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Abstract
Consistency identification in task-oriented di-
alog (CI-ToD) usually consists of three sub-
tasks, aiming to identify inconsistency be-
tween current system response and current
user response, dialog history and the corre-
sponding knowledge base. This work aims
to solve CI-ToD task by introducing an ex-
plicit interaction paradigm, Cycle Guided
Interactive learning Model (CGIM), which
achieves to make information exchange ex-
plicitly from all the three tasks. Specifically,
CGIM relies on two core insights, referred
to as guided multi-head attention module and
cycle interactive mechanism, that collaborate
from each other. On the one hand, each two
tasks are linked with the guided multi-head
attention module, aiming to explicitly model
the interaction across two related tasks. On
the other hand, we further introduce cycle in-
teractive mechanism that focuses on facilitat-
ing model to exchange information among the
three correlated sub-tasks via a cycle interac-
tion manner. Experimental results on CI-ToD
benchmark show that our model achieves the
state-of-the-art performance, pushing the over-
all score to 56.3% (5.0% point absolute im-
provement). In addition, we find that CGIM
is robust to the initial task flow order.

1 Introduction

Consistency identification task in dialogue has the
potential benefits of preventing inconsistent re-
sponse generation (Welleck et al., 2019), which
has attracted increasing attention. Recent years
have witnessed two promising research directions
in consistency identification. The first focuses
on consistency identification in open-domain di-
alogue (Zhang et al., 2018; Zheng et al., 2019).
The second direction consider consistency iden-
tification in task-oriented dialogue system (CI-
ToD) (Qin et al., 2021b). In this work, we focus
on the latter. Recently, Qin et al. (2021b) intro-
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(a) Traditional Multi-task Learning Model.

(b) Cycle Guided Interative Learning Model (CGIM).
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Figure 1: (a) Traditional multi-task learning models
learn mutual information across tasks via an implicit
interaction manner vs. (b) Our proposed cycle inter-
active learning model explicitly consider cross-impact
across three tasks via an explicit interaction manner.

duces a benchmark (CI-ToD) for consistency iden-
tification in task-oriented dialogue to facilitate the
relevant research. CI-ToD introduces three sub-
tasks including: (1) dialogue history consistency
identification task (HCIT) to judge whether gen-
erated response is inconsistent with dialogue his-
tory; (2) user query consistency identification task
(QCIT) to detect the consistency status between
query and system response, and (3) knowledge
base consistency identification task (KBCIT) to
determine system response is contradicted with the
corresponding knowledge base.

Intuitively, the three tasks are closely related,
indicating information of one task can be utilized
in other related tasks. For example, if we first
complete HCIT, the result of HCIT can assist the
QCIT to determine whether the system response
is contradicted with the user query, since the di-
alogue history and the user query tend to share
similar topic (Chen et al., 2020). Similarly, KBCIT
can also provide additional information for helping
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HCIT, because dialogue history can be regarded
as an unstructured knowledge description for the
corresponding KB. Above observations suggest
that it is imperative to take cross-impact across
three tasks into account. To this end, Qin et al.
(2021b) explore a simple multi-task framework
that consists of a shared encoder and different task
decoders to jointly consider correlation, which is
shown in Figure 1(a). Though achieving superior
performance compared with single models, their
approaches solely rely on shared latent represen-
tations to model the interaction in an implicit in-
teraction manner, which limits their performance.
Therefore, it is promising to consider an explicit
joint modeling approach for CI-ToD.

While the idea seems promising, achieving this
objective is challenging, since we need to jointly
model the three sub-tasks simultaneously rather
than simple two tasks setting. Recent work have
shown explicit joint modeling is superior to the im-
plicit joint modeling (Goo et al., 2018; Qin et al.,
2021a). Nevertheless, their work still limits to
modeling the relationship between two tasks, it
remains clear if the explicit modeling paradigm
can be applied in three tasks. To this end, as
shown in Figure 1(b), we propose a novel Cycle
Guided Interactive learning Model (CGIM) for CI-
ToD, which achieves to perform the three sub-tasks
jointly and interactively in an explicit interaction
paradigm. Specifically, CGIM first consists of a
guided multi-head attention module (GMA) that is
used for two related tasks, which aims to explic-
itly utilize information from another task. With
the help of GMA, each task can not only rely on
its own task information but also performed with
the guidance of the corresponding correlated task
explicitly. Furthermore, since GMA can only en-
able the single information flow from one task to
another task, we further propose a novel cycle in-
teractive mechanism to facilitate information flow
across the three tasks in an cycle interaction fash-
ion. With the use of cycle interactive mechanism,
CGIM can be stacked to form a hierarchy, which
can gradually capture interaction information and
better transfer knowledge.

We conduct experiments on CI-ToD benchmark
and results show that CGIM achieves the best per-
formance, outperforming previous state-of-the-art
methods by at least 5.0% (overall accuracy). Be-
sides, extensive analysis further demonstrate the
superior and robustness of our approach.

poi … distance

stanford_express_care … 6_miles

… … …

jacks_house 4_miles

✘(KBCIT)

Driver: find me a nearby parking_garage 

or parking lot

System: civic_center_garage is nearby

Driver: what is the address

✘(QCIT) ✘(HCIT)System: stanford_express_care is 5_miles away

Knowledge Base Dialogue History

System Response

Figure 2: Example illustration in CI-ToD. Different col-
ors denote inconsistency type of different tasks.

Main contributions are summarized as follows:

• To the best of our knowledge, we make the
first attempt to explore an explicit interaction
model for CI-ToD.

• We introduce a novel cycle interactive learn-
ing model for CI-ToD, which achieves estab-
lishing a triple-interaction across the three
tasks simultaneously.

• Results on CI-ToD benchmark show that
CGIM achieves state-of-the-art performance.
Besides, we observe that CGIM is robust to
the initial task flow order.

All codes in this work will be publicly available
at https://github.com/LightChen233/CGIM.

2 Background

To make the paper self-complete, we present the
definition of the task that follows Qin et al. (2021b)
in this section.

2.1 Task Definition

Given a task-oriented dialogue between a user (u)
and a system (s), the dialogue history is defined
as H = {(u1, s1),(u2, s2), . . . ,(un−1, sn−1)}, the
corresponding knowledge base KB is B, the user
query is denoted by un and the system response is
denoted by sn.

Formally, the consistency identification in task-
oriented dialogue contains three tasks: the dialogue
history consistency identification task (HCIT), the
user query consistency identification task (QCIT),
and the knowledge base consistency identification
task (KBCIT) to judge whether system response
is contradicted with the corresponding dialogue
history, user query, and KB, respectively, which are
defined as:

(yQ, yH, yB) = fθ([H,B, un], sn), (1)

https://github.com/LightChen233/CGIM
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Figure 3: The illustration of the proposed cycle interactive learning model (CGIM), which consists of three com-
ponents: encoder, cycle interactive learning module and decoder.

where fθ denotes the parameters of model;
yQ, yH, yB represents the probabilities of inconsis-
tent system response in QCIT, HCIT and KBCIT,
respectively.

2.2 Example Illustration

To understand HCIT, QCIT, and KBCIT intutively,
we provide some example cases, which are shown
in the following:

QCIT QCIT aims at detecting the inconsistency
between dialogue system response and current user
query. As shown in Figure 2, user is intended
to ask for the address. However, the system re-
sponse provide the answer about distence to stan-
ford_express_care, which results in inconsistency
with user query.

HCIT HCIT aims at detecting the inconsistency
between system response and dialogue history ex-
cept the current query. Figure 2 shows the incon-
sistent dialogue, where the previous dialogue his-
tory talked about civic_center_garage and the user
did not change the topic. However, the system re-
sponded by talking about stanford_express_care,
which is contradicted with the dialogue history.

KBCIT KBCIT aims at detecting the incon-
sistency between dialogue system response and
corresponding KB. As shown in Figure 2, stan-
ford_express_care is located 6_miles according to
the corresponding KB. However, the system indi-
cates that the distance to stanford_express_care is
5_miles, which is inconsistent with the information
provided in the KB.

3 Approach

The architecture of the cycle guided interactive
learning model (CGIM) is depicted in Figure 3. It
mainly consists of three components: three task-
specific encoders for obtaining encoding represen-
tation for each task (§3.1); a cycle interactive learn-
ing module for explicitly establishing the interac-
tion across the three tasks (§3.2); three separate
decoders for HCIT, QCIT and KBCIT (§3.3), re-
spectively. In the following sections, the details of
our framework are given.

3.1 Encoder

Following Qin et al. (2021b), we employ the pre-
trained model (i.e., BERT) (Devlin et al., 2019)
as the encoder and use delimiter tokens [SOK],
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Figure 4: Guided Multi-head Attention Layer.

[EOK], [USR], [SYS] to capture the role feature
of KB, user and system response.

Query Representation To consider the system
response, we concatenate un and the last system
response sn to obtain the query encoding repre-
sentation. Therefore, the input can be represented
as XU = ([CLS], un, [SEP], sn, [SEP]),
where [CLS] and [SEP] are special symbol, and
BERT reads it to produce the representation:

hQ = BERT(XU), (2)

where the last layer’s hidden representation hQ

of the [CLS] token is considered as the query
representation.

Dialogue History Representation Similarly,
we concatenate the dialog history H and the sys-
tem response sn asXH = ([CLS], Ĥ, [SEP],
sn, [SEP]), which is used for acquiring dialogue
history representation hH:

hH = BERT(XH), (3)

where Ĥ is [USR]u1[SYS]s1 . . .[USR]un.

Knowledge Base Representation For KB rep-
resentation, we first linearize the KB and then
concatenate the linearized KB and system re-
sponse to obtain XB= ([CLS], B̂, [SEP],
sn, [SEP]). Feeding it into BERT, we obtain the
knowledge base representation hB:

hB = BERT(XB), (4)

where B̂ is [SOK]B[EOK].

3.2 Cycle Guided Interactive Learning
Module

Traditional multi-task learning only depend on a
set of shared parameters to implicitly consider
correlation across different correlated tasks. In
contrast, we present a cycle guided interactive

learning model to explicit model the interaction,
which consists of two parts: the guided multi-head
attention module (GMA) and the cycle interaction
mechanism (CIM).

3.2.1 Guided Multi-head Attention Module
GMA mainly consists of a guided multi-head at-
tention layer and self multi-head attention layer,
achieving to explicitly model interaction across re-
lated tasks.

Guided Multi-head Attention Layer. First,
given hQ, hH and hB, we first directly perform
a concatenation operation upon them and adopt
different projection linear layers to obtain differ-
ent updated representations for QCIT, HCIT and
KBCIT, which are denoted as:

H = Concat(hQ,hH,hB), (5)

HQ,HH,HB = WQH,WHH,WBH, (6)

where H ∈ R3×d (d represents the encoding
dimension); Concat is concatenation operation;
WH,WQ,WB are the trainable matrix.

Then, to obtain updated QCIT representations
with the guidance of HCIT explicitly, it is neces-
sary to align query with its closely related dialogue
history information. To be more specific, as shown
in Figure 4, we first employ QKV Linear to map
the dialog history and query representations HH

and HQ to query ( QH, QQ ), keys (KH , KQ) and
values (VH , VQ ) matrices. We then treat QQ as
queries, KH as keys and VH as values to obtain the
updated representation with explicitly considering
the information from the HCIT task. The output is
a weighted sum of values:

Ĥ=MultiHead(QQ,KH,VH), (7)

Attention(Q,K,V)=softmax

(
QK√
dk

)
V, (8)

MultiHead(Q,K,V)=Concat(Hi, . . . ,Hh)W0, (9)

whereHi =Attention(QWQ
i ,KWK

i ,VWV
i ), (10)

where Ĥ can be seen as the updated query in-
formation with the guidance of dialogue history
information; Q,K and V denote the query, key,
and value respectively. dk is the dimension of the
key; WQ

i ,W
K
i ,W

V
i denote the head projection

matrix, respectively; h is the head number.
Then, we concatenate the updated representation

H with the original KQ and VQ to construct new
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keys K̂Q and values V̂Q, calculating as:

K̂Q = Linear(Concat(KQ, Ĥ)), (11)

V̂Q = Linear(Concat(VQ, Ĥ)). (12)

Self Multi-head Attention Layer. Given the ob-
tained updated keys, updated values, and queries,
we further introduce a self multi-head attention
layer to enhance the interaction information and
obtain the final query guided query representation:

H̃Q = MultiHead(QQ, K̂Q, V̂Q), (13)

where H̃Q denotes the updated representations.
Similiar to transformer, we also employ a resid-

ual connection (He et al., 2016), layer normaliza-
tion (Ba et al., 2016) and a fully connected feed-
forward network.

3.2.2 Cycle Interactive Mechanism
With the help of the GMA, single information flow
can be established. Formally, given features rep-
resentation HQ and HH, GMA aims to output the
attended features H̃Q for HQ guided by HH, which
can be formulated as:

H̃Q
1 = GMAH→Q(H

H
0 ,H

Q
0 ), (14)

where HH
0 and HQ

0 are initialized as HH and HH,
respectively.

Similarly, the query guided dialogue history rep-
resentation and dialogue history guided knowledge
base representation can be obtained in the same
manner, which are shown as:

H̃B
1 = GMAQ→B(H

Q
0 ,H

B
0 ), (15)

H̃H
1 = GMAB→H(H

B
0 ,H

H
0 ). (16)

To enable the shared knowledge flowed across
the three subtasks, we further introduce a cycle
interaction mechanism (CIM) with multiple lay-
ers to gradually and iteratively control knowledge
transfer, which can be formulated as:

H̃Q, H̃H, H̃B = CIM(H→Q→B→Q)(H
Q,HH,HB), (17)

After stacking L layer, we obtain a final updated
feature representation: H̃B

L , H̃H
L and H̃Q

L .

3.3 Decoder
Given the final updated representations H̃B

L , H̃H
L

and H̃Q
L for each task, we directly flatten them

into a single vector dB , dH and dQ, which are fed

into separate decoders to perform QCIT, HCIT and
KBCIT, which can be denoted as:

yH = softmax(WHdH + bH), (18)

yQ = softmax(WQdQ + bQ), (19)

yB = softmax(WBdB + bB), (20)

where yH, yQ and yB are the predicted distribution
result for three tasks, respectively; WH, WQ and
WB are learnable transformation matrices; bQ, bH
and bB are learnable bias vectors.

3.4 Joint Training
The training objective of each task is the binary
cross-entropy loss. Specifically, the objective for
QCIT is:

LQ =−
T∑

(ŷQ log (yQ)) , (21)

where ŷ is gold label and T is the training data
size.

Similar, LH and LB can be obtained in a similar
manner. Following Bai et al. (2021) and Bao et al.
(2021), the final joint loss function is as:

Lθ = αQLQ + αHLH + αBLB, (22)

where αQ, αH and αB are hyper-parameter1

4 Experiments

4.1 Experimental Settings
To evaluate the effectiveness of CGIM, we conduct
experiments on the CI-ToD benchmark (Qin et al.,
2021b). Specifically, CI-ToD consists of 2,553
dialogues for training, 319 dialogues for validation,
and 318 dialogues for testing.

In our experimental setting, we adopt
BERT-base and the dimension of all hid-
den units is 768. The batch size we use is selected
from {4, 8, 16} and learning rate is selected from
{1e−5, 2e−5, 5e−5}. We use AdamW (Loshchilov
and Hutter, 2019) to optimize the parameters in
our model. We select all hyper-parameters from
the validation set. All experiments are conducted
at Tesla P100 and Tesla V100.

4.2 Baselines
Following Qin et al. (2021b), we compare our
model with the following state-of-the-art multi-task

1In our experiment, we set them as 1.
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Model QI F1 HI F1 KBI F1 Overall Acc
BART-separate (Lewis et al., 2020) 0.695 0.496 0.721 0.450
BERT-multi-task (Devlin et al., 2019) 0.691 0.555 0.740 0.500
RoBERTa-multi-task (Liu et al., 2019) 0.715 0.472 0.715 0.500
XLNet-multi-task (Yang et al., 2020) 0.725 0.487 0.736 0.509
Longformer-multi-task (Beltagy et al., 2020) 0.717 0.500 0.710 0.497
BART-multi-task (Lewis et al., 2020) 0.744 0.510 0.761 0.513
CGIM 0.764 0.567 0.772 0.563

Table 1: Main results. The bolded number indicates the best performance. All baselines results are taken from Qin
et al. (2021b).

learning models based on the strong pre-trained
models:

(1) BERT (Devlin et al., 2019): the model pre-
trains bidirectional representations from a large-
scale text corpus; (2) RoBERTa (Liu et al., 2019):
the model improves the training procedure of BERT
to make it perform better; (3) XLNet (Yang et al.,
2020): the model combines the advantage of au-
toregressive and autoencoding approaches by per-
forming a permutation language objective; (4)
Longformer (Beltagy et al., 2020): the model
employs an attention pattern that combines local
and global information while also scaling linearly
with the sequence length, making it easy to process
long documents; (5) BART (Lewis et al., 2020):
the model uses a pre-training approach to map cor-
rupted documents to the original document, which
works well on both various generation tasks and
understanding tasks.

We refer to the model with multi-task learning
for three tasks as model-multi-task. In addi-
tion, we also compare CGIM with the state-of-the-
art separate model for each task, which is referred
as model-separate.

4.3 Main Results

Following Qin et al. (2021b), we adopt query in-
consistency (QI) F1 scores, dialogue history incon-
sistency (HI) F1 scores, knowledge base inconsis-
tency (KBI) F1 scores to evaluate QCIT, HCIT, and
KBCIT respectively. Besides, we also use overall
accuracy, a strict metric that requires all tasks are
predicted correctly.

From the results shown in Table 1. We have the
following observations:

(1) CGIM yields better performance compared
with BART-separate on all metrics, which
verifies that QCIT, HCIT and KBCIT tasks are
correlated where joint model can be benefited

from capturing shared knowledge across tasks,
supporting our motivation;

(2) CGIM achieves the best performance on three
tasks compared with all baselines. Compared
with BART-multi-task, our framework
obtains 2.0%, 5.7% and 1.1% improvements
on three tasks, respectively. This indicates that
the proposed explicit interaction paradigm is
better than the implicit interaction paradigm
that is insufficient to grasp knowledge trans-
fer, which is consistent to the observation on
other explicit joint modeling work on two
tasks (Goo et al., 2018; Qin et al., 2021a);

(3) CGIM attains the best results on Over-
all Acc. and beats the best model
BART-multi-task by a large margin of
5.0%. This suggests that all three tasks are
highly correlated and explicit modeling mech-
anism can help to improve the whole dia-
logue understanding ability than the implicit
modeling. It is worth noticing that the back-
bone of CGIM is BERT and it still outper-
forms BART-multi-task by a large mar-
gin, which further verifies the effectiveness of
explicit modeling paradigm.

4.4 Analysis
This section answer the following research ques-
tions to understand CGIM in depth:

(1) Does each guided multi-head attention (GMA)
module improve performance?

(2) Does a deeper layer of guided multi-head at-
tention module bring a better performance?

(3) Is CGIM robust to the initial task flow order?

(4) Does explicit interaction modeling gain the
performance improvement rather than the in-
volved parameters?
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Model QI F1 HI F1 KBI F1 Overall Acc
CGIM 0.764 0.567 0.772 0.563
w/o QCIT→ KBCIT 0.712 0.539 0.749 0.512
w/o KBCIT→ HCIT 0.731 0.506 0.752 0.494
w/o HCIT→ QCIT 0.710 0.507 0.764 0.521
w/MLP 0.725 0.515 0.686 0.507

Table 2: Ablation Study. The bolded number indicates
the best performance in the first block.

Model QI F1 HI F1 KBI F1 Overall Acc
BART 0.744 0.510 0.761 0.513
CGIM (QCIT→ KBCIT→ HCIT) 0.764 0.567 0.772 0.562
CGIM (QCIT→ HCIT→ KBCIT) 0.787 0.599 0.778 0.560

Table 3: Robust Test. The performance of BART and
different information flow model.

(5) Is the explicit modeling method still effective
in low-resource scenario?

(6) How CGIM is useful in CI-ToD?

4.4.1 Answer 1: GMA boosts performance
across the related tasks

We devise three variations for exploring the effect
of guided multi-head attention layer. In particu-
lar, QCIT → KBCIT is the variation by remov-
ing guided multi-head attention layer from QCIT
to KBCIT and all the other components keep un-
changed. Similarly, KBCIT → HCIT and HCIT
→ QCIT variation denotes that remove the cor-
responding guided multi-head attention layer for
HCIT and QCIT, respectively.

Results are presented in Table 2 (row 2,3,4), we
observe that without guided multi-head attention
layer leads to a drop in the corresponding tasks.
We attribute it to the fact that all the two sub-tasks
are highly correlated, it hinders the information
transfer and thus hurts the performance without the
corresponding guided multi-head attention layer.

4.4.2 Answer 2: More layers may not be
better

To investigate the influence of layers of guided
multi-head attention module, we conduct exper-
iments on the different layers of our framework.
Figure 5 presents the results. We can observe: (1)
The performance of CGIM with two or three lay-
ers is better than the model with one layer, which
indicates that a deeper layer can achieve better inter-
actions across three tasks. (2) Another interesting
observation is that when the number of layers is
five, we can observe the performance on overall
accuracy drops a lot, even underperforming the
model with one layer. We speculate that there may

QI F1 HI F1 KBI F1 Overall Acc.
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Figure 5: Influence of Layers.

be gradient vanishing or over-fitting problem when
the layer of network exceeds five, which is consis-
tent with prior observation (Feng et al., 2017; Qin
et al., 2020).

4.4.3 Answer 3: CGIM is robust
Another interesting research question is whether
CGIM is robust to the initial task information flow.
To answer this question, we conduct experiments
with another initial information flow order QCIT
→ HCIT→ KBCIT and the results are presented
in Table 3. We witness two observations: (1) the
performance CGIM (QCIT→ KBCIT→ HCIT)
is comparable with the original CGIM; (2) it also
outperforms BART by a large margin. Above ob-
servations verifies the robustness of our method to
the initial task flow order.

4.4.4 Answer 4: Explicit interaction
modeling boosts performance

We replace three guided multi-head attention lay-
ers with three MLP modules. We refer to it as
“w/MLP” and the results are reported in Table 2. As
seen, CGIM yields better results than the “w/MLP”
model with the same amount of parameters in all
three tasks (over 4% drops on all tasks), which
demonstrates that the improvements come from the
proposed explicit interaction mechanism across the
three tasks rather than the extra parameters.

4.4.5 Answer 5: CGIM works in few-shot
scenario

We further investigate the effectiveness of CGIM
in a low-resource setting. We randomly extract
different proportions of datasets from the entire
dataset to simulate the low-resource setting, i.e.,
[5%, 10%, 20%, 50%]. The results are shown in
the Figure 6 (a). We observe that our framework
outperforms the BART on all low-resource settings.
We attribute it to the fact the proposed explicit
interaction can make the most limited data and
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Figure 6: Low-Resource Performance.

effectively share the knowledge between the three
tasks compared to implicit modeling method.

In addition, we also analyze the performance
gap on different datasets. The results are shown
in Figure 6 (b), we find that the less data we have,
the higher the performance improvement of our
model compared to BART-multi-task, which
indicates that our framework is more practical and
scalable in a low resource setting.

4.4.6 Answer 6: Qualitative analysis
This section provides a case study for better under-
standing of our model. Figure 7 shows one case
made by baseline model BART-multi-task
and CGIM. In this case, user query and dialogue his-
tory talks about the same topic (the_clement_hotel),
which demonstrates that the QCIT and HCIT are
highly correlated.

However, BART-multi-task predict the
HCIT correctly but QCIT incorrectly, which
demonstrates original implicit interaction paradigm
does not effectively model the correlation across
the tasks. In contrast, CGIM predicts both QCIT
and HCIT correctly. We think that the proposed
explicit interaction paradigm successfully grasps
correlation and thus enhance each task.

5 Related Work

Increasing attention has been witnessed in consis-
tency identification in dialogue. To this end, Per-
sonaChat (Zhang et al., 2018) and PersonalDialog
(Zheng et al., 2019) are introduced to implicitly

Driver:where is the nearest hotel

System:the nearest hotal is the_clement_hotel

Driver:what is the address (for the_clement_hotel)

System: hotel_keen is at 347_alta_mesa_ave

BART-m

CGIM

QI HI KBI
0, 1

1

1,

1,1,

GOLD 11,1,

Figure 7: Prediction made by BART-m and CGIM.
BART-m denotes BART-multi-task.

.

consider the consistency in dialogue generation.
Welleck et al. (2019) model the consistency of di-
alogue systems by introducing a new natural lan-
guage inference dataset called DialogueNLI. Dziri
et al. (2019) propose to use state-of-the-art entail-
ment techniques for evaluating the coherence of
dialogue systems. Nie et al. (2021) propose a Di-
aloguE COntradiction DEtection task (DECODE)
to evaluate the ability to detect contradictory in
dialogue. However, their work mainly focuses on
consistency in open-domain direction. In contrast,
our framework mainly considers improving consis-
tency in task-oriented dialogues.

In recent years, Qin et al. (2021b) make the
first step towards consistency identification in task-
oriented dialogues and propose three sub-tasks to
detect whether the system response is contradicted
with the corresponding dialogue history, user query,
and knowledge base. In addition, they also intro-
duce a public benchmark CI-ToD and provide some
state-of-the-art pre-trained models to facilitate the
research. Unfortunately, their models only jointly
consider the correlated three tasks in an implicit
manner. Compared with their model, we propose
a cycle guided interactive learning model (CGIM),
which can explicitly model interaction across the
three tasks in a cycled interaction manner. To our
knowledge, we are the first to explore an explicit
interaction paradigm for CI-ToD.

6 Conclusion

We studied how to explicitly model the interaction
across three sub-tasks for consistency identification
in task-oriented dialogue (CI-ToD). To this end,
we introduced a cycle interactive learning model
(CGIM), which facilitates the knowledge transfer
across the three correlated tasks. Experiments show
CGIM achieves state-of-the-art performance. In ad-
dition, CGIM is robust to the initial task flow order
and works better in a low-resource setting, which
is scalable in a real-world system deployment.
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