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Abstract

Previous work has demonstrated that pre-
trained large language models (LLM) acquire
knowledge during pre-training which enables
reasoning over relationships between words
(e.g, hyponymy) and more complex inferences
over larger units of meaning such as sentences.
Here, we investigate whether lexical entailment
(LE, i.e. hyponymy or the is a relation between
words) can be generalised in a compositional
manner. Accordingly, we introduce PLANE
(Phrase-Level Adjective-Noun Entailment), a
new benchmark to test models on fine-grained
compositional entailment using adjective-noun
phrases. Our experiments show that knowledge
extracted via In–Context and transfer learning
is not enough to solve PLANE. However, a
LLM trained on PLANE can generalise well
to out–of–distribution sets, since the required
knowledge can be stored in the representations
of subwords (SW) tokens.

1 Introduction

Composition and entailment are crucial features
of human language and reasoning. The first refers
to the ability to combine units of meaning, like
words or phrases, into larger constructs, such as
sentences or paragraphs. Entailment, on the other
hand, refers to the notion of inference. A linguistic
element A (e.g. a word or phrase) is said to en-
tail an element B if, assuming A is true, so is B.
Word-level entailment is often referred to as lexical
entailment (LE), hypernym detection, or the is a re-
lation (Weeds et al., 2014; Vulić and Mrkšić, 2018;
Kober et al., 2021), and refers to examples such as
dog entails (|=) animal and gun |= weapon. Yet
entailment does not occur just between two words,
and has been a long standing problem in NLP (Da-
gan et al., 2005; MacCartney and Manning, 2008;
Marelli et al., 2014; Nie et al., 2020). When occur-
ring between two sentences, it is usually referred
to as natural language inference (NLI).

Although arguments have been made in favour of
a more probabilistic interpretation of the task (see
Pavlick and Callison-Burch (2016); Pavlick and
Kwiatkowski (2019), inter alia), NLI benchmarks
generally abandoned the rigid binary classification
for a three way classification, usually involving a
neutral or UNK label1. With a few exceptions,
e.g., Baroni et al. (2012); Kartsaklis and Sadrzadeh
(2016); Kober et al. (2021), NLI is still the main
method adopted by the NLP community to jointly
study the compositional and inferential abilities of
a model. However, commonly used benchmarks
frequently contain spurious statistical associations
that a model can use to solve the task (Poliak et al.,
2018; Dasgupta et al., 2018; McCoy et al., 2019).
These cues might be as simple as the presence of
negation or lexical overlap (Dasgupta et al., 2018),
but can be more complex, and exploit similar syn-
tactic substructures between premise and hypothe-
sis (McCoy et al., 2019).

Popular alternatives to training and testing mod-
els on datasets containing significant biases are
prompting (Petroni et al., 2019; Do and Pavlick,
2021; Hanna and Mareček, 2021) and In–Context
learning (Brown et al., 2020). The success of these
paradigms has grown in parallel with the popularity
of large language models (LLMs) based on Trans-
formers (Vaswani et al., 2017). LLMs architectures
are usually pre-trained with mask or next-sentence
prediction tasks, and later fine-tuned on other down-
stream tasks. Pre-trained LLMs have been success-
fully used with a prompt-based framework to ex-
tract factual information (Petroni et al., 2019) (e.g.
Dante, born_in, Italy), LE relations (Bouraoui
et al., 2020; Hanna and Mareček, 2021) (e.g. car,
is a, vehicle) and study the more complex entail-
ment in Winograd-style schemata (Do and Pavlick,
2021). Here, we study the impact that pre-training,
NLI tuning and supervised learning have on the

1Usually matched with entailment and
non-entailment/contradiction.
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performance of a LLMs tested on compositional
entailment, using adjective–noun phrases. That is,
we investigate at which stage a LLMs might learn
that red car |= vehicle, as well as red car |= red
vehicle; whilst fake gun ̸|= weapon, even though
fake gun |= fake weapon.

Our main contributions are as follow. First, in
Section 3, we introduce PLANE (Phrase–Level
Adjective–Noun Entailment), a large and automat-
ically annotated resource to evaluate models on
phrase–level compositional entailment for the En-
glish language. We then provide consistent evi-
dence that knowledge acquired by LLMs during the
pre-training phase (Section 4), and during finetun-
ing on NLI tasks (Section 5) is weak, yielding poor
and unstable performances on PLANE. In contrast,
we show in Section 6 how, in a supervised setting,
a model like BERT can effectively generalise to
out-of-distribution test sets, and how crucial the
role of subword (SW) tokens is to this ability. Fi-
nally, our work underlines how the different logical
functions associated with the three macro classes
of adjectives, frequently ignored or oversimplified,
can pose notably different challenges to these mod-
els.

2 Related Work

Prompting Among the vast literature on prompt-
ing LLMs, the work from Hanna and Mareček
(2021) is closely related to ours, and provides
evidence that BERT retains information on the
hyponym-hypernym relation occurring between
two words. The work also shows how crucial the
structure of the prompt can be. Garí Soler and
Apidianaki (2020) provide evidence on the rich rep-
resentations that BERT has about scalar adjectives
and their intensity. Do and Pavlick (2021) propose
a set of detailed entailment-based experiments, us-
ing both prompting and finetuning paradigm. Here,
Winograd-like scenarios are used to carefully con-
struct sentences that challenge LLM’s internal as-
sociation between two entities. Results strongly
suggest that, once a model is not able to rely on
those learned associations, the task becomes chal-
lenging even after finetuning.

Phrase entailment Compared to NLI, phrase-
level entailment (PLE) has received significantly
less attention. Baroni et al. (2012) present a set of
experiments on compositional entailment consid-
ering adjective (e.g., BIG dog |= dog) and quanti-
fier modifications (e.g., ALL dogs |= SOME dogs).

However, instances were strictly limited to AN |=
N, and the class of the modifying adjectives was
not discussed or differentiated in the results. Kart-
saklis and Sadrzadeh (2016) introduced a manually
annotated dataset for PLE, using subject-verb, verb-
object, and subject-verb-object phrases. Negative
samples were built by reversing each entailment
item. In contrast, in our dataset, the label of an
item can not be inferred by directional clues (i.e.
hyponym-hypernym vs hypernym-hyponym) or by
the absence of the hypernym relation between con-
stituent words (e.g. big cat ̸|= dog because cat ̸|=
dog). Kober et al. (2021) showed how automati-
cally constructed compound-noun and AN compo-
sitional items can be used as a data augmentation
method to enhance LE. However, this work filtered
out intensional adjectives and assumed that for all
other adjectives, N |= h(N) =⇒ AN |= h(N).
AN phrases were also studied within the con-
text of fully formed sentences. The main exam-
ple is the work from Pavlick and Callison-Burch
(2016), that introduced the AddOne dataset. Over-
all, AddOne resemble the standard NLI bench-
mark, with sentence as premise and hypothesis,
used to formulate a three way (entailment,
non-entailment, UNK) classification task.
However, in this case premise and hypothesis differ
only by the presence or absence of a single ad-
jective. Apidianaki and Garí Soler (2021) probed
BERT with AddOne to study how it encodes the
property of a noun. In contrast, we study the differ-
ent entailment relations which are valid for differ-
ent classes of adjectives.

3 PLANE

In this section, we describe the PLANE benchmark.
We first outline how each of the three classes of
adjectives, intersective (I), subsective (S) and inten-
sional (O), affects the relation between a noun and
its hypernym, as well as the noun itself. We then de-
scribe the sources used to gather adjectives, nouns,
AN phrases, and hypernyms, and the procedure
used to generate entailment items.

3.1 Adjective Classes

Adjectives can be divided into three macro classes:
intersective (I), subsective (S) and intensional (O).
From an entailment perspective, the distinction is
based on how they modify a noun, N , with re-
spect to itself as well as with respect to it’s hy-
pernyms (hyps(N)) (McCrae et al., 2014; Lalisse
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Inference Type (IT) Intersective (I) Subsective (S) Intensional (O)
1 AN |= N ✓ ✓ ✗

2 AN |= h(N) ✓ ✓ ✗

3 AN |= Ah(N) ✓ ✗ ✓

Table 1: PLANE annotation rules. Schema of how the interaction between each adjective class and inference type
shapes the truth value – positive (✓) or negative (✗) – of a true noun (N) – hypernym (h(N))) entailment (|=) pair.

and Asudeh, 2015). We focus on three inference
types, summarised in Table 1, all starting from an
adjective-noun (AN) phrase.

AN phrases containing intersective (I) adjec-
tives (e.g., red, dead and Finnish) describe a subset
of entities subsumed by the noun itself and also a
subset of entities which all have that adjective as a
property. For example, a red car is both a car and
a red thing. Thus, AN phrases containing intersec-
tive adjectives satisfy all of the forms of inference
types (IT) shown in Table 1. Continuing our exam-
ple, red car |= car (IT 1), red car |= vehicle (IT 2)
and red car |= red vehicle (IT 3).

Phrases with subsective (S) adjectives (e.g.,
small, intelligent and strong), describe a subset
of entities subsumed by the noun but not a subset
of entities which have that adjective as a property.
For example, a small elephant is an elephant but it
is not necessarily a small thing. Thus, AN phrases
containing subsective adjectives satisfy IT 1 and 2
inferences but not IT 3 inferences listed in Table 1.
In our example, whilst a small elephant |= elephant
and small elephant |= animal; small elephant ̸|=
small animal.

Intensional (O) adjectives (e.g. fake, former,
possible) have the exact opposite behaviour of sub-
sective. When an intensional adjective modifies a
noun, it negates some of its core properties (e.g.
fake gun ̸|= gun) and thus IT 1 inferences do not
hold. Inferences with IT 2 also do not hold for
intensional adjectives since the modification also
directly applies to the hypernym of the noun (e.g.,
fake gun ̸|= weapon). However, since the adjective
modification describes a subset of entities fully dis-
joint from the noun itself, this new set is usually
contained within the subset of entities described us-
ing the hypernym of the noun modified by the adjec-
tive (e.g., fake Glock |= fake gun |= fake weapon)
and thus IT 3 holds.

As in LE, we consider PLE as a binary clas-
sification task. We note that an argument on
the probabilistic nature of PLE as in Pavlick and
Kwiatkowski (2019) could be made. In our mod-

elling scheme, former president |= politician, and
small mouse |= small animal are formally false
(McCrae et al., 2014); but, in the real world, might
be judged to be unknown or true. We take the posi-
tion that these cases require additional knowledge
in order to judge them to be true. A small mouse
|= small animal because our knowledge suggests
that mouse |= small animal, and the modification
of mouse by small does not change this. In this
work, we assume that only LEs between unigrams
are known a priori. We then consider whether
LLMs contain the knowledge which will enable
us to reason over necessary entailment between
AN phrases. Therefore, in our binary classification
task, the negative label covers all cases which
might be judged in the real world to be false, un-
known or dependent on additional knowledge.

We now present how the evaluation dataset has
been constructed, starting from the source of adjec-
tives (A), adjective-noun (AN) phrases and hyper-
nyms (hyps(N)).

3.2 Sources

Adjectives Our main source is the list provided
by Lalisse and Asudeh (2015), consisting of 300
items in English. Each adjective is tagged with its
class, whether it is weakly or strongly polysemous,
and/or context dependent2. Further intensional ad-
jectives were added from the dictionary in Ken-
nard et al. (2014). After filtering out all adjectives
tagged as context-dependent, wee remained with a
total of 312 unique items.

Adjective-Noun phrases To collect composi-
tional and realistic AN phrases3 we parsed a clean
Wikipedia dump (Wilson, 2015) via Spacy4 (Hon-
nibal and Johnson, 2015). We then filtered out all
phrases where the identified adjective was not in
the adjective list previously described.

2The class of an adjective can vary according to the context
or the noun it modifies. Deep, for example, can be intersective,
as in deep lake, or subsective, like in deep thinker)

3See Appendix A for further analysis.
4We used the en_core_web_lg model.
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Hypernyms We used Wordnet (Fellbaum, 1998)
via the NLTK API to collect nouns’ hypernyms.
We first filtered out AN phrases that were poten-
tially mislabelled by Spacy as containing a noun,
by searching for noun synsets. We then queried
Wordnet for hypernyms of the noun (hyps(N)), up
to a maximum path distance of 3 and always fol-
lowing the first synset. For AN phrases contain-
ing an intensional (O) adjective, this procedure
was limited to direct hypernyms (i.e. hypernyms
with path distance 1 from the noun). This is to
mitigate the fact that IT 2 and 3 inferences might
not be always false/true for this class of adjectives.
As an example, consider the phrase alleged thief.
In line with our previous discussion, alleged thief
is_not_a thief and alleged thief is_a alleged
criminal. However, as we move up the hypernym
hierarchy, we find alleged thief is_a person, and
alleged thief is_not_a alleged person.

We then filtered out any hypernyms that were al-
ready in bigram or multi-word-expressions (MWE)
form. Although they present an interesting resource
for future investigation, here we focus on the set of
unigram hypernyms, to control more precisely the
automatic construction of items and mitigate the
possibility of including idiomatic phrases. Lastly,
test items were further restricted to instances con-
taining nouns occurring at least once within each
adjective class. This was done to control for re-
sults determined solely by possible strong/weak
noun–adjective associations.

Inference Types Once the hypernyms (hyps(N))
for each AN were collected, we automatically con-
structed all possible positive (✓) and negative (✗)
items following the rules presented in Table 1. This
converts triplets of the IT <A, N, h(N)> where
h(N) ∈ hyps(N) into triplets of the IT < c1, c2,
label> where c1 is the AN phrase, c2 is one of
N, h(N) or Ah(N) and label indicates whether an
entailment holds between c1 and c2.

The final PLANE dataset contains 312 unique
adjective, ∼7800 unique nouns and approximately
1.9M unique inference items. The complete bench-
mark and code for the experiments are openly avail-
able5

4 In–Context Learning

In this section we investigate the ability of multi-
ple LLMs to solve compositional entailment with-

5https://github.com/lorenzoscottb/
PLANE

out any target training. To do so, we adopt an In-
Context learning paradigm. With a similarly aim,
Hanna and Mareček (2021) evaluated a model’s
performance on LE by testing if it was able to un-
mask a prompt P such as “A x is a [MASK]" with a
correct hypernym of x. Given the phrasal nature of
our investigation, we structure our prompts to ask
the model whether a particular instance is a positive
(✓) or negative (✗) example of an entailment pair.

Results from Hanna and Mareček (2021) and
preliminary Zero-Shot experiments (See Appendix
B.1) suggest the performance of a model may be
largely affected by its lack of understanding of
the task, or particular words in the prompt. Thus,
we experiment with a Two-Shot NLI-like format,
providing models with some solved examples and
background knowledge about entailment, involving
the lexical items in the hypothesis. More specifi-
cally, we adopt a prompt P consisting of two ‘la-
belled’ premises and one ‘unlabelled’ hypothesis,
e.g.,:

p1 : A big car is a good example of a car.

p2 : A big car is a poor example of a big vehicle.

h : A big car is a [MASK] example of a vehicle.

As in the example, each of the three components
of P (i.e. the two premises and the hypothesis)
has a unique inference type (IT). We structure the
prompts in this way for two reasons: i) to indepen-
dently study each <A, N, h(N) > triplets generat-
ing every < c1, c2,label >; ii) investigate if a
context that facilitate the identification of an adjec-
tive’s class, also yields better performances. In the
example above, even if a model has no knowledge
on the adjective big, but knows how subsective
(S) adjectives work, it can directly infer from the
premises the class of big, and, hence, the correct
label for the hypothesis. However, if p2 and h
were inverted, the only way a model could solve
the instance would be knowing how subsective ad-
jectives work and that big is subsective. Lastly,
to investigate potential recency effects of the two
premises, we query each model with the presented
prompt and one with inverted p1 and p2. For exam-
ple, given a hypothesis with IT 3, we consider both
premises with IT 1,2 and premises with IT 2,1.

Since P contains labelled examples, models can
observe the expected label within the given sam-
ple. We hence define a set of label’s verbalisers
for positive (✓), and one for the negative (✗) labels.

https://github.com/lorenzoscottb/PLANE
https://github.com/lorenzoscottb/PLANE
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Internal External
p1,2 A {c1} is a {verbaliser} example of a {c2}. A {c1} is a type of {c2}:{verbaliser}.
h A {c1} is a [MASK] example of a {c2}. A {c1} is a type of {c2}:[MASK].

Table 2: Prompt templates (PT). The two premises (p∗) – hypothesis (h) structures used in the Two–Shot experiment.
c1,2 refer to the head and tail components of a given inference type (IT) (see Table 1 for reference).

We experiment with two prompt templates, and
three label verbalisers, presented in Table 2 and
3 respectively. Given a prompt P, its label l, we
define the task as the ability of an LLM to generate,
as first prediction for the [MASK], the token t that
corresponds to the correct verbaliser for l. Perfor-
mance is computed via F1 score, since it is possible
that t will be different from either of the correct
verbalisers.

✓ ✗

GP good poor
TF true false
PN positive negative

Table 3: Labels’ verbalisers. Tokens used to verbalise
positive (✓) and negative (✗) labels in the Two–Shot
experiment.

Selected Models We focus on three families of
Transformer networks: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and Distillation based
(Sanh et al., 2019) (i.e. DistillBERT and Distill-
RoBERTa). For RoBERTa and BERT, we consid-
ered both base and large models (cased for BERT).
Models for this and later experiments were all im-
plemented via Hugging Face (Wolf et al., 2020).
All experiments were run on a NVIDIA GeForce
RTX 3090.

Results Results from individual models are pre-
sented in Table 4, divided by adjective classes.
Overall, the performance is fairly poor, with all
models presenting low average scores, and remark-
able variances across classes. As discussed below,
part of this is surely generated by the different ver-
balisers and prompt templates adopted in the ex-
periment. However, a non-irrelevant part of this
variance seems to be directly explained by the ad-
jective class itself. As we can see, all models fol-
low the trend in results associated with each class,
finding intersective (I) adjective examples easiest,
followed by intensional (O) and then subsective (S).
Indeed, the first might not come as a surprise, es-
pecially as I adjectives are always associated with
a positive label. Yet the fact that rare and anoma-

lously–behaving adjectives such as the intensional
(O) ones seem to be easier to deal with than subsec-
tive (S), the predominant class in human language,
is more unexpected.

PT and verbaliser analysis Across models,
prompt templates (PT) and verbalisers have re-
markably differed effects on each class and IT (see
Figure 6 in Appendix B.2 for summary). Most
PT–verbaliser combinations yield almost flawless
performances on intersective (I) adjectives, suggest-
ing LLMs are generally keen to choose the same
label appearing in both premises. In this class, the
variance derives almost entirely from the PN ver-
baliser. As intersective adjectives are associated
just with positive (✓) labels, this evidence suggest a
possible association of PN with negative solutions.

Results from subsective (S) items point to simi-
lar conclusions. First of, almost all PT–verbaliser
combinations struggle to solve instances where the
hypothesis has IT 3. That is, when the hypoth-
esis presents the opposite label to both premises.
Moreover, PN seems to be again associated with
a tendency towards negative labels, especially if
combined with the External PT. Such combina-
tion is the only one improving the performance on
IT 3, but severely damages all other inferences.

In intensional (O) adjectives, where most IT have
negative (✗) labels, this association partially affects
the TF verbaliser too. However, most models still
fail where the hypothesis has opposite label to both
premises (IT 3). Overall, this suggests that, when-
ever presented with premises sharing the same la-
bel, regardless of which, models tend to overcome
possible internal associations, and opt to repeat the
presented label.

Concluding, we note conflicting observations
on the recency effect, expected to emerge when
p2 and h share the same label (see Figure 7 in
Appendix B.2). The effect has a mostly positive
impact on the GP verbaliser (in S and O classes),
but contradictory effects on the others, especially
PN.
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Adj. Class BERT-base BERT-large DistillBERT DistillRoBERTa RoBERTa-base RoBERTa-large
I 69.9 ± 38 78.2 ± 34 70.9 ± 36 83.79 ± 32 97.6 ± 5 99.4 ± 1
S 40.1 ± 36 48 ± 36 34.4 ± 40 19.6 ± 27 38.3 ± 32 41.4 ± 42
O 59.3 ± 40 54. 4 ± 37 52.6 ± 46 61.6 ± 40 48.1 ± 34 44.8 ± 38
Average 56.5 ± 40 60.2 ± 43 52.6 ± 43 55 ± 42 61.3 ± 37 61.9 ± 42

Table 4: Two–Shot learning results. Mean F1 scores (± standard deviation, obtained collapsing prompts’ and
verbalisers’ results) of individual models on the Two–Shot learning experiment, divided by adjective class.

5 Transfer Learning

Evidence from Section 4 suggest In–Context learn-
ing is too susceptible to internal correlations and
biases to be reliable. Since models trained to clas-
sify text for entailment are very popular, we next in-
vestigate whether tuning a LLM for sentence level
entailment can provide enough information to reli-
ably solve phrase-level entailments from PLANE.
For comparison, we re-use the same test from the
Two–Shot experiment, re-framing the task as a
standard NLI text classification. We replace the
standard premises-hypothesis input sentences with
a < c1,c2 > pair, and evaluate a model’s perfor-
mance in classifying each scenario as presenting
an entailment or not. We adopt F1 scores, since, in
contrast to PLANE’s binary classification, NLI also
has a third label (2). This label, often referred to as
neutral or UNK, usually denotes instances where an-
notators could not agree on the presence or absence
of entailment (1).

Selected Models In the experiment, we use Liu
et al. (2019) and Nie et al. (2020) RoBERTa mod-
els, both fine-tuned to run NLI-like tasks, and
a RoBERTa-base model we tuned on the Ad-
dOne benchmark from Pavlick and Callison-Burch
(2016). As mentioned, AddOne was designed to
study AN composition in the context of full sen-
tences, using premises and hypothesis that differ
by a single adjective.

Results Table 5 summarises the results, which
appear contrasting. Nie et al. (2020)’s performance
is fairly in line with average results of RoBERTa
models in the Two–Shot setting (see Table 4). How-
ever, in this setting, subsective (S) items seem to
obtain a far better performance, especially with re-
spect to intensional (O), suggesting a strong shift
towards positive solutions. On the other hand, it
appears NLI tuning had a negative impact on Liu
et al. (2019)’ model. The very high performance
observed for intensional adjective strongly suggest
a strong preference for contradiction label, as sug-

gested by the error analysis (see Figure 9 in C.1
for visual summary. As for the model tuned on
AddOne, the same analysis confirmed that the poor
performance across the board depends on a strong
preference for neutral labelling. Interestingly, we
found that all models share a pattern of predictions
for neutral (2) labels (see Figure 9 in C.1 for visual
summary). When presented with subsective (S)
adjectives, neutral mislabelling is more frequent
with positive items, whilst the opposite is true for
intensional (O) ones.

Adj. Class Liu et al. 19 Nie et al. 20 AddOne
I 17.1 90.3 35.9
S 24.1 58.8 32.2
O 57.4 31.1 25.5
Average 32.8 60 31.2

Table 5: Testing NLI models results. F1 scores, di-
vided by adjective class, of RoBERTa models tuned on
different NLI benchmarks, and tested on phrase-level
entailment. The test set consists of PLANE items used
in the Two–Shot experiment.

Variance analysis As mentioned in the introduc-
tion, multiple work (e.g. Dasgupta et al. (2018);
McCoy et al. (2019)) have shown how biases can
arise from syntactic structures. To investigate if
the structure of an instance (i.e., the IT) has an im-
pact on each model’s performance, we investigate
the results divided by adjective class and ITs. The
results are summarised in Figure 1.

First off, the image clearly shows the preference
of Liu et al. (2019) for negative labels and Nie
et al. (2020) for positive ones. Interestingly, we
can also see how, at least for these two models,
these preferences are strongly accentuated under
inference type 1. This effect could be related to
the lexical overlap heuristic described in McCoy
et al. (2019). This heuristic refers to those instances
where the hypothesis (h) contains multiple words
from the premise (p), especially within its first to-
kens. Inference type 1 (i.e. AN |= N) could elicit
this bias since h is simply a partial repetition of p.
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Figure 1: Transfer–Learning variance analysis. Visualisation of the variance observed in different models tuned on
NLI-based datasts (column), with respect to each adjective class (hue) and inference type (x axis).

However, McCoy et al. (2019) found that in MNLI
(Williams et al., 2018) – Liu et al. (2019)’s training
data – such heuristic was mainly associated with
a positive label, which is in contrast with our re-
sults. It would however partially explain why this
behaviour is not expressed by the model trained
on AddOne, where the lexical overlap is close to
100% by design, so that a model can not use the
heuristic at all. Lastly, it is worth noting how in the
model trained on AddOne, subsective (S) adjective
display an almost specular pattern to intersective (I)
and intensional (O). Observing opposite patterns
between S and O is not surprising, as they have op-
posed labels with respect to each IT (see Table 1).
What is unexpected is that I adjectives, always asso-
ciated with positive labels, produce results almost
identical to those of O, where only IT 3 presents a
positive label.

6 Supervised Learning

As suggested in McCoy et al. (2019), and sup-
ported by preliminary experiments (see Appendix
D), drawing the test set from the same distribu-
tion of the train set likely over–simplifies the task
for LLMs. Hence, to study the performance of
a model in a supervised setting, we focus on it’s
ability to generalise out of distribution (GOoD).
Furthermore, we conducted an experiment using
a setting where structural cues as the inference
types (IT) have been removed (One–IT). As LLMs’
vocabularies contain a significant amount of sub-
words (SW) tokens, together with word tokens,
we provide an analysis on the impact of SWs on
the model’s performance. Following the work of
Hanna and Mareček (2021), Do and Pavlick (2021),
Apidianaki and Garí Soler (2021), we focus the su-

pervised experiments on a BERT-base model.

6.1 Generalise Out of Distribution (GOoD)
We use PLANE to generate splits where the vocab-
ularies (i.e. adjective, noun, and hypernyms) used
in the training and test set do not overlap. That is,
each adjective, noun, and hypernym is unique to
either the train or the test set. We frame the task
as a sequence classification. Following preliminary
experiment (see Appendix D), input length is set
to 12. We collect 5 different (and openly available)
train–test splits, and train the model for 1 epoch.
Results are displayed in the left column of Table 6.

Compared to previous results, the performance is
strong, remarkably more stable, and is well above
chance. The training regime still contains potential
structural biases (the ITs), that can facilitate the
solution. Yet those cues are useless if not correctly
combined with the class of an adjective. Given that
single word memorisation is excluded by design,
one could assume an effect of pre-training. How-
ever, this seems unlikely, given earlier results. An-
other possibility is that inferences are being made
which rely in some way on the constituent subword
(SW) tokens of otherwise unseen lexical items.

Training Setting GOoD One–IT
Accuracy .85 ± .05 .86 ± .01

Table 6: Fientuning results. Accuracy (mean ± stan-
dard deviations) obtained by BERT, when finetuned on
different PLANE–generated splits, in the full generalise
out of distribution (GOoD) and One–IT GOoD setting.

Subwords analysis To study the impact of sub-
words, we compute the accuracies obtained in each
test split by BERT, divided by adjective class, and
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compare them against the percentage of test in-
stances containing SWs. The results are displayed
in Figure 2.

Figure 2: Subword (SW) analysis in GOoD training
setting. Analysis of the relation between the amount of
sequences containing WP and the accuracy obtained by
BERT in each of the five GOoD test splits, divided by
adjective class.

We begin noticing that each class seems to clus-
ter around fairly specific SW ratios, which might al-
ready facilitate the correct classification of a given
input. In sequences with subsective (S) adjectives,
SWs are actually all related to nouns and/or hy-
pernyms. This seems to create strong biases that,
in the absence of SWs in the adjective position,
would suggest to the model that the adjective is
subsective, and, hence, the solution. The negative
impact that subwords have on S instances might be
further explained by the fact that up to 60% of the
N/h(N) SWs set overlaps with SWs used in I and 0
adjectives.

A similar overlap also affects intensional (O) ad-
jectives. Up to 65% of adjective subwords overlap
with the subwords (SW) used by nouns and hyper-
nyms, and circa 28% also overlap with SWs used
for I adjectives. This suggests that, although mini-
mal, an increase in subwords could help the model
to identify the correct class of an instance.

Intersective (I) adjectives present the highest ra-
tio of subwrds. Despite the set of adjectives and
nouns/hypernyms SWs have similar length, the
overlap is very low – between 10 and 7%. This
would allow the model to directly exploit SWs to
deduct the correct class of an adjective.

6.2 One–IT

The test sets from previous experiment still con-
tained structural cues (ITs) that could assist the
model. To study the impact of those cues, we col-
lect new training and test sets, using solely IT 3.
We focus on IT 3 as it is the only subset of PLANE
where intersective and subsective adjectives, the
two largest classes, present opposite labels. Simi-
larly to previous experiment, we balance the num-
ber of positive and negative labels, and assure that
nouns and hypernyms do not act as cues. We sam-
ple five train-test splits, and train with same settings
of previous experiment. Results are presented in
the right column of Table 6.

The absence of structural cues yields very sim-
ilar results to the ones from previous experiment,
with lower standard deviation and seemingly more
stable. Results divided by single split and classes
are displayed in Figure 3. SW analysis is also car-
ried out for this training regime, adopting the same
setting as in Section 6.1.

Subwords analysis In this setting, Intersective
(I) adjectives reached a lower performance, and
present a weaker correlation between accuracy and
SW ratio. A possible explanation involves the large
overlap – circa 50% – in the set of SWs used for
adjectives and nouns/hypernyms. Furthermore, the
number of instances with and without SWs are
remarkably similar, making it potentially difficult
to use subwords’ presence as cue.

Figure 3: Subword (SW) analysis in One–IT training
setting. Analysis of the relation between the amount
of sequences containing WP and the accuracy obtained
by BERT in each of the five One–IT GOoD test splits,
divided by adjective class.

In this experiment, we did found a set of subsec-
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tive (S) adjectives containing subwords. However,
this set is very small, so the absence of SWs in the
adjective position could bias the decision towards
negative (✗) labels. Such minimal increase could
however act as distractor, explaining the steeper
slope of the regression (orange) line.

Once again, O class has the most marked inter-
action between accuracy and SW ratio. However,
in this case, instances with a SW ratio similar to S
items do not seem affected. A possible explanation
is the very restricted set of SWs (33) used for these
adjectives. This smalls set could facilitate an ad-
jective’s classification, hence producing a correct
solution.

7 Discussion and Conclusion

Adjectives can be grouped in three macro classes.
From a logical and linguistic perspective, these
classes shape the truth value of a lexical entail-
ment (LE) pair as dog |= animal in multiple ways,
depending on the class and the structure of said
inference, as presented in Table 1. This versatility
provides a valuable resource to study composition
and inference with great detail and control, but was
often oversimplified. As previous evidence suggest
large language models (LLM) are able to retain
word-level entailment information (Petroni et al.,
2019; Hanna and Mareček, 2021), we designed a
resource to study if LLMs can tackle fine–grained
compositional inference, with AN entailment.

Results based on In–Context learning suggest
that LLMs’ performance is too unstable, and fre-
quently relying on pre-existing word associations
or labelling patterns. Conclusions are not so dif-
ferent with models tuned to classify text for en-
tailment. As Section 5 strongly suggests, after
tuning a model for sentence–level inference, the
knowledge is hardly transferable to the same task
at phrase level. These evidence are likely con-
nected to how AN phrases behave within the context
of fully formed sentences (Pavlick and Callison-
Burch, 2016). From a logical stand, Japanese
economy |= economy. Yet, given a sentence as
“Bush travels Monday to Michigan to make remarks
on the Japanese economy."6, potential annotators
might say it does not entail “Bush travels Monday
to Michigan to make remarks on the economy.".
Of course this and similar scenarios are influenced
by complex commonsense and pragmatical knowl-
edge. Yet this opens interesting questions on how

6Example from Pavlick and Callison-Burch (2016)

AN phrases in and out of context are related to each
other, whether a model should be able to correctly
reason over both, and, most importantly, what can
we do to make that happen.

Experiments with supervised learning and
out–of–distribution test sets suggest that a LLM
such as BERT can become robustly efficient, even
in absence of structural cues. Our results strongly
suggest that the solution is aided by subwords (SW)
tokens. Aside from leaking some information to
the test set, SW might create biases related to how
they distribute in different adjective classes. This
solution is computationally efficient and effective,
but might pose some limits. This solution is sim-
ple, computationally efficient and effective. How-
ever, it is unlikely that it provides a theoretically
sound model of natural language from the per-
spective of composition, especially since SW are
rarely morphologically grounded (Hofmann et al.,
2021, 2022). From a practical perspective, it also
poses questions as to how we should define out-of-
distribution sets when working with LLMs.

To conclude, we introduced PLANE, an exten-
sive annotated resource to train and test models
on compositional phrase-level entailment, using
adjective-noun phrases. We provided evidence that
knowledge learnt via pre-training or NLI tuning is
insufficient to solve the task, and showed how, in a
supervised setting, a model like BERT can learn to
generalise out of distribution examples, adopting
strategies connected to SW tokens. Future work
will focus on extending In–Context learning to au-
toregressive LLMs, using PLANE to evaluate LE
models on composition, and investigate a three-way
or probabilistic labelling system.

Ethical and Broader Impact Statement

As the work has a mainly theoretical focus, authors
do not foresee a significant ethical issue related to
the set of experiment. However, we note that a num-
ber of intersective (I) adjectives refer to nationality
(e.g. English, Italian, Japanese) and religious faith
(e.g. Christian, Jewish). It is possible that phrases
containing biases and/or stereotypes contained in
the WikiDump we adopted might have accidentally
ended up in the final version of PLANE. As for the
broader impact, we believe our work makes two
key contributions: i) offers a tool to investigate in
grater detail adjective-noun phrases with respect
to inference; ii) provides analyses and evidences
in support of the need of taking into account the
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distinction between adjective classes, as they pose
clearly different challenges to the tested models.
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A PLANE: PMI analysis

To further control for non—compositional items,
we performed a PMI analysis on PLANE’s phrases.
Tsvetkov and Wintner (2011) showed how higher
values of PMI can indicate the presence of a
multi–word–expression (MWE), whilst values be-
low zero tend to refer to words that should not
really co-occur. Villavicencio et al. (2007) com-
pared the probability distributions of PMI scores
from a set of MWE and non—MWE n—grams.
The results showed how the distribution of MWE
was significantly more skewed towards the upper
bound, whilst non—MWE would distribute more
normally across observed scores. The distributions
of PMI scores of PLANE’s phrases, divided by
adjective class, are presented in Figure 4.

Figure 4: PMI scores by adjective class. Distribution
of the PMI scores for each adjective–noun phrase in
PLANE.

The median values of all three classes are no-
tably distant from 0 and upper–bound outliers.
Phrases containing intersective (I), and subsective
(S) adjectives have a strikingly similar distribu-
tions, skewed towards higher values. On the con-
trary, phrases built with intensional (O) adjectives
present a slightly lower average PMI score, and ap-
pear more evenly distributed. A manual inspection
of a subset from phrases with a PMI equal to or
higher than 15 didn’t identify any idioms or MWE.
The same observation holds for the circa 0.1% of
phrases with a score equal to, or lower than, 0.

B In–Context Learning

B.1 Zero-Shot Preliminary experiment
As in Section 4, our preliminary Zero–Shot ex-
periment focused on an unmasking problem. We
adopted the same prompt templates of Table 2.

However, in this case no contextual examples were
included within each prompt, so models were not
expose to either of the possible labels’ verbalis-
ers. We hence built a conversion table V by manu-
ally collecting sensible tokens from the set of com-
monly retrieved ones. Table 7, present the collected
conversion table V, mapping potential verbalisers
to the positive (✓) and negative (✗) labels.

✓ ✗

good poor
true false

positive negative
great bad

possible impossible
plausible implausible

acceptable unacceptable
strong weak

Table 7: Verbalisers adopted for positive (✓) and nega-
tive (✗) samples in the Zero–Shot experiment.

Results Results divided by adjective class and
model are presented in Table 8. RoBERTa models
appear to perform the best, showing also the least
amount of variance between the base and large vari-
ation of the model. BERT models are the second
best performing family. Interestingly, BERT-base
seems to outperform its large counterpart. Distilla-
tion based models clearly produce the worse results
across the all board. Ignoring DistilBERT, results
appear to follow the same pattern: performance is
the highest on the intersective (I) class, followed
by subsective (S) and then intentional (O).

Prompt template analysis Results in Figure 5
provide the mean F1 performance divided by ad-
jective class (coloured lines), forms (x axis), and
prompt template (PT, column). Error bars refers
to standard deviations, and illustrate the variance
produced by collapsing each model’s performance.

As it can be clearly appreciated by the Figure,
the vast majority of the variance can be attributed
to the prompt template (PT). Whilst under the
Internal PT models where partially able to in-
terpret the given task, the External PT made
it almost impossible to produce a correct predic-
tion. Lastly, the fact that, regardless of PT and
adjective class, ITs associated with negative labels
shows a performance close to zero strongly suggest
that, without contextual information, most models
strongly prefer positive solutions.
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Adj. Class BERT-base BERT-large DistilBERT DistilRoBERTa RoBERTa-base RoBERTa-large
I 35.8 ± 25.2 24.1 ± 16.9 7.8 ± 5.4 5.3 ± 3.7 42.5 ± 29.9 42.2 ± 29.8
S 21.9 ± 14.8 13.9 ± 9.2 8.3 ± 5.6 5.0 ± 3.5 23.1 ± 16.2 23.1 ± 16.3
O 5.9 ± 2.2 6.4 ± 1.5 3.3 ± 1.3 1.8 ± 0.3 8.6 ± 4.9 7.9 ± 5.2
Average 21.2 ± 14.1 14.8 ± 9.2 6.5 ± 4.1 4.0 ± 2.5 24.7 ± 17.0 24.4 ± 17.1

Table 8: Zero–Shot learning results. Individual model’s performances (mean F1 ± standard deviation from prompt
template (PT)), divided by adjective class.

Figure 5: Variance analysis of the Zero–Shot experiment. The graph displays the mean F1 and standard deviation
(bars, obtained by collapsing models’ performance) obtained on different adjective classes. X-axis refers to the
inference type (IT) of the test-items.

B.2 Two-Shot: visualising variance and
recency effect

The analysis on the variance generated by prompt
templates (PT) and verbalisers is presented in Fig-
ure 6. Mean F1 performance is provided, collapsed
by models’ and premises’ permutations 7. Each
column represent an adjective class (I, S and O,
respectively), whilst the rows identify the two PT:
Internal and External, respectively (see Ta-
ble 2).

Figure 7 present the results in further detail,
divided by single permutations of a sequence’s
premises to visualise possible recency effect.

C Transfer Learning

C.1 visualisation of error analysis

The section provides a visual summary of the error
analysis in Section 5 via Figure 9.

D In–Distribution Compositional
Generalisation

The In–Distribution generalisation experiment
presents the same setting as Section 6, with fun-
damental difference that test set do not contain

7That is, when testing items with hypothesis of IT 3, we
combine results for premise with IT sequences 1,2 2,1.

out–of–distribution items. Following Keysers et al.
(2020)’s notation, given a dataset, we identify a
set of atoms, single words (i.e., adjectives, nouns,
hypernyms) and inference types (IT), and a set of
compounds, which are combination of these three
elements. Hence, for this experiment, we generated
training and test splits with overlapping atoms, and
disjoint compound distributions. Results in term
of accuracy against maximum sequence length are
presented in Figure 8.

First, cutting the maximum length of the input
sequence to 6 tokens produces chance–level perfor-
mance. As two–third of test items are composed
of only 6 words, this suggested that: i) a consistent
portion of the input sequences gets split into Word-
Pieces (WP); ii) our splitting algorithm successfully
generated sets without biases or c1–label asso-
ciation the model could use to solve the task. As
soon as input sequence length reaches 12, the task
becomes, as predictable, trivial. WP might still
play a minor role – accuracy is still not 1 with se-
quence length of 8). However, since the atoms, and
the adjectives especially, are shared between train
and test, the model technically has all the informa-
tion need to infer the correct label: combining the
adjective with inference type (IT)
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Figure 6: Variance analysis of the Two–Shot experiment. Each graph displays the mean F1 and standard deviation
(shown via error bars, generate by collapsing models’ performance) obtained by different verbalisers, on a specific
combination of prompt template (rows) and adjective class (columns). X-axis refers to the inference type (IT)
presented in the hypothesis of the test-items.

Figure 7: Variance and recency effect analysis of the Two–Shot experiment. Each graph displays the mean F1
and standard deviation (shown via error bars, generate by collapsing models’ performance) obtained by different
verbalisers, on a specific combination of prompt template (rows) and adjective class (columns). X-axis refers to the
inference type (IT) sequence presented in the test-items.
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Figure 8: In–Distribution generalisation results. Impact
of the input sequence length on accuracy in the compo-
sitional generalisation experiment.
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(a) Liu et al. (2019)

(b) Nie et al. (2020)

(c) AddOne

Figure 9: Testing NLI models error analysis’. Confusion matrices of the three RoBERTa models tuned on different
NLI benchmarks, and tested on PLANE instances from the Two-Shot experiment.


