it comes to mBERT’s
shared vocabulary and the sub-word tokenization
not being suitable for all scripts. However, mBERT
still performs better than monolingual models for
these languages, since the monolingual models are
trained on very limited pre-training data compared
to mBERT. Therefore, with monolingual transform-
ers either not existing or performing worse than
mBERT, one is forced to use mBERT for mono-
lingual tasks for a particular low-resourced lan-
guage, and thus deploying representations for 101
other languages. Abdaoui et al. (2020) propose
a simple alternative by loading specific sections
of mBERT’s vocabulary for particular languages,
causing no loss in performance while decreasing
the size of the deployed model considerably.

Various methodologies have been proposed to
improve the sustainability of transformers. Distilla-
tion methods have shown to be very successful, but
also low-rank approximation (Chen et al., 2021),
weight sharing (Reid et al., 2021), pruning (La-
gunas et al., 2021) and quantization (Bondarenko
et al., 2021) propose excellent alternatives. While
the central idea behind distillation is to reduce the
model size as much as feasible while keeping the
performance as close to the original model as pos-
sible, task-specific distillation (Tang et al., 2019) is
a variant which focuses on a certain subset of the
model’s capabilities. The broader concept behind
both methodologies is similar: a student model is
initialised with significantly lesser parameters than

the original teacher model. The student is trained
with the loss for the objective at hand (masked
language modeling (MLM) for generic distillation
and specific tasks for task-based distillation), while
also forcing the predictions to be identical to the
teacher model. The underlying hypothesis being
that once a larger model has learned the nuances of
the data, a much smaller model can simply mimic
the predictions with significantly lesser parameters.
Hinton et al. (2015) further introduced the softmax
temperature to emphasize learning from the entire
distribution. A seminal work in the distilation of
BERT-like transformers was performed by Sanh et
al. (2019), who report a considerable model size
reduction (40%) while retaining 97% performance
on downstream tasks.

In this paper, we present pilot experiments for
a new type of knowledge distillation that aims to
extract representations for a particular language
from a multilingual model. While there have been
more advanced distillation approaches proposed,
such as Patient Knowledge Distillation (Sun et al.,
2019), this research is a first attempt at language-
based distillation, where the basic distillation setup
is validated as a proof of concept. We demonstrate
that even when using basic distillation, it is possible
to obtain monolingual models 3 times smaller than
mBERT, while also performing consistently better
on the distilled language. In addition, we show
promising results for languages with a large variety
in terms of available resources and belonging to
different language families.

3 Distillation Methodology and
Experimental Setup

We use the basic, proven distillation technique by
Sanh et al. (2019), which uses mBERT as a teacher
for all setups, and a 6-layer BERT architecture with-
out the pooler and token-type embeddings as the
student. We also use the 3 loss functions proposed,
which are formally represented in the equations
below. The distillation loss (1) ensures the sim-
ilarity between the teacher output distribution t;
and the student output distribution s; using neg-
ative log-likelihood. The cosine embedding loss
(2) ensures the distributions not only have simi-
lar magnitudes but a similar directional alignment
as well by penalising cosine distance. The final
loss (3) is the standard cross-entropy used for most
modern MLM systems, where s; is once again the

"https://github.com/NirantK/hindi2vec
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Wikipedia | Downstream Task 1 Downstream Task 2 | Monolingual Model

French | 12M Sentiment (Le et al., 2019) | UD POS (GSD) CamemBERT-base

Dutch 4.4M Sentiment (van der UD POS BERTje
Burgh (2019)) (Lassy-small)

Hindi 1.1IM News (hindi2vec: github UD POS (HDTB) indicBERT
NirantK/hindi2vec)

Hebrew | 1.3M Sentiment UD POS (HTB) AlephBERT
(Amram et al., 2018)

Swahili | 0.1M News (SNCD: huggingface | NER SwahBERT
datasets/swahili_news) (Adelani et al., 2021)

Slovene | 0.4M NER (Rahimi et al., 2019) | UD POS (SSJ) SloBERTa

Table 1: Overview of the used resources for each of the 6 languages, including the monolingual Wikipedia
(in million pages) used for the distillation process, as well as the two tasks used to evaluate the distilled
model. For all PoS-tagging tasks (UD POS), datasets were retrieved from the Universal Dependencies dataset
(https://universaldependencies.org). The last column lists the monolingual model that was used to present an

upperbound score for the given task and language.

student’s output distribution while y; is the ground
truth output distribution. The three losses are then
aggregated with a weighted sum (4). An impor-
tant factor here is the unlabelled monolingual data
used for distillation. While it is often the case for
distillation systems to pre-train the student model
on the entire corpus to ensure optimal transfer, we
want to focus on the capabilities of a single target
language, and therefore only distil for ¢e L where L
is the target language in question.

Laistillation = »_ ti * log(s;) (1
el
Leosine = Z 1- COS(tia Si) (2)
iel
Lmlm = Z Yi * lOQ(Si) (3)
iel

L= alLdistillation + a2Lmlm + a3Lcosine (4)

A vital thing to note here is that L,,;, and
Lg;stitlation can be slightly contradictory. While
both enforce the same obejctive, L, uses the
ground truth while Lg;sii1ation Uses the teacher’s
predictions. Therefore, if the teacher predictions
are often dissimilar to the ground-truth, the two
losses might interfere with each other’s progress.
We explore this further in Section 4.

We also follow in the footsteps of the previous
work for the student initialisation. It was noted
by Sun et al. (2019) that initialising the student
model from the teacher model by skipping alter-
nate layers greatly speeds up the learning process
and improves the student model considerably. Our

final step was to reduce the vocabulary of the stu-
dent model to only the target language L. Since the
student vocabulary was initialized from the teacher
mBERT, which contains sub-words from over a
100 languages, this majorly contributes to the large
vocabulary, and therefore directly to the model size
and inference speed. We use the approach sug-
gested by Abdaoui et al. (2020), which selects a
subset of the vocabulary of a large model and elim-
inates the unnecessary parameters from the embed-
ding layer and tokenizer, thus significantly bringing
down model parameters.

We replicate the distillation experiments for a set
of 6 languages, using the entire available Wikipedia
for each language. Since the data size varies con-
siderably (ranging between 0.1 million pages for
Swahili to 12 million pages for French), we train
for 20,000 steps to ensure all models are trained
to a similar extent. The student models for Dutch
and French might therefore be improved by further
training since they have more available data, but
our objective here was to focus on the viability of
the approach for low-resourced languages. Experi-
ments with the high-resourced languages (Dutch,
French) are only added for the sake of compari-
son. We use the values of 5.0 for aq, 2.0 for as
and 1.0 for as, respectively. A starting learning
rate of 5e — 4 was used, with a batch size of 8
per device, for 4 Tesla A100 GPUs, and the dis-
tillation takes approximately 48 hrs per language.
Post-distillation, we reduce the model’s vocabulary
as described above. Next, we test the monolingual
student models on two different downstream tasks
for each language. For the fine-tuning, we add a
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classification layer to the distilled model and train
with an LR of 5e — 5 for 5 epochs with 500 warm
up steps before a linear LR decay. We include tasks
requiring both semantic understanding (sentiment
analysis, news classification) as well as syntactic
knowledge (PoS-tagging, NER).

An overview of the evaluated tasks and datasets
per language is presented in Table 1. The last col-
umn refers to the models used for the upper-bound
scores in Table 2. While for some languages we
could use the standard monolingual BERT models
as the upper bound (BERTje!, AlephBERT?, Swah-
BERT?), for other languages we had to use more
advanced architectures like RoBERTa (Camem-
BERT?, SIoBERT2), while for Hindi we used In-
dicBERT®, which is an ALBERT model for 12
Indic Languages.

4 Results and Discussion

The results for all experiments are summarized in
Table 2. The distilled language models (Eliguare)
almost consistently outperform mBERT, even when
mBERT has 3 times as many parameters. A more
fair comparison is made with distiimBERT (Sanh
et al., 2019), which has fewer parameters than
mBERT and a similar model structure to the Eli-
quare models, but uses the entire Wikipedia for
all languages for the distillation process (i.e. 237
million pages). In addition, we notice that Dis-
tilmBERT is also consistently outperformed by Eli-
quare. This outcome may seem counter-intuitive
and unusual at first, since a student model should
in principle not be outperforming a teacher model
based on evidence from a number of distillation
methodologies presented over the years. It can be
explained, however, by the loss setup discussed
in Section 3. If mBERT consistently makes mis-
takes for MLM, L j;stittation and Ly, continue to
contradict each other. While the MLM loss will
encourage the model to improve, since the distilla-
tion loss is weighted («1) so heavily, it ensures the
model cannot be very different from the teacher. As
a result, each Eliquare model, even though better,
is only marginally improved due to the distillation
loss halting the progress. This is illustrated by Fig-
ure 1, which shows the progress of the two losses

"https://huggingface.co/GroNLP/bert-base-dutch-cased
Zhttps://huggingface.co/onlplab/alephbert-base
*https://github.com/gatimartin/SwahBERT
*https://huggingface.co/camembert-base
>https://huggingface.co/EMBEDDIA/sloberta
®https://huggingface.co/aidbharat/indic-bert

Task 1 | Task 2
French
Upper-bound x 0.9338 | 0.9818
mBERT 0.8923 | 0.9795
distilmBERT 0.8773 | 0.9790
Eliquare 0.8952 | 0.9792
Dutch
Upper-bound 0.9300 | 0.9630
mBERT 0.9033 | 0.9623
distiimBERT 0.8812 | 0.9607
Eliquare 0.8970 | 0.9625
Hindi
Upper-bound x * | 0.2553 | 0.9208
mBERT 0.4744 | 0.9666
distilmBERT 0.4555 | 0.9597
Eliquare 0.5066 | 0.9683
Hebrew
Upper-bound 0.8871 | 0.9620
mBERT 0.8512 | 0.9681
distiimBERT 0.8391 | 0.9597
Eliquare 0.8567 | 0.9705
Swahili
Upper-bound 0.9090 | 0.8850
mBERT 0.8689 | 0.8490
distiimBERT 0.8666 | 0.8452
Eliquare 0.8701 | 0.8632
Slovene
Upper-bound x 0.9410 | 0.9902
mBERT 0.9326 | 0.9791
distilmBERT 0.9268 | 0.9790
Eliquare 0.9365 | 0.9822

Table 2: Experimental results (macro-F1) for multi-
lingual BERT (mBERT), distilled mBert (distil) and
our language-specific distillation approach (Eliquare)
for various end-tasks for 2 high-resourced (French,
Dutch), 2 middle-resourced (Hindi, Hebrew) and 2 low-
resourced languages (Swahili, Slovene). x Refers to
non-monolingual models trained with additional similar
languages, while * refers to more advanced architec-
tures (like RoBERTa) expected to perform better than
BERT-based models.

for Dutch distillation. While L g;sti11ation cONVeErges
much faster, and maintains a much lower absolute
value, L, encounters a lot of fluctuation and
has an almost four times higher mean value, even
though both loss functions are near identical (cross-
entropy). The distillation and MLM loss plots for
the other 5 languages are provided in appendix A.
The results for the upper-bound models are only
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Figure 1: Distillation loss (left) and MLM loss (right) for the Dutch language distillation.

Model # of Parameters | Inference Speed | Inference Memory

mBERT 167TM 0.384s 10880 MB
distilmBERT 134M 0.165s 8798 MB

Eliquare 66M 0.066s 2944 MB

Table 3: Sustainability comparisons of Eliquare with standard mBERT and distilled mBERT versions. All numbers
were computed on a Tesla V100 with a Batch Size of 32 and Sequence Length of 512 for inference.

provided for reference and do not serve as a fair
comparison since these are specialized models for
the language trained on significantly more mono-
lingual data compared to mBERT.

While the performances of all the models maybe
very close together, where the Eliqguare set of mod-
els really shine is in a practical deployment setting.
As shown in Table 3, Eliquare models are about
6 times faster than mBERT for inference (for a
Batch Size of 32 and Sequence Length of 512 on
a single Tesla V100), while being approximately
2.5 times faster than the distilled mBERT model.
Moreover, they occupy around 1/3rd of the memory
of mBERT with the same inference setting.

To conclude, we demonstrate that it is possible to
distil better, smaller and faster monolingual models
from mBERT, using a very basic distillation setup.
The results show that the Eliquare monolingual
models consistently outperform mBERT which has
3 times more parameters, and distilmBERT which
has almost 2 times more parameters and uses orders
of magnitude more data for the distillation process.
While the Eliquare models may not be useful for
the high-resourced languages due to the availability
of large monolingual models, they present a major
step towards having small monolingual models for
a number of low-resourced languages.

In future research, we will investigate how to
further improve the student from the teacher by di-
minishing the impact of the distillation loss. In ad-
dition, we will run the same set of experiments with
XLM-R to investigate whether the same distillation

approach can be applied to other joint multilingual
models as well. Finally, we will also explore the
impact of distilling multiple typologically similar
languages from mBERT in parallel.
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and the distillation loss for the other 5 languages,
and consistently observe the findings presented in
Section 4. The MLM loss continues to have a much
larger mean value than the distillation loss, while
also having issues converging with various spikes
in the loss, while the training for the distillation
loss is much more stable. This is line with our
hypothesis that the large o1 values prioritize the
distillation over the language modelling objective,
thus not allowing the model to further improve
from the teacher.
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Figure 2: Distillation loss (left) and MLM loss (right) for the other 5 languages: French, Hindi, Hebrew, Swahili
and Slovene.
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