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Abstract

Cross-lingual word embeddings (CLWE) have
been proven useful in many cross-lingual tasks.
However, most existing approaches to learn
CLWE including the ones with contextual em-
beddings are sense agnostic. In this work, we
propose a novel framework to align contextual
embeddings at the sense level by leveraging
cross-lingual signal from bilingual dictionar-
ies only. We operationalize our framework
by first proposing a novel sense-aware cross
entropy loss to model word senses explicitly.
The monolingual ELMo and BERT models pre-
trained with our sense-aware cross entropy loss
demonstrate significant performance improve-
ment for word sense disambiguation tasks. We
then propose a sense alignment objective on top
of the sense-aware cross entropy loss for cross-
lingual model pretraining, and pretrain cross-
lingual models for several language pairs (En-
glish to German/Spanish/Japanese/Chinese).
Compared with the best baseline results, our
cross-lingual models achieve 0.52%, 2.09%
and 1.29% average performance improvements
on zero-shot cross-lingual NER, sentiment clas-
sification and XNLI tasks, respectively. 1

1 Introduction

Cross-lingual word embeddings (CLWE) provide a
shared representation space for knowledge transfer
between languages, yielding state-of-the-art perfor-
mance in many cross-lingual natural language pro-
cessing (NLP) tasks. Most of the previous works
have focused on aligning static embeddings. To
utilize the richer information captured by the pre-
trained language model, more recent approaches
attempt to extend previous methods to align con-
textual representations.

∗ Linlin Liu is under the Joint PhD Program between
Alibaba and Nanyang Technological University.

†Corresponding author.
1Our code is available at https://github.com/

ntunlp/multisense_embedding_alignment.
git.

Aligning the dynamic and complex contextual
spaces poses significant challenges, so most of the
existing approaches only perform coarse-grained
alignment. Schuster et al. (2019) compute the aver-
age of contextual embeddings for each word as an
anchor, and then learn to align the static anchors
using a bilingual dictionary. In another work, Al-
darmaki and Diab (2019) use parallel sentences
in their approach, where they compute sentence
representations by taking the average of contextual
word embeddings, and then they learn a projection
matrix to align sentence representations. They find
that the learned projection matrix also works well
for word-level NLP tasks. Besides, unsupervised
multilingual language models (Devlin et al., 2018;
Artetxe and Schwenk, 2019; Conneau et al., 2019;
Liu et al., 2020) pretrained on multilingual cor-
pora have also demonstrated strong cross-lingual
transfer performance. However, studies (Wang
et al., 2020; Cao et al., 2020; Efimov et al., 2022;
Tien and Steinert-Threlkeld, 2022) have shown that
adjusting the unsupervised multilingual language
model with parallel sentences can help further im-
prove cross-lingual performance.

Though contextual word embeddings are in-
tended to provide different representations of the
same word in distinct contexts, Schuster et al.
(2019) find that the contextual embeddings of dif-
ferent senses of one word are much closer com-
pared with that of different words. This contributes
to the anisomorphic embedding distribution of dif-
ferent languages and causes problems for cross-
lingual alignment. For example, it will be difficult
to align the English word bank and its Japanese
translations銀行 and岸 that correspond to its two
different senses, since the contextual embeddings
of different senses of bank are close to each other
while those of 銀行 and 岸 are far. Zhang et al.
(2019) propose two solutions to handle multi-sense
words: 1) remove multi-sense words and then align
anchors in the same way as Schuster et al. (2019);

https://github.com/ntunlp/multisense_embedding_alignment.git
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2) generate cluster level average anchor for con-
textual embeddings of multi-sense words and then
learn a projection matrix in an unsupervised way
with MUSE (Conneau et al., 2017). They do not
make good use of the bilingual dictionaries, which
are usually easy to obtain, even in low-resource sce-
narios. Moreover, their projection-based approach
still cannot handle the anisomorphic embedding
distribution problem.

In this work, we propose a novel sense-aware
cross entropy loss to model multiple word senses
explicitly, and then leverage a sense level transla-
tion task on top of it for cross-lingual model pre-
training. The proposed sense level translation task
enables our models to provide more isomorphic
and better aligned cross-lingual embeddings. We
only use the cross-lingual signal from bilingual dic-
tionaries for supervision. Our pretrained models
demonstrate consistent performance improvements
on zero-shot cross-lingual NER, sentiment classifi-
cation and XNLI tasks. Though pretrained on less
data, our model achieves the state-of-the-art result
on zero-shot cross-lingual German NER task. To
the best of our knowledge, we are the first to per-
form sense-level contextual embedding alignment
with only bilingual dictionaries.

2 Background: prediction tasks of
language models

Next token prediction and masked token prediction
are two common tasks in neural language model
pretraining. We take two well-known language
models, ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2018), as examples to illustrate these
two tasks (architectures are shown in §A).

Next token prediction ELMo uses next token
prediction tasks in a bidirectional language model.
Given a sequence of N tokens (t1, t2, . . . , tN ), it
first prepares a context independent representation
for each token by using a convolutional neural net-
work over the characters or by word embedding
lookup (a.k.a. input embeddings). These repre-
sentations are then fed into L layers of LSTMs to
generate the contextual representations: hi,j for
token ti at layer j. The model assigns a learnable
output embedding w for each token in the vocabu-
lary, which has the same dimension as hi,L. Then,
the forward language model predicts the token at

position k with:

p(tk|t1, t2, . . . , tk−1)

= softmax(hT
k−1,Lwk′)

=
exp(hT

k−1,Lwk′)∑V
i=1 exp(h

T
k−1,Lwi)

(1)

where k′ is the index of token tk in the vocabulary,
V is the size of the vocabulary, and (w1, . . . ,wV )
are the output embeddings for the tokens in the vo-
cabulary. The backward language model is similar
to the forward one, except that tokens are predicted
in the reverse order. Since the forward and back-
ward language models are very similar, we will
only describe our proposed approach in the context
of the forward language model in the subsequent
sections.

Masked token prediction The Masked Lan-
guage Model (MLM) in BERT is a typical exam-
ple of masked token prediction. Given a sequence
(t1, t2, . . . , tN ), this approach randomly masks a
certain percentage (15%) of the tokens and gener-
ates a masked sequence (m1,m2, . . . ,mN ), where
mk = [mask] if the token at position k is masked,
otherwise mk = tk. BERT first prepares the con-
text independent representations (x1,x2, . . . ,xN )
of the masked sequence via token embeddings. It
is then fed into L layers of transformer encoder
(Vaswani et al., 2017) to generate “bidirectional”
contextual token representations. The final layer
representations are then used to predict the masked
token at position k as follows:

p(mk = tk|m1, . . . ,mN )

= softmax(hT
k,Lwk′)

=
exp(hT

k,Lwk′)∑V
i=1 exp(h

T
k,Lwi)

(2)

where k′, V , h and w are similarly defined as in
Eq. 1. Unlike ELMo, BERT ties the input and
output embeddings.

3 Proposed framework

We first describe our proposed sense-aware cross
entropy loss to model multiple word senses ex-
plicitly in language model pretraining. Then, we
present our joint training approach with sense align-
ment objective for cross-lingual mapping of contex-
tual word embeddings. The proposed framework
can be applied to most of the recent neural language
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models, such as ELMo, BERT and their variants.
See Table 1 for a summary of the main notations
used in this paper.

Notation Description

tk k-th token in sentence
tk,s s-th sense of tk
k′ index of token tk in vocabulary
L number of LSTM/Transformer layers
V size of vocabulary
S maximum number of senses per token
hk,j contextual representation of token tk in layer j
hk∗,L contextual representation used in softmax

function for predicting tk
vi i-th word in vocabulary
vi,s s-th sense of vi
wi output embedding of vi
wi,s context-dependent output embedding

(i.e. sense vector) of vi,s
ci,s sense cluster center of vi,s
Ci sense cluster centers of vi
d dimension of contextual representations
P projection matrix for dimension reduction

Table 1: Summary of the main notations.

3.1 Sense-aware cross entropy loss

Limitations of original training objectives The
training tasks with Eq. 1 and 2 maximize the nor-
malized dot product of contextual representations
(hk−1,L or hk,L) with a weight vector wk′ . The
only difference is that hk−1,L in Eq. 1 encodes
the information of previous tokens in the sequence,
while hk,L in Eq. 2 encodes the information of
the masked sequence. Therefore, without loss of
generality, we use hk∗,L to denote the contextual
representation for predicting the next or masked
token tk.

Even though contextual language models like
ELMo and BERT provide a different token rep-
resentation for each distinct context, the learned
representations are not guaranteed to be sense sep-
arated. For example, Schuster et al. (2019) com-
puted the average of ELMo embeddings for each
word as an anchor, and found that the average co-
sine distance between contextual embeddings of
multi-sense words and their corresponding anchors
are much smaller than the average distance between
anchors, which mean that the embeddings of differ-
ent senses of one word are relatively near to each
other comparing to that of different words. We also
observed the same with BERT embeddings. This
finding suggests that sense clusters of a multi-sense
word’s appearances are not well separated in the
embedding space, and the current contextual lan-
guage models still have room for improvement by

considering finer-grained word sense disambigua-
tion.

Notice that there is only one weight vector wk′

for predicting the token tk in the original training
tasks. Ideally, we should treat the appearances of a
multi-sense word in different contexts as different
tokens, and train the language models to predict
different senses of the word. In the following, we
propose a novel sense-aware cross entropy loss
to explicitly model different senses of a word in
different contexts.

Sense-aware cross entropy loss Given a se-
quence (t1, t2, . . . , tN ), our proposed framework
generates contextual representations (hk,j for to-
ken tk in layer j ∈ {1, . . . , L}) in the same way
as the standard LMs. Different from existing
methods, our approach maintains multiple context-
dependent output embeddings (henceforth, sense
vectors) for each token. Specifically, let S be the
maximum number of senses per token. Each word
vi in the vocabulary contains S separate sense vec-
tors (wi,1,wi,2, . . . ,wi,S), where each wi,s cor-
responds to a different sense (see Appendix for
some interesting visualization examples). Follow-
ing the notation in §2, we use k′ to denote the index
of the output token tk in the vocabulary. There-
fore, the sense vectors of tk can be represented by
(wk′,1,wk′,2, . . . ,wk′,S), which are randomly ini-
tialized and of the same dimension as hk∗,L. Note
that we untie the input and output embeddings in
our framework.

We propose a word sense selection method
shown in Algorithm 1 to select the most likely
sense vector when training with sense-level cross
entropy loss. Figure 1 shows the architecture of our
proposed models. Assuming sense s′ is selected for
token tk (which means sense vector wk′,s′ should
be used), we have the following new prediction
task:

p(tk,s′ |context)
= softmax(hT

k∗,Lwk′,s′)

=
exp(hT

k∗,Lwk′,s′)∑V
i=1

∑S
s=1 exp(h

T
k∗,Lwi,s)

(3)

The sense-aware cross entropy loss for word sense
prediction is defined as follows:

LSENSE = − log(p(tk,s′ |context)) (4)

Word sense selection algorithm Word sense se-
lection when training the language model can be
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(a) Sense-aware next token prediction. (b) Sense-aware masked token prediction. (c) Word sense selection.

Figure 1: Our proposed framework for sense-aware next token and masked token prediction tasks. Since the
backward language model for next token prediction is similar to the forward, we only show the forward one in (a)
for simplicity. Figure (c) shows an example of word sense selection, where the two sense clusters of tk (assume its
vocabulary index is k′) are shifting in space. Center vectors ck′,1 and ck′,2 are used to locate cluster centers. Given
hk,L, the algorithm performs dimension reduction on both hk,L and center vectors, and then finds the most close
cluster center ck′,2, so we know the output embedding corresponding to sense 2 (wk′,2) should be used in the loss
function. ck′,2 also makes a small step towards hk,L.

handled as a non-stationary data stream cluster-
ing problem (Aggarwal et al., 2004; Khalilian and
Mustapha, 2010; Abdullatif et al., 2018). The most
intuitive way to select the corresponding sense vec-
tor for hk∗,L is to select the vector wk′,s with the
maximum dot product value hT

k∗,Lwk′,s, or cosine
similarity value cossim(hk∗,L,wk′,s). However,
our experiments show that these methods do not
work well due to curse of dimensionality, subop-
timal learning rate and noisy hk∗,L. We apply an
online k-means algorithm to cluster different senses
of a word in Algorithm 1. For each sense vector
wi,s, we maintain a cluster center ci,s which is of
the same dimension as wi,s. Therefore, each token
vi in the vocabulary has S such cluster center vec-
tors, denoted by Ci = (ci,1, ci,2, . . . , ci,S). When
predicting token tk in a given sequence, we apply
Algorithm 1 to select the best sense vector based on
hk,L (see Figure 1). Notice that hk,L is different
from hk∗,L for next token prediction (Figure 1a)
for which hk∗,L = hk−1,L. The cluster centers Ci

are not neural network parameters; instead, they
are randomly initialized using a normal distribu-
tion N (0, σ2) and updated through Algorithm 1.
In addition, we also maintain a projection matrix
P for dimension reduction to facilitate effective
sense clustering. P ∈ Rd×d′ projects hk,L and ci,s
from dimension d to d′, and is shared by all tokens
in vocabulary. Similar to C, P is also randomly
initialized with normal distribution N (0, 1), and
then updated through Algorithm 2. Both Algorithm

Algorithm 1 Word sense selection
1: Hyper-parameters: number of senses S, sense learning

rate α
2: Initialize the set of all sense cluster centers C
3: repeat
4: input: hk,L, vocabulary index k′ of the token to pre-

dict
5: Lookup sense cluster centers for k′: Ck′ =

{ck′,1, ck′,2, . . . , ck′,S}
6: P = updated projection matrix from Alg. 2
7: if cosine similarity between ck′,s′P and h′

kP is the
largest among the vectors in Ck′ then

8: ck′,s′ = (1− α)ck′,s′ + αhk,L

9: output: s′(wk′,s′ should be selected)
10: end if
11: until interrupted

1 and 2 run in parallel, and are interrupted when
the language model stops training.

Some rationales behind our algorithm design are
the following:

• Directly computing cosine similarity between
ck′,s and hk,L suffers from the curse of dimen-
sionality. We maintain P for dimension reduc-
tion. Although many algorithms use random pro-
jection for dimension reduction, we find using
PCA components can help improve clustering
accuracy.

• Since the neural model parameters keep being up-
dated during training, the sense clusters become
non-stationary, i.e., their locations keep chang-
ing. Experiments shows that when using P for
dimension reduction, a slightly larger projection
dimension d′ will make the clustering algorithm
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Algorithm 2 Projection matrix P update
1: Hyper-parameters: projection dimension d′, update in-

terval M , queue size Q
2: Initialize P with N (0, 1), queue H = ∅, m = 0
3: repeat
4: input: hk,L

5: m = m+ 1
6: Add hk,L to queue H
7: if size(H) > Q then
8: Pop the oldest element from queue H .
9: end if

10: if m >= M then
11: P = the first d′ PCA components of H
12: m = 0
13: end if
14: output: P
15: until interrupted

less sensitive to cluster location change. We use
d′ = 16 for ELMo, and d′ = 14 for BERT. We
also notice that the sense clustering works well
even if P is updated sporadically. We can set a
relatively large update interval in Algorithm 2 to
reduce computation cost.

• A separate sense learning rate α should be set
for the clustering algorithm. A large α makes the
algorithm less robust to noise, while a small α
leads to slow convergence.

• It is essential to use the current token’s contex-
tual representation hk,L for sense selection even
though we use hk∗,L = hk−1,L in the next token
prediction task. If we use hk−1,L for sense selec-
tion, experiments show that most of the variance
comes from input embedding xk−1. This intro-
duces too much noise for word sense clustering.

Dynamic pruning of redundant word senses
To make the training more efficient, we keep track
of relative sense selection frequency for each to-
ken in the vocabulary. Assume token vi has ini-
tial senses (vi,1, vi,2, . . . , vi,S), for which we com-
pute the relative frequency ρ(vi,s) such that 0 ≤
ρ(vi,s) ≤ 1 and

∑
s ρ(vi,s) = 1. A lower ρ(vi,s)

means the sense is less frequently selected com-
pared with others. We check the relative frequen-
cies after every E training steps, and if ρ(vi,s) < β
(a threshold hyper-parameter), vi,s is removed from
the list of senses of vi.

Remark on model size and parameters The
sense cluster centers C and the projection matrix
P are only used to facilitate sense selection during
model pretraining, which are not neural model pa-
rameters. The sense vectors wi,s will no longer be
used after pretraining, which can also be discarded.

Therefore, our models and the original models have
exactly the same number of parameters when trans-
ferred to downstream tasks.

Remark on model complexity The computa-
tional complexity of our algorithm is linear with
respect to the size of data, so our method is scalable
to train on very large datasets.

3.2 Joint training with sense level translation
Training language model with sense-aware cross
entropy loss helps to learn contextual token repre-
sentations that are sufficiently distinct for different
senses (§4.1). In this subsection, we extend it to
cross-lingual settings and present a novel approach
to learn cross-lingual contextual word embeddings
at the sense level. Our approach uses a bilingual
seed dictionary,2 and can be applied to both next
and masked token prediction tasks.

For training the cross-lingual LM, we concate-
nate the (non-parallel) corpora of two languages,
L1 and L2, and construct a joint vocabulary O =
OL1 ∪ OL2 , where OL1 and OL2 are the vocab-
ularies of L1 and L2, respectively. Algorithm 1
is used to model the senses of tokens in the joint
vocabulary. In addition to predicting the correct
monolingual sense p(tk,s′ |context) in Eq. 3, we
also train the model to predict its sense level trans-
lation. Let vj be the translation of tk and sense
vj,s∗ of vj be the best sense level translation under
the given context, we add the following sense-level
translation prediction task to maximize probability
of vj,s∗ .

p(vj,s∗ |context)
= softmax(hT

k∗,Lwj,s∗)

=
exp(hT

k∗,Lwj,s∗)∑V
i=1

∑S
s=1 exp(h

T
k∗,Lwi,s)

(5)

where wj,s∗ is the corresponding sense vector of
vj,s∗ .

Similar to the previous subsection, we maintain
sense cluster centers Ci for each token vi ∈ O
and the shared projection matrix P to select the
best translation sense. Assume tk has T trans-
lations in dictionary, and each translation has S
senses, then there are T × S possible sense level
translations for tk in the given context. If the
cossim(hk,LP , cj,s∗P ) value is the largest among
the T ×S sense cluster centers, then we select vj,s∗

2If not provided, it can be learned in an unsupervised way,
e.g., MUSE (Conneau et al., 2017).
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Figure 2: An example of English-Japanese sense-level
joint training, which shows two possible Japanese trans-
lations (銀行 and岸) of the English word bank. hk,L is
a contextual representation of bank in finance context
and ck′,2 is the cluster center for this sense. ca,1, ca,2,
cb,1, cb,2 are different sense cluster centers of the two
Japanese translations, among which cb,2 is the closest
to hk,L after dimension reduction through PCA. Our
sense level objective (Eq. 6) moves sense clusters for
bank (organization) and銀行(organization) closer to
each other.

as the closest translation. An example is shown in
Figure 2. If token tk has at least one translation
in the dictionary, the translation cross entropy loss
can be computed as:

LTRAN = − log(p(vj,s∗ |context)) (6)

If token tk has no translation in the seed dic-
tionary, we use Eq. 4 as the only loss. The joint
training loss is defined as follows:

LJOINT =

{
LSENSE+LTRAN

2 , if tk has translations

LSENSE, otherwise
(7)

Further alignment (optional) Our sense-aware
pretraining tries to move similar senses of two
different languages close to each other as illus-
trated in Figure 2. This process makes the sense
distributions of the two languages more isomor-
phic (some sense vector visualization examples are
shown in §D). Applying the linear projection ap-
proach proposed by Schuster et al. (2019) on top of
the language model pretrained with our framework
can further improve cross-lingual transfer on some
tasks. See §B for more details of our implementa-
tion.

4 Experiments

4.1 Experiments using monolingual models
To verify the effectiveness of our proposed sense-
aware cross entropy loss, we implement the mono-
lingual models on top of ELMo and BERT with

Model SE2 SE3 SE07 SE13 SE15

ELMo 0.555 0.576 0.446 0.544 0.538
SaELMo (ours) 0.575 0.586 0.470 0.560 0.583

BERT-Tiny 0.596 0.539 0.466 0.536 0.572
SaBERT-Tiny (ours) 0.611 0.546 0.446 0.550 0.579

Table 2: Word sense disambiguation (F1 scores).

the changes described in §3.1, which are named
SaELMo (Sense-aware ELMo) and SaBERT
(Sense-aware BERT) respectively. The algorithm
for dynamic pruning of redundant word senses is
optional, which is implemented on SaELMo only.

Pretraining settings We use the one billion word
language modeling benchmark data (Chelba et al.,
2013) to pretrain all the monolingual models. The
corpus is preprocessed with the provided scripts,
and then converted to lowercase. We do not apply
any subword tokenization. We use similar hyper-
parameters as Peters et al. (2018) to train the ELMo
and SaELMo models, and similar hyper-parameters
as Devlin et al. (2018) to train 4-layer BERT-Tiny
and SaBERT-Tiny. Next sentence prediction task
is disabled in BERT-Tiny and SaBERT-Tiny, since
this task is irrelevant to our proposed changes. See
§C.1 for a complete list of hyper-parameters.

Word sense disambiguation (WSD) Since our
context-aware cross entropy loss is designed to
learn word senses better in the context, we first
conduct experiments to compare our monolingual
model with the original models on the WSD task
(Raganato et al., 2017), which is a task to associate
words in context with the most suitable entry in a
pre-defined sense inventory. We use SemCor 3.0
(Miller et al., 1993) as training data, and Sense-
val/SemEval series (Edmonds and Cotton, 2001;
Moro and Navigli, 2015; Navigli et al., 2013; Prad-
han et al., 2007; Snyder and Palmer, 2004) as test
data. We use the pretrained models to compute
the average of contextual representations for each
sense in training data, and then classify the senses
of the target words in test sentences by finding
the nearest neighbour from all senses entries with-
out pre-filtering senses by lemma.3 WSD results
are presented in Table 2. SaELMo shows signifi-
cant performance improvements over the baseline
ELMo model in all of the five test sets. SaBERT-
Tiny also outperforms BERT-Tiny except on SE07,

3We use the evaluation code from https://github.
com/drgriffis/ELMo-WSD-reimplementation.
git.

https://github.com/drgriffis/ELMo-WSD-reimplementation.git
https://github.com/drgriffis/ELMo-WSD-reimplementation.git
https://github.com/drgriffis/ELMo-WSD-reimplementation.git
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which is the smallest among the five test sets.

4.2 Experiments using bilingual models

As discussed in §3.1, our cross-lingual frame-
work is designed to address the same problem
identified in the training objectives of ELMo and
Transformer-based language models. To verify its
effectiveness, we implement the bilingual mod-
els on top of ELMo, named Bi-SaELMo that
does not use linear projection for further align-
ment and Bi-SaELMo+Proj that uses the linear
projection. Sense vectors and cluster center vec-
tors are not shared between the forward and back-
ward language models. We use ELMo+Proj and
Joint-ELMo+Proj as our baseline models, where
ELMo+Proj is proposed by Schuster et al. (2019)
and Joint-ELMo+Proj is implemented following
the framework recently proposed by Wang et al.
(2020). Wang et al. (2020) combine joint train-
ing and projection, and claim their framework is
applicable to any projection method, so we imple-
ment the same projection method as Schuster et al.
(2019) did for Joint-ELMo+Proj. We also report
results of ELMo and Joint-ELMo, which are the
counterparts of ELMo+Proj and Joint-ELMo+Proj
without using linear projection.

Pretraining settings To pretrain language mod-
els, we sample a 500-million-token corpus for
each language from the English, German, Spanish,
Japanese and Chinese Wikipedia dump. The dic-
tionaries used for pretraining models and learning
the projection matrix were downloaded from the
MUSE (Conneau et al., 2017) GitHub page4. We
also add JMDict (Breen, 2004) to the en-jp MUSE
dictionary. Bilingual models were pretrained on
en-de, en-es, en-jp and en-zh concatenated data
with similar parameters as the monolingual mod-
els. ELMo and ELMo+Proj were pretrained on
monolingual data, while the projection matrix of
ELMo+Proj was learned using bilingual data. See
§C.2 for a complete list of hyper-parameters.

Zero-shot cross-lingual NER A Bi-LSTM-CRF
model implemented with the Flair framework (Ak-
bik et al., 2018) is used for this task. For the
CoNLL-2002 (Tjong Kim Sang, 2002) and CoNLL-
2003 (Sang and De Meulder, 2003) datasets, the
NER model was trained on English data, and eval-
uated on Spanish and German test data. For the

4https://github.com/facebookresearch/
MUSE

Model de es zh

ELMo 16.30 16.14 0.28
Joint-ELMo 56.49 58.91 53.47
ELMo+Proj (Schuster et al., 2019) 69.57 60.02 63.15
Joint-ELMo+Proj (Wang et al., 2020) 71.59 65.19 59.08

Bi-SaELMo (ours) 63.83 60.65 55.83
Bi-SaELMo+Proj (ours) 72.19 65.86 63.44

For references, but not our baselines, since they are trained on much
larger datasets and/or parallel sentences.
XLM Finetune (Conneau and Lample, 2019) 67.55 63.18 -
mBERT Finetune (Pires et al., 2019) 69.74 73.59 -
XLM-Rbase Finetune (Liang et al., 2020) 70.40 75.20 -
mBERT Feature+Proj (Wang et al., 2020) 70.54 75.77 -
mBERT Align (Kulshreshtha et al., 2020) 71.23 75.93 -

Table 3: Zero-shot cross-lingual NER (F1).

OntoNotes 5.0 (Weischedel et al., 2013) dataset,
the NER model was trained on all English data
and evaluated on all Chinese data. We report the
average F1 of 5 runs in Table 3. The results show
that all of the models using linear projection out-
perform their counterparts (not using linear pro-
jection), since minimizing token level distance
is more important for cross-lingual NER tasks.
Our sense-aware pretraining makes sense distribu-
tions of two languages more isomorphic, which
further improves linear projection performance.
Our model Bi-SaELMo+Proj demonstrates con-
sistent performance improvement in all the three
languages. Moreover, our model outperforms fine-
tuned XLM/XLM-R and Multilingual BERT on
German data even though it is pretrained on less
data.

Zero-shot cross-lingual sentiment classification
We use the multi-lingual multi-domain Amazon re-
view data (Prettenhofer and Stein, 2010) for evalu-
ation on cross-lingual sentiment classification. The
ratings in review data are converted into binary
labels. The average of contextual word representa-
tions is used as the document/sentence representa-
tion for each review text/summary, which is then
fed into a two-dense-layer model for sentiment clas-
sification. All the models are trained on English,
and evaluated on German and Japanese test data in
the same domain. We report the average accuracy
of 5 runs in Table 4. Different from the NER task,
the linear projection approach for cross-lingual
alignment does not work for this task, since it may
add noise to embedding features. Our model Bi-
SaELMo demonstrates consistent improvements
in all of the 6 evaluation tasks. The performance
of Bi-SaELMo is significantly better than Joint-
ELMo, which shows that our sense-level transla-

https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
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Model de jp

books music dvd books music dvd

ELMo 52.94 63.61 57.78 50.37 51.59 54.32
Joint-ELMo 71.72 75.22 64.25 66.64 68.50 58.54
ELMo+Proj (Schuster et al., 2019) 49.92 50.29 49.94 50.57 49.59 50.65
Joint-ELMo+Proj (Wang et al., 2020) 75.74 72.25 72.25 62.50 59.77 57.65

Bi-SaELMo (ours) 77.46 75.32 74.97 68.16 69.48 64.04
Bi-SaELMo+Proj (ours) 70.84 66.25 68.99 62.17 55.91 61.57

Table 4: Zero-shot sentiment classification accuracy.

Model de es zh

ELMo 34.07 33.41 35.77
Joint-ELMo 60.12 63.73 57.82
ELMo+Proj (Schuster et al., 2019) 55.51 58.92 53.17
Joint-ELMo+Proj (Wang et al., 2020) 63.33 64.71 58.34
PROC-B+SpecNorm (Aboagye et al., 2022) 62.40 - -

Bi-SaELMo (ours) 60.98 62.75 60.40
Bi-SaELMo+Proj (ours) 64.77 65.05 60.44

Table 5: Zero-shot XNLI accuracy.

tion pretraining objective improves cross-lingual
embedding alignment.
Zero-shot cross-lingual natural language infer-
ence (XNLI) We use XNLI (Conneau et al.,
2018) and MultiNLI (Williams et al., 2018) data
for evaluation on this task. The Bi-LSTM baseline
model5 was trained on MultiNLI English training
data, and then evaluated on XNLI German, Spanish,
Chinese test data. We report the average zero-shot
XNLI accuracy of 2 runs in Table 5. Our models
show consistent improvements over the baselines
on all of the three data sets. For zero-shot trans-
fer to Chinese, both of our models outperform the
best baseline by more than 2 points, which again
demonstrates the effectiveness of our framework
on distant language pairs.

5 Related work

Cross-lingual word embedding demonstrates
strong performance in many cross-lingual trans-
fer tasks(Wu and Dredze, 2019; Li et al., 2020b,a;
Zhang et al., 2021). The projection-based approach
has a long line of research on aligning static em-
beddings (Mikolov et al., 2013; Xing et al., 2015;
Smith et al., 2017; Joulin et al., 2018; Aboagye
et al., 2022). It assumes that the embedding spaces
of different languages have an isomorphic structure,
and fit an orthogonal matrix to project multiple
monolingual embedding spaces to a shared space.
Many studies (Schuster et al., 2019; Aldarmaki and
Diab, 2019) have extended the projection-based
approach to contextual representation alignment.
Besides, there are many discussions on the limita-
tions of the projection-based approach, arguing that

5https://github.com/NYU-MLL/multiNLI

the isomorphic assumption is not true in general
(Nakashole and Flauger, 2018; Patra et al., 2018;
Søgaard et al., 2018; Ormazabal et al., 2019), so
non-linear mapping methods are also explored in re-
cent work (Mohiuddin et al., 2020; Ganesan et al.,
2021). Joint training is another line of research
and early methods (Gouws et al., 2015; Luong
et al., 2015; Ammar et al., 2016) learn static word
embeddings of multiple languages simultaneously.
Extending joint training to cross- or multi-lingual
language model pretraining has gained more atten-
tion recently. As discussed above, unsupervised
multilingual language models (Devlin et al., 2018;
Artetxe and Schwenk, 2019; Conneau and Lample,
2019; Conneau et al., 2019; Liu et al., 2020, 2021)
also demonstrate strong cross-lingual transfer per-
formance.

There has been some work on sense-aware lan-
guage models/embeddings (Rothe and Schütze,
2015; Pilehvar and Collier, 2016; Hedderich et al.,
2019), and most of them require WordNet (Miller,
1998) or other additional resource for supervision.
Šuster et al. (2016) utilize both monolingual and
bilingual information from parallel corpora to learn
multi-sense word embeddings. Peters et al. (2019)
embed WordNet knowledge into BERT with at-
tention mechanism. Levine et al. (2019) pretrain
SenseBERT to predict both the masked words and
their WordNet supersenses. Similar to our frame-
work, there are also some unsupervised approaches,
but most of them are used to learn static embed-
dings. Huang et al. (2012) learn word represen-
tations with both local and global context, and
then apply a clustering algorithm to learn multi-
prototype vectors. Neelakantan et al. (2014) pro-
pose an extension to the Skip-gram model that
leverage k-means clustering algorithm learns mul-
tiple embeddings per word type. Lee and Chen
(2017) leverage reinforcement learning for modu-
larized unsupervised sense level embedding learn-
ing. Boyd-Graber et al. (2020) use Gumbel soft-
max for sense disambiguation when learning sense
embeddings.

6 Conclusions

In this paper, we have introduced a novel sense-
aware cross entropy loss to model word senses
explicitly, then we have further proposed a sense-
level alignment objective for cross-lingual model
pretraining using only bilingual dictionaries. The
results of the experiments show the effectiveness

https://github.com/NYU-MLL/multiNLI
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of our monolingual and bilingual models on WSD,
zero-shot cross-lingual NER, sentiment classifica-
tion and XNLI tasks. In future work, we will study
how to extend our method to multilingual models.

Broader Impact

NLP has achieved significant success for many
popular languages, such as English and German.
However, most of the low-resource languages in
the world do not receive enough attention from
the NLP community. Cross-lingual word embed-
ding is an efficient tool to help overcome the re-
source barrier and enable the advances in NLP to
benefit a wider range of population. This makes
NLP more inclusive of low-resource languages
(and their speakers), and can also help prevent-
ing online bullying, detecting fake news, etc. in
multiple languages. In this work, we proposed a
novel framework for cross-lingual contextual word
embedding alignment, which further improves the
performance of cross-lingual transfer learning. Our
findings and proposed techniques are potentially
useful for future research on both monolingual and
cross-lingual language model pretraining.
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A Prediction tasks of language models

Next token prediction and masked token prediction
are two common tasks in neural language model
(LM) pretraining. We take two well-known lan-
guage models, ELMo and BERT, as examples to
illustrate these two tasks, which are shown in Fig-
ure 3.

(a) Next token prediction.

(b) Masked token prediction.

Figure 3: Next token and masked token prediction tasks
of language models. For simplicity, we only show the
forward language model in next token prediction.

B Further alignment (optional)

Applying the linear projection approach proposed
by Schuster et al. (2019) on top of our framework
can further improve cross-lingual transfer on some
tasks. After our cross-lingual model is finished
training on the concatenated corpora of two lan-
guages, L1 and L2, it is used to generate contextual
token embeddings for the word pairs in the seed dic-
tionary D = {(tL1

i , tL2
i )}|D|

i=1
6. Then, we compute

the average of all contextual embeddings for each
token t

Lj

i , denoted by a
Lj

i . Finally, a linear pro-
jection matrix W ∈ Rd×d is learned to minimize
cross-lingual embedding distance:

W = argmin
W

|D|∑
i=1

||WaL1
i − aL2

i ||2 (8)

6If any token tk appears in both languages, we add that as
an entry (tk, tk) to the dictionary as well.

https://www.aclweb.org/anthology/W02-2024
https://openreview.net/forum?id=S1l-C0NtwS
https://openreview.net/forum?id=S1l-C0NtwS
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/2021.emnlp-main.727
https://doi.org/10.18653/v1/2021.emnlp-main.727
https://doi.org/10.18653/v1/2021.emnlp-main.727
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C Pretraining details

C.1 Monolingual model

All the monolingual models were trained for one
million steps. For better sense clustering perfor-
mance, the maximum number of senses (S in word
sense selection algorithm) was set to 1 for the first
20,000 steps to quickly get a reasonable initial
model, and then increased to 5 afterwards when
pretraining SaELMo and SaBERT-Tiny, which is
controlled by hyperparameter n_context in our im-
plementation. For SaELMo, we set n_context to
6, so that the model initialize 6 senses for each to-
ken, but only use the first sense in the 20,000 steps,
and then use the other 5 senses (the first sense will
be disabled) afterwards. We implement this for
SaBERT-Tiny in a slightly different way, where
n_context can be set to 5 directly to achieve the
same effect. We use two NVIDIA V100 GPUs
to pretrain SaELMo, which takes about 15 days
to complete training. We use one NVIDIA V100
GPU to pretrain SaBERT-Tiny, which takes about
5 days. See Tables 6 and 7 for the hyperparame-
ters used to pretrain SaELMo and SaBERT-Tiny
respectively.

Hyperparameter Value

max_word_length 50
batch_size 256
n_gpus 2
bidirectional True
char_cnn:embedding:dim 16
char_cnn:max_characters_per_token 50
char_cnn:n_characters 261
char_cnn:n_highway 2
dropout 0.1
lstm:cell_clip 3
lstm:dim 4096
lstm:n_layers 2
lstm:proj_clip 3
lstm:projection_dim 512
lstm:use_skip_connections True
all_clip_norm_val 10.0
n_epochs 10
unroll_steps 16
n_negative_samples_batch 8192
n_context 6
cluster_proj_dim 16
pca_sample 20,000
remove_less_freqent_contexts 0.1
learning_rate 0.2
sense_learning_rate 0.01

Table 6: Monolingual model hyperparameters:
SaELMo.

Hyperparameter Value

attention_probs_dropout_prob 50
directionality bidi
hidden_act gelu
hidden_dropout_prob 0.1
hidden_size 512
initializer_range 0.02
intermediate_size 2048
max_position_embeddings 512
num_attention_heads 8
num_hidden_layers 4
pooler_fc_size 512
pooler_num_attention_heads 8
pooler_num_fc_layers 3
pooler_size_per_head 128
pooler_type first_token_transform
type_vocab_size 2
vocab_size 27654
n_context 5
context_rep_lr 0.01
pca_dim 14
contextual_warmup 20,000

Table 7: Monolingual model hyperparameters: SaBERT-
Tiny.

C.2 Bilingual model

As metioned in the paper, we use Wikipedia dump
to pretrain the bilingual models. The Stanford
CoreNLP tokenizer (Manning et al., 2014) is used
to tokenize English, German, Spanish and Chinese
data. And the spaCy tokenizer is used to tokenize
Japanese data. All data are converted to lowercase.
We convert Chinese data to simplified font to make
it consistent with evaluation task datasets.

All the language models used in cross-lingual ex-
periments were pretrained for 600,000 steps from
scratch. Similar to our monolingual models, maxi-
mum number of senses (S in word sense selection
algorithm) was set to 1 for the first 20,000 steps,
and the increased to 3 afterwards when pretraining
Bi-SaELMo and Bi-SaELMo+Proj.7 We use two
NVIDIA V100 GPUs to pretrain each Bi-SaELMo
model, which takes about 10 days to complete the
training. See Table 8 for the hyperparameters used
to pretrain Bi-SaELMo/Bi-SaELMo+Proj.

D Visualization of sense vectors

We visualize8 the sense vectors of each model in a
two dimensional PCA, and show some examples in
Figures 4 to 7. For our English monolingual model

7Theoretically, in a reasonable range, it is expected that
a larger S would be more helpful to capture the fine-grained
senses. However, due to limited computation power, we use
only 3 here, and 5 for the monolingual models.

8We use the tensorflow embedding projector (https://
projector.tensorflow.org/) for visualization.

https://projector.tensorflow.org/
https://projector.tensorflow.org/
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Hyperparameter Value

max_word_length 50
batch_size 256
n_gpus 2
bidirectional True
char_cnn:embedding:dim 16
char_cnn:max_characters_per_token 50
char_cnn:n_characters 261
char_cnn:n_highway 2
dropout 0.1
lstm:cell_clip 3
lstm:dim 4096
lstm:n_layers 2
lstm:proj_clip 3
lstm:projection_dim 512
lstm:use_skip_connections True
all_clip_norm_val 10.0
n_epochs 6
unroll_steps 12
n_negative_samples_batch 8192
n_context 4
cluster_proj_dim 16
pca_sample 20,000
remove_less_freqent_contexts 0.1
learning_rate 0.2
sense_learning_rate 0.01

Table 8: Bilingual model hyperparameters: Bi-
SaELMo/Bi-SaELMo+Proj.

(SaELMo), the vectors close to two different sense
vectors of the word may are shown in (a) and (b)
of Figure 4, respectively. We observe that senses
are well clustered in these two subfigures, where
cluster (a) corresponds to “month”, and cluster (b)
corresponds to “auxiliary verb”.

We do the same for the English-Japanese bilin-
gual model (Bi-SaELMo, without projection), and
show the vectors close to two different sense vec-
tors of the English word bank in (c) and (d) of
Figure 5. We can see both English and Japanese
sense vectors (trade,銀行,証券, etc.) in (c), most
of which correspond to the sense “organization”,
though there are some noises. Similarly, most of
the sense vectors in (d) correspond to sense “river
bank”.

Another two examples are shown in Figures 6
and 7. Our framework exhibits good sense clus-
tering and sense level cross-lingual alignment be-
haviour in these examples. All sense vectors are
dumped at training step 200,000, which is before
pretraining complete.

(a) “may” for month

(b) “may” as auxiliary verb

Figure 4: We visualize sense vectors of English monolin-
gual model (SaELMo) in a two dimensional PCA, and
show the vectors close to two different sense vectors of
word may in (a) and (b).
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(a) “bank” for organization

(b) “bank” for river bank

Figure 5: We visualize all sense vectors of en-jp bilin-
gual model (Bi-SaELMo) in a two dimensional PCA,
and show the vectors close to two different sense vectors
of word bank.

(a) “us” for country

(b) “us” as pronoun

Figure 6: We visualize sense vectors of English monolin-
gual model (SaELMo) in a two dimensional PCA, and
show the vectors close to two different sense vectors of
word us in (a) and (b).
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(a) “may” as auxiliary verb

(b) “may” for month

Figure 7: We visualize all sense vectors of en-de bilin-
gual model (Bi-SaELMo) in a two dimensional PCA,
and show the vectors close to two different sense vectors
of word may.


