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Abstract

Attention mechanism has been used as
an important component across Vision-and-
Language(VL) tasks in order to bridge the se-
mantic gap between visual and textual features.
While attention has been widely used in VL
tasks, it has not been examined the capabil-
ity of different attention alignment calculation
in bridging the semantic gap between visual
and textual clues. In this research, we con-
duct a comprehensive analysis on understand-
ing the role of attention alignment by looking
into the attention score calculation methods and
check how it actually represents the visual re-
gion’s and textual token’s significance for the
global assessment. We also analyse the condi-
tions which attention score calculation mech-
anism would be more (or less) interpretable,
and which may impact the model performance
on three different VL tasks, including visual
question answering, text-to-image generation,
text-and-image matching (both sentence and
image retrieval). Our analysis is the first of
its kind and provides useful insights of the im-
portance of each attention alignment score cal-
culation when applied at the training phase of
VL tasks, commonly ignored in attention-based
cross modal models, and/or pretrained models.
Our code is available at: https://github.
com/adlnlp/Attention_VL

1 Introduction

The relative maturity and flexibility of deep learn-
ing allow us to build upon the success of com-
puter vision and natural language processing to
face many complex and multimodal Vision-and-
Language (VL) tasks, such as Visual Question An-
swering (VQA), Text-and-Image Matching (T&I
Match), or Text-to-Image Generation (T2I Gen).
For these VL tasks, it is crucial to effectively align
the multimodal information in both visual and lin-
guistic domains. For example, to pick the right
answer in VQA, the model should empower infor-
mation from the input image, together with aligning

the linguistic meanings with visual clues.
Attention mechanism (Bahdanau et al., 2015; Lu-
ong et al., 2015a) has been used as an important
component across a wide range of VL models; from
the early-stage attention-based fusion VL models
(Shih et al., 2016; Wang et al., 2019; Xu et al.,
2018a; Yang et al., 2016) to the recent VL mul-
timodal transformer-based pretrained models (Hu
et al., 2021; Li et al., 2020b; Lu et al., 2019; Long
et al., 2022a). Those attention-based VL models
mainly focus on 1) exploring new features to repre-
sent visual and linguistic information as an input of
attention layer, 2) deciding the position or the num-
ber of attentions in the model, or 3) investigating
the interpretability of attention distribution on VL
tasks by emphasising the specific image regions or
textual tokens (Luo et al., 2021).

While such approaches and investigations have
resulted in interesting findings in different aspects
of VL tasks, the attention alignment calculation
between vision and language modalities has been
less explored. However, the alignment calcula-
tion is directly linked to the main purpose of us-
ing attention mechanisms in VL tasks, which is
to effectively bridge and align two different visual
and linguistic information. In other words, the
essence of the attention mechanism in VL tasks
is the alignment score calculation, as it quantifies
the amount of “Attention” that the visual features
would place on each of the language representa-
tions (or linguistic features would empower on the
specific visual regions) when bridging the semantic
gap between visual and language features. Most
existing VL models directly apply the two attention
alignment functions, a general and a dot-product
(Luong et al., 2015a), which are commonly used in
several NLP tasks. Since Vaswani et al. (2017) pro-
posed a scaled dot-product for the transformer with
full attention, almost every VL paper has directly
applied those three attention alignment score func-
tions. Instead, little work has been done towards

https://github.com/adlnlp/Attention_VL
https://github.com/adlnlp/Attention_VL


3439

understanding the role of attention alignment calcu-
lation methods applied to bridge visual and linguis-
tic features, and exploring the impact on different
VL model performance.

In order to address this limitation, the overarch-
ing goal of this research is to perform an exten-
sive and systematic assessment of the effect of a
range of attention alignment mechanisms pertain-
ing to VL tasks, including three major VL tasks: Vi-
sual Question Answering (VQA), Text-and-Image
Matching (T&I Match), and Text-to-Image Gener-
ation (T2I Gen). Towards that end, we systemat-
ically analyse the impact of the position of query
and key in attention alignment on VL tasks. We in-
vestigate the following three questions: i) Which at-
tention alignment score calculation yields the most
benefit in VL tasks? ii) What if we linearly trans-
form the query Q instead of the key K (or vice
versa) before the multiplication? For example, as-
sume the textual feature T is a query Q, and the
image feature I is a key K. We analyse the impact
of linear transforming Q or K in alignment score
calculation. iii) Do the attention alignment calcu-
lation techniques with better performance provide
better attention distribution interpretability?

In brief, our main contributions are as follows:
1) We conduct a comprehensive analysis of the

role of attention alignment score calculation in VL
tasks (including three widely-used VL tasks, such
as Visual Question Answering, Text-and-Image
Matching, and Text-to-Image Generation). 2) We
perform a comparative analysis of the position of
query and key (language and visual feature) for
the alignment calculation. 3) We evaluate the inter-
pretability of the best and worst attention alignment
calculation models. 4) We make the code and the
data publicly available to encourage reproducibility
of results.

2 Related Works

VL models directly adopt the attention mechanism
to bridge the visual and linguistic modal informa-
tion. In this section, we review the related works
for the role of attention mechanisms in different
VL tasks within the focus of our analysis.

Text-to-Image Generation AttnGAN (Xu et al.,
2018a) first proposed to use dot-product for measur-
ing the alignment between visual subregions and
word tokens to guide the image generation process.
Many of the later approaches directly adapted the
dot-product attention from AttnGAN (Han et al.,

2020; Li et al., 2020a, 2019; Pande et al., 2021;
Qiao et al., 2019a,b; Yin et al., 2019; Zhu et al.,
2019). A few models apply the element-wise multi-
plication (Qiao et al., 2019a,b) or cosine similarity
(Zhang et al., 2021a) for measuring the attention
alignment.

Text-and-Image Matching The cosine similar-
ity based attention alignment proposed by SCAN
(Lee et al., 2018) is most widely used in Text-and-
Image Matching (Chen et al., 2020; Chen and Luo,
2020; Diao et al., 2021; Dong et al., 2021; Liu
et al., 2019). They applied text-to-image (t2i) and
image-to-text(i2t) attention in two separate variants
to filter the cross-modal relevant representations
for later image-sentence matching. Some other ap-
proaches applied (scaled) dot-product instead (Fei
et al., 2021; Liu et al., 2020; Wang et al., 2019; Wei
et al., 2020; Long et al., 2022b).

Visual Question Answering (VQA) Both tex-
tual query-guided image attention and image-
guided textual query attention have been commonly
used in VQA approaches, which utilised one modal-
ity to guide the focus on the other. Several cate-
gories of alignment calculations or their variants
were included, such as adapting neural networks
(Anderson et al., 2018; Patro and Namboodiri,
2018; Yang et al., 2016; Zhu et al., 2016) or ap-
plying (scaled) dot-product (Gao et al., 2019; Guo
et al., 2021; Huang et al., 2020; Hudson and Man-
ning, 2018; Rahman et al., 2021; Yu et al., 2019;
Zhang et al., 2021b) etc.

Text-based Visual Question Answering Recent
TextVQA approaches directly augmented existing
VQA models and their cross-modal attention with
additional OCR inputs (Biten et al., 2019a,b; Singh
et al., 2019; Wang et al., 2020). Both early-stage
model M4C (Hu et al., 2020) and the most recent
pretrained model TAP (Yang et al., 2021) fed the
question, image and OCR text together into a mul-
timodal transformer and jointly encoded them via
scaled-dot product attention in the transformer en-
coder.

Nevertheless, there is a lack of research on ex-
ploring the most effective cross-modal attention
alignment. Hence, we apply different cross-modal
attention alignment methods to the most widely
adopted baselines for these aforementioned VL
downstream tasks: AttnGAN (Text-to-Image Gen-
eration), SCAN (Text-to-Image Matching), MAC
(VQA), and M4C (TextVQA), and examine the
impact of different attention alignment score via
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in-depth analysis.

3 Attention Alignment Mechanism

There are various attention mechanisms applied in
different multimodal VL downstream tasks. Two
commonly used approaches are the cross-attention
and the self-attention. First, the cross-attention is
performed between visual and textual inputs. More
specifically, given a sequence of textual features
T = {t1, t2, t3, . . . , tM} and image features I =
{i1, i2, i3, . . . , iN}, it takes T as the query Q and I
as the key K (or vice versa) to compute attention
and context vectors c as the attended representa-
tions of the input elements in the following way:

axy = f(Qx,Ky) (1)

αxy =
exp(axy)∑nK
y=1 exp(axy)

(2)

cKx =

nK∑
y=1

αxyKy (3)

where f is a function to calculate attention score,
nK is the number of elements in K, and cKx is
the context vector of K with respect to the x-th
element of Q. The second approach, self-attention
(Vaswani et al., 2017), is performed over all inputs
from both modalities. In other words, the approach
combines T and I as a complete sequence S = T ∪
I , and converts all elements in S into Q, K and V
via learnable matrices, which are used to compute
attention by multiple heads in the following way:

Attention(Q,K, V ) = Softmax(f(Q,K))V (4)

where the results from different heads are com-
bined together. Then, it applies layer normalization,
residual connections and fully connected layers in
order to obtain the attended representation of the
input tokens. With both approaches, we explore
the effect of the attention alignment calculation f
for different VL tasks with the following five dif-
ferent alignment score functions. We also include
Cosine similarity-based attention for only Text-
and-Image Matching as it is widely used in that
specific domain.
Dot product attention It was proposed in
NMT (Bahdanau et al., 2015) to compute vector
similarity between encoder hidden states and de-
coder hidden states. This function (Luong et al.,
2015a) has been widely adopted as f in the cross-
attention mechanism as shown in Equation 1.

f(Q,K) = QK (5)

Scaled dot product attention The higher dimen-
sion of data representation would lead to the
smaller gradient of softmax function. Hence, the
scaling factor was introduced by (Vaswani et al.,
2017), and applied to the self-attention-based VL
approaches as represented in Equation 4.

f(Q,K) =
QK√

d
(6)

General attention Along with dot product atten-
tion, general attention (Luong et al., 2015a) re-
ceived lots of interest as an alternative alignment
calculation method that computes attention score
using an extra learnable matrix to linearly trans-
form K into the same embedding space as Q. This
can be considered as one of the neural network
based methods mentioned in Section 2.

f(Q,K) = QWK (7)

There are several variants of neural network based
general attention calculation methods. First, Bi-
ased general attention is introduced by (Sordoni
et al., 2016) using more bias towards more impor-
tant keys regardless of the query context.

f(Q,K) = Q(WK + b) (8)

Secondly, Activated general attention. (Ma et al.,
2017) applies an additional nonlinear activation
term, which is able to amplify the emphasis on
query elements that are highly relevant to the key.

f(Q,K) = act(Q(WK + b)) (9)

In this paper act is the ReLU activation since it is
a widely used function in VL downstream tasks.

4 Vision-Language Models

We use publicly available implementations of the
most widely adopted VL baseline models1 in or-
der to train and evaluate different attention align-
ment score calculation for three different VL tasks:
(i) AttnGan for Text-to-Image Generation (T2I
Gen), (ii) SCAN for Text-and-Image Matching
(T&I Match), (iii) MAC and M4C for each Vi-
sual Question Answering (VQA) and Text-based
Visual Question Answering (TVQA).

1All the VL pretrained models are just based on BERT
(attention-oriented transformer-based). It is still quite early-
stage in this field, and more VL pretrained models are still
emerging in 2022 (Zhuge et al., 2021; Hong et al., 2021)
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4.1 T2I Gen: AttnGAN

The goal of text-to-image generation is to gener-
ate a visually realistic image that matches a given
text description. The AttnGAN (Xu et al., 2018b)
generates images by using multiple generators with
the attention mechanisms. To improve the image
quality at each step, a cross-attention mechanism
is performed between caption words and image re-
gions, and it produces the attended word context for
each image region. Given a caption of M words,
an image with N sub-regions would be generated
by an upsampling network. The words and image
regions are represented as d-dimensional vectors
{tm} ∈ T and {in} ∈ I respectively. Then image
representation I is applied as Q the query and cap-
tion representation T is applied as K the key for
the cross-attention mechanism (Equations 1, 2, 3),
where the dot product attention score calculation is
used as f . The resultant textual context would be
fused with word region representations as a guide
for the generator at the next time step to focus on
different words. Note that we evaluate different
alignment calculation methods as f to investigate
the impact of the image generation performance.
We fix I as Q and T as K, and replace the dot
product with other alignment score calculations.

4.2 T&I Match: SCAN

Text-and-image matching (a.k.a. Text-and-image
retrieval) refers to measuring the visual-semantic
similarity between a sentence and an image. The
SCAN model (Lee et al., 2018) performs a pair-
wise cross-attention between image regions and
caption words for fine-grained T&I Match. This
can be done in two directions. Given a caption of
M words and an image having N detected objects,
d-dimensional representations {tm} and {in} are
obtained as T and I respectively. To obtain the
attended image context for each caption word, the
cross-attention mechanism (described in Equations
1, 2) is applied with T being the query Q and I be-
ing the key K, and an alignment score is measured
by using cosine similarity between each caption
word and its image context. These alignment scores
would be aggregated via a pooling function as the
final alignment score between the given image and
caption. Such scores can be obtained by using T as
K and I as Q to calculate the sentence context for
each image region. In experiments, we fix T as Q
and I as K, and replace the cosine similarity with
other alignment score calculations.

4.3 VQA

We explore two VQA downstream tasks, Visual
Question Answering with compositional reasoning
and Text-based Visual Question Answering.

4.3.1 VQA: MAC
First, we focus on the visual question answering
task that requires responding to natural language
questions about images, specifically with a com-
positional and structured nature. The MAC cir-
cuit (Hudson and Manning, 2018) applies a cross-
attention mechanism to answer a question based
on a given image. Instead of computing attention
between textual and visual input, MAC introduces
a d-dimensional learnable control state e as a guid-
ance for MAC cells to selectively attend to different
aspects of inputs at each time step. Within each
MAC cell, there is a control unit to attend to the
question words and a read unit to attend to the im-
age regions. Given a question of M words and an
image having N detected objects, d-dimensional
representations {tm} and {in} are obtained as T
and I respectively. Instead of using Equation 1, the
control unit applies e as Q and T as K to compute
the attention score in the following way:

ay = W ′(f(Q,Ky)) + b′ (10)

where f indicates element-wise dot product multi-
plication to obtain a d-dimensional similarity vec-
tor, and W ′ and b′ are learnable parameters to out-
put a scalar as the score. Then the control unit
follows Equations 2, 3 to obtain textual context
as an update for e. Similar to the control unit,
the read unit applies e as Q and I as K to obtain
the question-guided visual context from the im-
age, which is later aggregated to predict an answer.
Therefore the read unit can be considered as a main
component in MAC that involves multimodal align-
ment. Hence, for the evaluation, we fix the control
state e (which majorly contains textual question in-
formation) as Q and image-based knowledge graph
I as K, and adapt the focused attention alignment
calculation methods f with the element-wise mul-
tiplication manner in the read unit.

4.3.2 TVQA: M4C
Secondly, Text-based visual question answering
(TVQA) is an extension of VQA, which requires
the model to read text over the image to answer
the questions. The M4C model (Hu et al., 2020)
applies a multimodal transformer over all input
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Tasks Dataset Train Dev Test

T2I Gen CUB 8,855 - 2,933
MS-COCO 82,783 - 15,000

T&I Match Flickr30k* 29,000/145,000 1,000/5,000 1,000/5,000
MS-COCO* 29,000/145,000 1,000/5,000 1,000/5,000

VQA CLEVR* 70,000/699,989 15,000/149,991 15,000/149,988
Text-VQA* 21,953/34,602 3,166/5,000 3,289/5,734

Table 1: Details of train/dev/test split for each dataset.
Note that * indicates the dataset having different num-
bers for visual and textual inputs. It reports the num-
ber of images followed by the number of captions or
question-answer pairs, separated by backslash (/).

modalities to perform iterative answer prediction
for the TextVQA task. More specifically, given a
question of M words, an image having N detected
objects and O detected OCR tokens, d-dimensional
representations {squesm }, {sobjn } and {socro } are ob-
tained as input sequence S. The self-attention
mechanism (Equation 4) with scaled dot product
attention is applied over S, the sequence of all
M +N +O entities. In this way, both intra-modal
interactions and inter-modal interactions are cap-
tured to aggregate the input to form an answer pre-
diction via classical transformer layers. Similarly
to other tasks, we replace the scaled dot product
attention calculation with the other aforementioned
options for f to investigate the impact in TVQA.

5 Evaluation Setup

5.1 Datasets

We conducted experiments on three VL task
datasets. The statistics is shown in Table 1. We
followed the work of the base models, including
AttnGAN (Xu et al., 2018b), SCAN (Lee et al.,
2018), MAC (Hudson and Manning, 2018), M4C
(Hu et al., 2020) for dataset preprocessing and di-
viding for train/dev/test.

5.1.1 T2I Gen

Two benchmark datasets are used: Caltech-UCSD
Birds 200 (CUB)2 and MS-COCO3. CUB has
11,788 images of 200 bird categories downloaded
from the Flickr website, each with 10 textual cap-
tions. MS-COCO provides 123,287 images of com-
plex everyday scenes with 5 manually written tex-
tual descriptions per image. We use a train/test split
of 8,855/2,933 and 82,783/15,000 images respec-
tively for CUB and MS-COCO.

2http://www.vision.caltech.edu/
visipedia/CUB-200-2011.html

3https://cocodataset.org/#home

5.1.2 T&I Match

Flickr30k4 contains around 31k images collected
from the Flickr website with 5 crowd-sourced cap-
tions per image. We test on Flickr30k with train/de-
v/test split of 29k/1k/1k images and on MS-COCO
(as described above) with 29k/1k/1k images.

5.1.3 VQA

We have two VQA tasks: 1) Visual Question
Answering with compositional reasoning, and 2)
Text-based Visual Question Answering. We used
CLEVR5 and TextVQA6 respectively. CLEVR
contains 100,000 synthetic images of 3D shapes
with 999,968 questions/answers in total. We use
a subset of 70,000 images with 699,989 QAs for
training, 15,000 images with 149,991 QAs for val-
idation and 15,000 images with 149,988 QAs for
test. TextVQA consists of 45,336 questions asked
by (sighted) humans on 28,408 images from the
Open Images dataset (Krasin et al., 2017). We use
the original split: 21,953 images with 35,602 QAs,
3,166 images with 5,000 QAs and 3,289 images
with 5,734 QAs for training, validation and test.

5.2 Evaluation Metrics

We describe metrics for assessing the impact of
attention alignment mechanism for each VL task.

5.2.1 T&I Match: R@K

We measure the performance of sentence retrieval
and image retrieval by recall at K (R@K), which
is defined as the percentage of queries that get the
correct item at the closest K points to the query.
The higher the value, the better the performance.

5.2.2 T2I Gen: Inception Score(IS) & FID

The evaluation measurement we use is Inception
Score (IS) which seeks to capture the image quality
and image diversity properties of a collection of
generated images. The higher the inception score,
the better the model. Fréchet Inception Distance
(FID) measures the similarity between the gener-
ated images and the real images by comparing their
Frechét distance between the maximum entropy
distribution. Lower FID indicates higher similarity.

4http://shannon.cs.illinois.edu/
DenotationGraph/

5https://cs.stanford.edu/people/
jcjohns/clevr/

6https://textvqa.org/dataset

http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://cocodataset.org/#home
http://shannon.cs.illinois.edu/DenotationGraph/
http://shannon.cs.illinois.edu/DenotationGraph/
https://cs.stanford.edu/people/jcjohns/clevr/
https://cs.stanford.edu/people/jcjohns/clevr/
https://textvqa.org/dataset
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Attention
Sentence Retrieval Image Retrieval

Flickr30K MS-COCO Flickr30K MS-COCO
R@1 R@10 Rsum R@1 R@10 Rsum R@1 R@10 Rsum R@1 R@10 Rsum

cosine similarity⋄ 62.4 93.3 243.8 61.4 94.5 243 43.9 81.8 199.9 45.7 88.2 212.5
dot product 62.1 92.1 240.4 59.7 95.2 243.5 44.8 82.1 200.6 46.0 87.9 212.6
scaled dot product 63.0 93.8 244.9 59.3 95.1 243.7 44.9 81.9 200.4 45.8 88.3 213.4
general* 63.2 93.6 245.0 59.8 95.2 243.7 46.7 81.8 201.8 45.6 87.8 212.1
general† 56.6 90.1 229.9 53.8 93.1 231.5 38.4 77.0 182.0 39.3 83.4 195.3
biased general* 56.6 89.8 230.3 52.2 91.7 227.0 39.6 77.3 185.0 38.7 83.4 194.5
biased general† 55.8 89.7 228.3 52.6 93.2 231.1 39.3 77.4 184.6 39.8 84.2 197.3
activated general 56.2 90.5 229.2 53.9 92.9 231.3 39.2 77.4 184.7 39.5 84.0 195.6

Table 2: R@1, R@10 and the sum of (R@1+R@5+R@10) on Flickr30K and MS-COCO for T&I Match. The
definition of ⋄, *, † can be found in footnote 8. Q refers to caption words and K refers to image regions.

5.2.3 VQA
For the VQA with compositional reasoning, over-
all accuracy is used to measure the performance of
the VQA models. The higher the accuracy, the bet-
ter the performance of the model. For the TVQA, it
is designed for the VQA context where 10 ground
truth answers are provided for each question-image
pair. The accuracy of a single prediction is a soft
score obtained by a vote of the 10 ground truth an-
swers. Overall accuracy is obtained by taking the
average across all instances. We also use the Av-
erage Normalized Levenshtein Similarity (ANLS)
score (Biten et al., 2019b) to eliminate the dropped
performance caused by OCR recognition error by
comparing the string similarity between the ground
truth and the prediction.

5.3 Experimental Settings

For T&I Match: SCAN (t-i) AVG models, all set-
tings of hyper-parameters follow the configuration
of the SCAN. The batch size is 128, the margin
of triplet loss α is 0.2 and the threshold of maxi-
mum gradient norm for gradient clipping is 2. For
Flickr30k models, the learning rate is set as 0.0002
for the first 15 epochs and then lowered to 0.00002
for another 15 epochs. Total training epochs are 30
and the best model is selected with the highest sum
of R@K score. For MS-COCO models, we trained
with a learning rate of 0.0005 for 10 epochs and
then lowered the learning rate to 0.00005. The best
model is selected with the highest sum of R@K
score. Training epochs are 20. For T2I Gen: At-
tnGan model on CUB dataset, the batch size is
set to be 20 and we trained with 400 epochs in
total. On the MS-COCO dataset, the batch size is
14 and total epochs are 90. In addition to this, all
settings are the same as the AttnGan. For VQA:
MAC models, the training epoch is set to be 8 and
other hyperparameter settings are consistent with
MAC. More specifically, the batch size is 128, the

learning rate is 0.0001 with 0.5 learning decay rate
and the threshold of maximum gradient norm for
gradient clipping is 8. For TVQA: M4C model on
the Text-VQA dataset, we followed the exact same
setting as M4C, applying the batch size of 128 and
100 epochs for training, All model variants would
train to convergence within 80 epochs.

All experiments for T2I Gen, T&I Match and
VQA are conducted on a variety of cloud instances
from Google Colab, with each utilising an NVIDIA
Tesla T4 GPU of 16GB RAM. For TVQA the ex-
periments are conducted utilising NVIDIA Titan
RTX GPU with 24GB RAM, 16 Intel(R) Core(TM)
i9-9900X CPU @ 3.50GHz with 128GB RAM, and
the operating system of Ubuntu 20.04.1.

6 Results

We analyse the impact of attention alignment mech-
anisms in different VL tasks, and explore the inter-
pretability based on attention distribution.

6.1 Test Performance

A primary goal of this work is to identify the most
effective and successful attention alignment cal-
culation functions for VL tasks. Tables 2, 3, and
4 7 detail the results of our experiments compar-
ing performance of individual alignment functions
with each VL models. Each table visualises the
trends with a heatmap. The darker the colour of
the cells, the better the performance. As shown in
Table 2 for the T&I Match task that the original cal-
culation function, cosine similarity, achieved quite
good performance. However, scaled dot product
and general* demonstrated a consistent superior-
ity for both sentence retrieval and image retrieval
on both Flickr30K and MS-COCO. Comparatively,

7⋄ indicates the original attention alignment function used
by the base models. * indicates f(K,Q) (swapping query and
key), and † indicates f(Q,K) (without swapping query and
key) for Equations 7 and 8
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Attention Acc.
dot product⋄ 0.966
scaled dot product 0.973
general* 0.967
general† 0.962
biased general* 0.959
biased general† 0.963
activated general 0.971

(a) VQA on CLEVR

Attention Acc. ANLS
dot product 0.407 0.545
scaled dot product⋄ 0.419 0.554
general* 0.407 0.546
general† 0.416 0.554
biased general* 0.412 0.553
biased general† 0.414 0.551
activated general 0.413 0.548

(b) TVQA on Text-VQA

Table 3: Results for VQA/TVQA. The definitions of ⋄,
*, † are in footnote 8. For VQA, Q refers to the control
state and K refers to image-based knowledge graph in
read unit. For TVQA, Q and K are transformed union
of all caption words, image object and OCR features.

Attention CUB MS-COCO
IS FID IS FID

dot product⋄ 4.32 25.72 23.28 40.19
scaled dot product 4.31 25.74 23.84 42.33
general* 4.36 28.21 24.28 40.82
general† 4.26 26.94 24.63 42.45
biased general* 4.13 26.97 23.05 43.10
biased general† 4.30 25.89 25.24 43.64
activated general 4.41 28.39 23.56 42.65

Table 4: Results on CUB and MS-COCO for T2I Gen.
The definitions of ⋄, *, † are in footnote 8. Q refers to
caption words and K refers to image subregions.

biased and activated general attentions produced
very low results overall.

Table 3 details the performance of alignment
functions for VQA tasks, including (a) VQA with
compositional reasoning (CLEVR) and (b) TVQA
(Text-VQA). Surprisingly, both VQA and TVQA
models produced the best performance with a
scaled dot product alignment, highlighting its over-
all effectiveness for the VQA tasks. We note that
the activated general attention (ReLU activation)
performed well for VQA but produced one of the
lowest ANLS scores in TVQA. The general atten-
tion alignment function also showed the similar
trend. Considering the different nature of general
VQA and TVQA, where the latter mainly focuses
on OCR text input, it is unsurprising that the im-
pact of alignment mechanism is discrepant. Hence,
it is remarkable to find that the scaled dot product
achieved the best in both tasks.

The T2I Gen results in Table 4 illustrated quite
different trends compared to the two aforemen-
tioned tasks. First, none of the alignment func-
tions produced a consistently better performance
in both evaluation metrics, IS or FID. While neural
network-based alignment functions (i.e. general,
biased and activated general) achieved higher IS
scores than others, the dot product dominated in

FID scores, for both CUB and MS-COCO. The
scaled dot product obtained comparably good FID
results but not in IS. This can be aligned with the
different metrics of measurement that FID counts
on the similarity between the ground-truth images
and the images generated from the text whereas
IS expects the diversity of the generated image.
Hence, a better VL alignment leads to the better
FID but not necessarily the better IS.

In summary, we can find the scaled dot product
can be the best alignment calculation function for
both cross and self-attention that can successfully
bridge the visual and textual information, as it pro-
duces considerably and consistently better results
for all three VL tasks across all six VL datasets.

6.2 Impact of Key and Query

Since the previous works (Luong et al., 2015b;
Sordoni et al., 2016; Ma et al., 2017) do not have
a standard choice of linearly transforming key or
value when calculating attention scores, we also
investigated the impact of position of query and
key in the attention alignment calculation process,
especially when extra learnable weights and bi-
ases are involved. We explore the difference be-
tween linearly transforming the key K to multiply
with the query Q (f(K,Q) = KWQ) and trans-
forming the query Q to multiply with the key K
(f(Q,K) = QWK) in general attention and bi-
ased general attention calculation. Specifically, we
initially fixed the textual information as a query Q
and visual information as a key K (Equation 7 and
8) and swapped the position in different general
attention alignment score measurements. In Table
2, 3, and 4, * indicates the functions with f(K,Q),
whereas † refers to those with f(Q,K).

Table 2 shows that Flickr30K performed bet-
ter with general* or biased general*, whereas MS-
COCO does not have obvious trends. Similar pat-
terns can be found in both cross-attention mecha-
nisms (VQA models, T2I Gen models), and self-
attention mechanism TVQA models. Interestingly
but unsurprisingly, we note that there is no obvious
and consistent performance improvement pattern
in different positions of textual information (query
Q) and visual information (key K) when it cal-
culates the alignment. It depends on the specific
downstream tasks and dataset. We can conclude
that the way of calculating alignment is the crucial
point in VL tasks, compared to the position/order
of different modal information.
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Attention Exist Query Compare Count Compare
Attribute Attribute Integer

(single) (single) (two) (multiple) (multiple)
scaled dot product 0.9912 0.9928 0.9860 0.9200 0.9780
biased general* 0.9883 0.9920 0.9832 0.8938 0.9014

Table 5: Breakdown analysis of VQA accuracy regard-
ing different question types. The number of queried
objects in the questions are included in the brackets.

6.3 Breakdown Analysis

VQA To further investigate the difference be-
tween attention calculation methods, we report the
accuracy for the best/worst performing attention
calculation methods regarding different question
categories in CLEVR. As shown in Table 5, the
two models achieved similar performance for ques-
tion types Exist, Query Attribute, and Compare
Attribute. Exist and Query Attribute types normally
contain single queried object in the question, and
Compare Attribute questions would contain two
queried objects. Those question types only require
models to attend to one or two objects in the image,
so it is easier for model to capture the pattern when
learning the alignment between image and ques-
tion. However, the Count and Compare Integer
questions are challenging to answer as finding mul-
tiple objects with the same attributes is required.
The models need to learn how to align multiple
objects to one noun phrase. In this case, scaled dot
product attention always works better than biased
general attention by up to 7.66% accuracy, which
suggests that scaled dot product attention can learn
more accurate alignment between image regions
and question words.

T&I Match The VQA (CLEVR) only includes
a limited set of objects with limited attribute de-
scriptions, so we also investigated the effect of
real-world images with more diverse types of ob-
jects and descriptions using MS-COCO. We com-
pared the retrieval Rsum of the best performing and
the worst performing attention calculation methods
in terms of different image annotation supercate-
gories in Figure 1 and the number of caption nouns
in Figure 2. The supercategories on the x-axis in
Figure 1 are sorted based on the percentage of the
test set images which contain that specific supercat-
egory in the annotations, as indicated by the value
in the brackets below each supercategory. From
Figure 1a, it is clearly observed that scaled dot
product attention can consistently perform much
better than the biased general* attention for most
categories such as person, vehicle and electronic,

(a) Text Retrieval

(b) Image Retrieval

Figure 1: Breakdown analysis of T&I Match on
MSCOCO image supercategories.

(a) Image Retrieval (b) Text Retrieval

Figure 2: Breakdown analysis of T&I Match on the
number of nouns in MS-COCO captions.

which are easier to be distinguished based on con-
sistent visual features or shapes. Visual elements
under food and sports categories are difficult to be
distinguished and aligned due to vastly different
types of visual cues (such as shapes, colors and
textures). However, for image with annotations of
these challenging categories, scaled dot product
still manages to outperform biased general* atten-
tion, even though by a smaller performance gain.
Regarding the image retrieval task, we can observe
a similar pattern. Visual element like electronic and
outdoor can have consistent and common linguis-
tic terms such as phones, microwaves, fridges and
fields that can be easily distinguished in the descrip-
tion, therefore those images are easier to be aligned
to and retrieved given a text. In this case, scaled dot
product can outperform biased general* attention
by a large margin. However, for other image su-
percategories such as food, sports and person, the
description can be very different due to subjectivity
and variety of phrasing choices, making them more
difficult to be aligned to and retrieved. Therefore
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Figure 3: Qualitative example of VQA-CLEVR from
the MAC trained by different attention alignment.

the scaled dot product attention only manages to
perform better than biased general* attention by a
relatively small margin. Based on the observations
above, we can conclude that the scaled dot product
can perform better than biased general* attention
in visual-linguistic alignment, especially for easily
alignable linguistic and visual cues.

In terms of the number of nouns to be aligned in
the captions, we can see from Figure 2a that scaled
dot product attention can maintain a consistent per-
formance margin over biased general* attention
when retrieving images, regardless of whether there
is no object, only a few objects or many objects in
the caption to be aligned. However, they performed
the same at 12 as there is only one caption with 12
nouns in the test set and the models cannot really
be distinguished on the single instance. When we
group the images based on the maximum number
of objects that can be possibly contained in their
descriptions, we can see from Figure 2b that scaled
dot product attention can still outperform biased
general* attention in most cases when retrieving rel-
evant descriptions except for the two image query
instances with the maximum of only one possible
object to be aligned in the description. Based on
the above patterns, we can conclude that scaled dot
product can generally learn better visual-linguistic
alignment than biased general* attention.

6.4 Qualitative Analysis

We visualised the prediction interpretability of the
best and worst attention alignment calculation for
VQA task on the question category Count and Com-
pare Integer. More examples on other tasks can be
found in Appendix A. Figure 3 shows a question
asking for a count of multiple objects for the given

Figure 4: Qualitative example of VQA-CLEVR from
the MAC trained by different attention functions.

attributes. MAC using scaled dot product attention
correctly aligned to required objects at different
steps. However, the model with biased general* at-
tention focused on the big things before noting the
condition left of the green cube, and failed to filter
out irrelevant objects, giving a wrong prediction by
aligning to additional objects. In Figure 4, MAC
model using scaled dot product attention focuses
on the key objects purple metal object, brown rub-
ber objects, and green blocks in both question and
the image, so it can successfully give the correct an-
swer yes. However, the model trained with biased
general* attention focused on green blocks in the
question in the last two steps but failed to find the
target in the image, thus giving a wrong prediction
no. These examples clearly align with the finding
in Section 6.3 that scaled dot product can learn
better alignment than biased general* attention for
questions querying multiple objects.

7 Conclusion

We systematically examined the role of attention
alignment score calculation in vision-and-language
tasks, including VQA, T&I Match, and T2I Gen.
We found that the scaled dot product can be the
best attention alignment calculation for either cross
or self-attention in overall VL tasks while the ap-
propriate position of visual and textual information
may vary from different VL tasks/datasets. Based
on the breakdown analysis, we found out that the
type of image objects and their textual description
would affect the performance of different attention
calculation functions. It is hoped that our analysis
provides a great insight into the selection of the
most effective attention alignment for different VL
tasks.
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A Appendix

In this section, we demonstrate some more atten-
tion alignment examples of best and worst perform-
ing attention methods for each task we investigated.

A.1 Additional Qualitative Examples - VQA
We include more comparison examples for MAC
model in this section to show the difference be-
tween scaled dot product (best) and biased general*
(worst) in the VQA context. In Figure 5, a question
what number of small metallic things are left of the
brown matte object in front of the brown thing on
the right side of the gray ball is raised towards an
image with several cylinders, cubes and spheres.
The MAC model with scaled dot product attention
is able to correctly focus on the brown matte object
from both the question and the image, while putting
slight attention on the brown thing on the right side
as mentioned in the question. Then in step 3 and 4
the model is able to locate the small metallic thing
on the left in the image as guided by the question
context, giving a correct prediction of 1. However,
the MAC model trained with biased general* atten-
tion slightly focuses on the target metallic object
at the very beginning, and shifts its main attention
to the brown matte object in the consecutive steps,
which is not the final target the question is asking
for, therefore it fails to make a correct prediction.

Figure 6 shows a picture featuring several cubes
and spheres. With a scaled dot product for attention
score calculation, when the model focuses on the
keyword metal cubes from the textual question, the
only metal cube in the image is emphasized during
the first two steps. Then, it correctly detects 4 ob-
jects from the image by highlighting the keywords
objects and either objects. Additionally, the model
looks for the purple metal cube from the picture
as asked by the question, but it does not exist in
the picture so none of the objects are highlighted at
step 4. However, the model with the biased general
attention tries to count the number of objects on the
right of the metal cube in step 3 but it inaccurately
focuses on the metal cube itself in addition to the
correct ones. In the last step the model puts more
focus on the farthest right objects, resulting in a
wrong prediction of 3.
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Figure 5: Qualitative examples of VQA-CLEVR from
the MAC trained by different attention functions.

Figure 6: Qualitative examples of VQA-CLEVR from
the MAC trained by different attention functions.

In Figure 7, a question what number of objects
are either gray rubber spheres or rubber things be-
hind the green metal cylinder is asked. MAC model
using scaled dot product attention approaches this
question by firstly attending to what and or in the
question. Then it focuses on the relevant objects
green metal cylinder, gray rubber spheres, and re-
maining rubber things in both question and the
image, so it can successfully give the correct an-
swer 3. However, the model trained with biased
general* attention firstly focused on the number of
rubber things before noting the condition behind
the green metal cylinder, so it failed to filter out
irrelevant objects, giving a wrong prediction 4.

A.2 Additional Qualitative Examples - TVQA

We include some qualitative examples for M4C
model in this section to show the difference be-
tween scaled dot product (best) and dot product
attention (worst) in the context of TVQA.

Figure 7: Qualitative examples of VQA-CLEVR from
the MAC trained by different attention functions.

Figure 8: Qualitative examples of TVQA-TextVQA
from the M4C trained by different attention functions.
Question words that receive attention weights greater
than 0.01 are indicated in bold and coloured in blue.

Figure 9: Qualitative examples of TVQA-TextVQA
from the M4C trained by different attention functions.
Question words that receive attention weights greater
than 0.01 are indicated in bold and coloured in blue.

Figure 8 shows that the model with scaled dot
product focused on the keywords what, word and
handwritten to focus on the handwritten word jesus
in the image and retrieved the correct OCR token
with highest attention weight. However, with dot
product attention, all the question words received
little attention by the model (< 0.01), failing to
find the appropriate OCR token in the image.

In Figure 9, all the three words from the question
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Figure 10: Qualitative examples of TVQA-TextVQA
from the M4C trained by different attention functions.
Question words that receive attention weights greater
than 0.001 are indicated in bold and coloured in blue.

Figure 11: Qualitative examples of TVQA-TextVQA
from the M4C trained by different attention functions.
Question words that receive attention weights greater
than 0.001 are indicated in bold and coloured in blue.

who must survive received attention > 0.01 in the
scaled dot product model, and the target OCR an-
swer in the image received top attention among all
OCR tokens. However, the dot product model put
much less attention on all question words, instead
the OCR tokens for must and survive in the image
were receiving top attention weights, followed by
OCR token winter which is irrelevant to the ques-
tion. Therefore scaled dot product model predicted
correctly but dot product model did not.

In Figure 10, keywords what’s the name from
the question what’s the name of the store received
attention > 0.001 in the scaled dot product model,
similarly the dot product model put much less atten-
tion on all question words, and none of the question
words received attention > 0.001. Both models put
most attention weights on the OCR token gift from
the image, but scaled dot product managed to put
more focus on the store name tanamera than the
coffee brand name nespresso, which is the opposite
case of the dot product model. Therefore scaled dot
product model predicted correctly but dot product
model did not.

In the example shown by Figure 11, there are
lots of OCR tokens present in the image, making it

Figure 12: Qualitative examples of T&I Match-
MSCOCO with SCAN by different attention functions.

Figure 13: Qualitative examples of T&I Match-
MSCOCO from the SCAN trained by different attention
functions.

more difficult to retrieve the correct answer tokens.
As we can see from the picture, the model learned
using dot product attention diverted its top attention
to unrelated OCR token cola, and the top 3 OCR
tokens receiving highest attention (mike, cola and
petition) are not aligned with the predicted answer
tokens (senator mike lee), while the model learned
using scaled dot product attention put highest at-
tention to expected or related OCR tokens that are
aligned with the ground truth answers.

A.3 Additional Qualitative Examples - T&I
Match

In this section, we visualize some examples for
T&I Match models that show the attention received
by retrieved captions with respect to the selected
object region. Figure 12 shows some examples for
T&I Match. With general attention* and scaled
dot product, the SCAN model is able to include 4
correct captions among the top 5 retrieved captions,
while biased general attention can only extract 3
correct captions. With respect to the helmet indi-
cated by the blue box in the image, both general
attention and scaled dot product can put more fo-
cus on the words red/helmet/hat from the caption,
whereas the biased general attention would rather
focus on prepositions, determinants or other ob-
jects.
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Figure 14: Qualitative examples of T&I Match-
Flickr30k from the SCAN trained by different attention
functions.

Figure 15: Qualitative examples of T&I Match-
Flickr30k from the SCAN trained by different align-
ment functions.

In Figure 13 we can see that the best two mod-
els (i.e. models trained with general* attention or
scaled dot product attention) can capture all key
elements, man, bicycle/bike, riding, as the top at-
tended words from the retrieved captions most of
the time. However, the model trained using biased
general* attention would capture at most one key
element from each retrieved caption, and pay high
attention to preposition, determinants or words re-
lated to other object regions. In the example shown
by Figure 14, the model trained with scaled dot
product attention can always capture the main ob-
ject hat from all the retrieved captions, while the
other two models sometimes fail to do so. In Fig-
ure 15, all three models sometimes wrongly recog-
nise the dog’s color (i.e. brown dog in wrongly
retrieved captions). However, the best two models
can retrieve the caption that is not in the ground
truth list but also semantically matched to the given
image (i.e. A dog running through a grassy field).
The worst model trained with biased general† at-
tention fails to do so, and it sometimes attends to
objects from the caption that is not actually in the
image (e.g. red ball).

Figure 16: Qualitative examples of T2I Gen-MSCOCO
with AttnGAN trained by different attention functions.

Figure 17: Qualitative examples of T2I Gen-CUB from
the AttnGAN trained by different attention functions.

Figure 18: Qualitative examples of T2I Gen-CUB from
the AttnGAN trained by different attention functions.

A.4 Additional Qualitative Examples - T2I
Gen

In this section, we visualize and compare the best
and the worst T2I Gen model.

Figure 16 shows the images generated by At-
tnGAN using both the best and the worst attention,
dot product and biased general† respectively. At-
tnGAN with a dot product, can generate a relatively
more realistic image. From a low resolution picture,
the model focuses on the words based on the fol-
lowing order, television, flat, old, screen, console,
in order to refine the image to include the objects
and corresponding features gradually. Compared to
that, the biased general attention model generates a
surrealistic image by focusing on flat, screen, top,
console, television in the first step.
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Figure 19: Qualitative examples of T2I Gen-CUB from
the AttnGAN trained by different attention functions.

In Figure 17, the images generated by two mod-
els are highly similar but the worst model trained
with activated general attention fails to attend to
the key word white, so the bird it generated in the
picture does not clearly have a white throat and
chest.

In Figure 18 and Figure 19, the activation func-
tion used in the attention mechanism of the worst
model makes it difficult to differentiate among the
caption words when their attention weights are all
very low. Therefore the model fails to attend to any
useful facts in each attention layer, which makes it
impossible to provide interpretability of model de-
cision, despite generating an image that can roughly
match the description in Figure 19. In Figure 18
the quality of the generated image is even worse -
the feature of the bird does not match with the key
phrases in the description (i.e. red with white, short
beak).

Overall, based on the qualitative analysis in dif-
ferent VL tasks, we reveal that the better attention
alignment calculation function can produce better
interpretability in terms of the prediction.


