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Abstract

Language evolves over time, and word mean-
ing changes accordingly. This is especially true
in social media, since its dynamic nature leads
to faster semantic shifts, making it challenging
for NLP models to deal with new content and
trends. However, the number of datasets and
models that specifically address the dynamic
nature of these social platforms is scarce. To
bridge this gap, we present TempoWiC, a new
benchmark especially aimed at accelerating
research in social media-based meaning shift.
Our results show that TempoWiC is a challeng-
ing benchmark, even for recently-released lan-
guage models specialized in social media.

1 Introduction

One of the most studied challenges in NLP is lexi-
cal ambiguity. Solutions include word sense disam-
biguation (Navigli, 2009) or entity linking (Ling
et al., 2015), where words are linked to sense inven-
tories such as WordNet (Miller, 1995) or Wikipedia.
Recently, notable progress has been made with the
advent of Language Models (LMs) and contextual-
ized embeddings, crucially well equipped for mod-
eling meaning in context (Pilehvar and Camacho-
Collados, 2020; Bevilacqua et al., 2020).

One notable limitation with current lexical se-
mantics benchmarks, however, is that they are typ-
ically clean and time-invariant, where standard
grammar is the norm, and have little to no account
of language usage in real-world platforms like so-
cial media. However, there is ample agreement that
modeling changes in language and topic distribu-
tions is crucial for modern NLP (Loureiro et al.,
2022a). Thus, there is a rich body of literature con-
cerned with, e.g., adapting existing word represen-
tations (mainly word embeddings) diachronically
(Hamilton et al., 2016; Szymanski, 2017; Rosen-
feld and Erk, 2018; Hofmann et al., 2021), expos-
ing LMs to time-specific data (Lazaridou et al.,
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2021), or temporal adaptation in general (Luu et al.,
2021; Agarwal and Nenkova, 2022; Jin et al., 2021;
Loureiro et al., 2022a). The lack of real-world data
to serve as ground truth has typically limited the
evaluation of diachronic word-level NLP models.
This limitation has been addressed in a myriad of
ways, e.g., by comparing distributional similari-
ties with human judgments (Gulordava and Baroni,
2011), contrasting change vs. frequency (Hamil-
ton et al., 2016), comparing time-sensitive repre-
sentations with stripped-down versions (Frermann
and Lapata, 2016) or, more recently, determining
whether a word has acquired new senses over time
by looking at relatively large targeted subcorpora
(Van Hee et al., 2018), or probing for diachronic
awareness in settings reminiscent of knowledge
base completion (Dhingra et al., 2021; Hofmann
et al., 2021).

Despite the above, few works have attempted
to model the connection between meaning shift
and social media. Among them, Del Tredici et al.
(2019) showed that trending words are a mean-
ingful signal for predicting meaning shifts. This
platform-specific insight is the main basis for the
construction of our dataset. TempoWiC follows the
simple formulation from the SuperGLUE Word-in-
Context (WiC) challenge (Pilehvar and Camacho-
Collados, 2019), which is particularly well suited
for temporal meaning shift evaluation given that it
is not reliant on a reference sense inventory. This
change of paradigm has seen wide adoption, with
multilingual extensions such as XL-WiC (Raganato
et al., 2020), Am2ico (Liu et al., 2021) or MCL-
WiC (Martelli et al., 2021), or reformulations such
as WiC-TSV (Breit et al., 2021). In contrast to
these, TempoWiC is crucially designed around
meaning shift and instances of word usage tied
to Twitter trending topics. As an additional contri-
bution, along with the benchmark, we provide a set
of robust baselines and analyses that highlight the
challenging nature of the task.
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Tweet 1 Tweet 2 Label

2019-02 2020-02
"I ain’t gone let the ppl frisk me "Set up a stop and frisk outside a T

if I’m dirty homie" white club and catch coke heads"

2019-04 2020-04
"i wish i still had images of my old animal crossing new leaf villager "How does villager trading in New horizons even work T

he was good boy" like tf"

2019-08 2020-08
"This dude just said "Boys of the Backstreet" He made em sound "my target app said they didn’t have folklore cds but F

like a whole folklore" when i went inside they had some i’m so happy"

2019-08 2020-08
"In case you were wondering facial devotion "With these mask at work customers are F

still worked with a face mask on" forever confusing me and Reyna lmao"

Table 1: Examples from the training set of TempoWiC. Target words in italic. The label T (True) indicates that the
word has the same meaning in the two tweets, the label F (False) indicates that the meaning is different.

2 TempoWiC: Temporal Word in Context

In this section, we describe our process to build our
evaluation benchmark for detecting meaning shift
in social media. The task is framed as a simple bi-
nary classification problem in which a target word
is present in two texts (tweets) posted during differ-
ent time periods. The goal is to decide whether the
meaning corresponding to the first target word in
context is the same as the second one or not. Table
1 lists a few examples.

2.1 Data collection

Word Selection. Since this work focuses on
meaning shift, we do not consider neologisms and
use lemmas from WordNet as an initial set of po-
tential words of interest (82K lemmas, ignoring
multi-word expressions, stopwords and numbers).
From a corpus of 100M tweets collected from the
Twitter API for the period between the start of 2019
and September of 2021, we compiled monthly fre-
quency counts for this set of known words, and
computed trending scores following Chen et al.
(2021). Each trending word peak is estimated as the
day with highest frequency during the year/month
with most occurrences. As the prior date, we con-
sidered the same date exactly one year before. This
is done in order to avoid seasonal confound factors,
which are known to affect models in social media
(Chae et al., 2012; Barbieri et al., 2018). After-
wards, we selected the top 10 words with highest
trending scores from each month, resulting in 210
words which are candidates for annotation. For this
selection, we ignored words with fewer than 100
occurrences in our corpus during their peak date.

Obtaining Paired Tweets. In this phase we col-
lected, for each trending word, 100 tweets posted
during the peak date, and 100 tweets posted during
the prior date. For this phase we used the Twitter
APIs, setting filters to request only English tweets,
and ignoring replies and retweets.1 We prepro-
cessed each tweet using spaCy (Honnibal et al.,
2020) and we randomly paired tweets from the
prior and peak sets for specific words that match
both in surface form and part-of-speech tag.

2.2 Annotation

Annotators. We recruited four annotators
through our internal institution recruitment office.
This ensured that the annotators were part of the
process, trained and understood all the details
of the task.2 Annotators, who were all native or
near-native English speakers, were all paid the
equivalent of a research assistant per hour.

First stage. The annotation was split into two
phases. First, we took a breadth-first approach
in which a relatively short number of instances
(i.e., 10) of a large number of the selected words
(210 in total) were annotated. The motivation for
this initial phase was to understand which words
had some sort of meaning shift to start with. The
selection of the words to be included in the dataset
was then restricted to words which had more than
3 out of 10 instances with meaning shift.

1We retrieved additional tweets with the APIs as we in-
cluded trending words that had a minimum occurrences of
100 tweets on peak day in our initial dataset, but some words
included less than 100 tweets on the prior date.

2The full guidelines provided to the annotators are avail-
able in the task website.
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Word # Instances Trending Agreement
(% Diff. Meaning) Date (Krippendorf’s α)

Tr
ai

n

frisk 99 (54%) 11/2/2020 0.718
pogrom 99 (5%) 25/2/2020 0.482
containment 100 (33%) 12/3/2020 0.274
virus 96 (48%) 12/3/2020 0.254
epicenter 100 (71%) 14/3/2020 0.124
ventilator 99 (17%) 27/3/2020 0.541
villager 100 (64%) 10/4/2020 0.546
turnip 100 (95%) 10/5/2020 0.316
bunker 98 (61%) 1/6/2020 0.408
mask 99 (76%) 14/7/2020 0.255
teargas 98 (3%) 18/7/2020 0.786
paternity 100 (22%) 30/7/2020 0.289
entanglement 99 (89%) 1/8/2020 0.623
folklore 82 (92%) 3/8/2020 0.917
parasol 100 (85%) 2/9/2020 0.446

Va
lid

at
io

n impostor 99 (76%) 23/9/2020 0.544
lotte 98 (43%) 27/9/2020 0.514
recount 100 (28%) 6/11/2020 0.682
primo 100 (77%) 9/11/2020 0.528

Te
st

milker 99 (50%) 4/3/2021 0.699
moxie 97 (83%) 5/3/2021 0.755
unlabeled 100 (90%) 10/3/2021 0.711
pyre 100 (32%) 27/4/2021 0.243
gaza 100 (60%) 15/5/2021 0.749
ido 91 (83%) 27/5/2021 0.712
airdrop 99 (40%) 6/6/2021 0.918
bullpen 99 (9%) 16/6/2021 0.388
crt 100 (68%) 26/6/2021 0.867
monet 98 (94%) 8/7/2021 1.000
burnham 100 (16%) 1/8/2021 0.964
delta 100 (100%) 11/8/2021 1.000
gala 100 (46%) 14/9/2021 0.498
launchpad 99 (81%) 17/9/2021 0.558
vanguard 99 (95%) 21/9/2021 0.421

Table 2: Details all the words included in TempoWiC.
Maximum pairwise agreement is reported.

Second stage. The second phase was based on a
depth-first approach in which 100 instances of all
selected words from the first stage were annotated.
We ensured that each instance was annotated by
three annotators. The final label attributed to each
instance was determined by majority vote.3

2.3 Statistics and Inter-annotator Agreement

The outcome of our annotation pipeline is a dataset
of 3,297 instances divided in train/validation/test
sets of size 1,428/396/1,473 instances, respec-
tively. We measured inter-annotator agreement
using Fleiss’ Kappa at 0.446, and using Krippen-
dorff’s α at 0.439. Since each instance is assigned

3Some words proved too difficult to reliably annotate ac-
cording to feedback from the annotators as well as low agree-
ment scores computed after annotation (more details in Sec-
tion 2.3). Consequently, these words were removed from the
dataset. Among the various challenges to be expected from
annotating social media, mixed language (e.g., English and
Hindi) was among the most frequent issues.

a majority vote label, we also computed the max-
imum pairwise Krippendorff’s α at 0.627, which
should be more revealing of the expected perfor-
mance on this task. Words with Krippendorff’s α
below 0.1 were removed from the dataset. Table 2
provides a summary of the most relevant details of
the dataset after annotation.

3 Evaluation

In this section, we report baseline results on Tem-
poWiC using two different approaches which have
proven successful on the WiC task that inspired this
work. More concretely, we report results based on
pretrained LMs using fine-tuning on the tweet pair
as well as comparing the similarity of contextual
embeddings.4

Evaluation metrics. The results are reported ac-
cording to the standard Macro-F1 metric for multi-
class classification problems. Accuracy is also re-
ported for completeness but, given the unbalanced
nature of the dataset, Macro-F1 should provide a
more accurate representation of the performance.

3.1 Models

Our experiments include the following LMs:
RoBERTa base and large pretrained on general do-
main corpora (Liu et al., 2019); RoBERTa base
with continued training on tweets until the end
of 2019, and a similar model trained with more
tweets until the end of 2021 (Loureiro et al., 2022a,
TimeLMs); LMs based on RoBERTa but trained
from scratch on tweets, both base and large ver-
sions (Nguyen et al., 2020, BERTweet).

Each of these LMs is fine-tuned representing in-
stances as "<s> Tweet 1 </s> Tweet 2 </s>",
with each tweet represented by the encodings pro-
duced by each model’s tokenizer.5 Additionally,
we trained a logistic regression classifier on the
cosine similarity of the contextual embeddings cor-
responding to the target word on each tweet of
the pair. This approach based on contextual em-
beddings is sensitive to the choice of layers from
the LM used to represent embeddings. Follow-
ing Loureiro et al. (2022b), we use SP-WSD layer
pooling weights (model specific) that are suited for
sense representation (see Appendix B for ablation
results with alternative pooling strategies). Both

4Additional baselines are reported in Appendix A.
5We experimented concatenating the encodings for the

target word at the end of the sequence as proposed by Wang
et al. (2019) for WiC, but found no improvements.
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Model Accuracy Macro-F1
Fi

ne
-t

un
in

g

RoBERTa-base 66.89% 58.26%
RoBERTa-large 66.49% 59.10%
TimeLMs-2019-90M 66.46% 57.70%
TimeLMs-2021-124M 65.04% 54.75%
BERTweet-base 61.46% 51.27%
BERTweet-large 67.93% 60.62%

Si
m

ila
ri

ty

RoBERTa-base 67.96% 52.89%
RoBERTa-large 72.98% 67.09%
TimeLMs-2019-90M 74.07% 70.33%
TimeLMs-2021-124M 71.01% 63.51%
BERTweet-base 69.45% 65.16%
BERTweet-large 69.18% 56.95%

N
ai

ve Random 50.00% 50.00%
All True 36.59% 26.79%
All False 63.41% 38.80%

Table 3: Main results on the test set of TempoWiC. Fine-
tuning results are the average of 3 runs.

approaches are implemented with Wolf et al. (2020,
Transformers).

3.2 Results
Our results on Table 3 show that TempoWiC is
a challenging task with room for improvement.
While the best results using both fine-tuning and
similarity approaches are obtained by models
adapted to the Twitter domain, this advantage isn’t
substantial over generic RoBERTa. Interestingly,
we find that the straightforward similarity approach
manages to substantially outperform fine-tuning,
with a Twitter base model trained with data before
any word’s trending peak achieving the best perfor-
mance. While this result may be surprising consid-
ering that fine-tuning performs better on WiC, this
finding is in line with recent work in word sense
disambiguation showing that approaches based on
contextual embeddings can be more robust and gen-
eralizable than fine-tuning (Loureiro et al., 2021).

Analysis by word. Table 4 provides a detailed
breakdown of the results of the best performing
model (i.e., TimeLMs-2019-90M) by individual
words. As can be observed, there are large differ-
ences between words, which are also due to the
unbalanced natural distribution of certain words to
start with (see Table 2). More interesting is perhaps
the gaps between fine-tuning and similarity tech-
niques. While similarity appears to be generally
more robust, in words such as bullpen or vanguard,
the tendency is reversed.

Word Accuracy Macro-F1
Fine-tune Similarity Fine-tune Similarity

airdrop 40.48% 65.31% 30.13% 65.18%
bullpen 67.68% 38.38% 44.53% 34.54%
burnham 27.67% 83.00% 27.62% 69.15%
crt 64.98% 79.80% 46.26% 73.24%
delta 85.37% 98.98% 46.05% 49.74%
gala 47.67% 78.00% 36.71% 77.86%
gaza 67.01% 69.39% 66.74% 64.61%
ido 83.88% 90.11% 63.04% 75.78%
launchpad 81.82% 80.81% 45.00% 59.26%
milker 46.13% 64.65% 37.28% 63.44%
monet 93.54% 94.90% 48.33% 62.96%
moxie 89.35% 68.04% 74.75% 56.48%
pyre 64.29% 51.02% 62.78% 50.84%
unlabeled 65.67% 76.00% 47.71% 57.48%
vanguard 95.96% 73.74% 68.80% 42.44%

Table 4: Performance by word on the TempoWiC test
set. Using TimeLMs-2019-90M as the best similar-
ity model, and BERTweet-large as the best fine-tuning
model (average of 3 runs).

3.3 Future Work

This work only covers English, but future work
should include additional languages and experi-
ment with both multilingual and monolingual mod-
els. We leave an analysis explaining the difference
between the 2019 and 2021 models for future work
as well, alongside the development of methods that
leverage the dates provided with each instance to-
wards improved performance, similarly to Dhingra
et al. (2021); Rosin et al. (2022).

4 Conclusion

This work introduced a new lexical semantics task
and a dataset, TempoWiC, focused on meaning
shift detection in Twitter. While meaning repre-
sentation is at the core of the task, the challenges
of this task go beyond simple word sense disam-
biguation with a focus on its temporal aspect. To
make the task realistic, we extracted Twitter trend-
ing words for different periods and paired them
with tweets from past periods. This makes the task
more challenging and grounded in real-world appli-
cations for social media. We performed extensive
experiments with standard meaning representation
approaches based on language models. The results
show that the task leaves ample room for improve-
ment, with several avenues for future research on
how to better integrate time-aware social media
models with meaning representation techniques.
The TempoWiC dataset and baseline scripts are
available at github.com/cardiffnlp/tempowic.

https://github.com/cardiffnlp/tempowic
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A Additional Baselines

Besides the fine-tuning and similarity methods de-
scribed in the main paper, we also experimented
with additional approaches in order to better under-
stand the difficulty of this dataset.

In this appendix we provide additional results
based on an MLP trained with concatenated con-
textual embeddings (Table 5), and another MLP
trained with the concatenation of the average of
static embeddings from each tweet (Table 6). Em-
beddings are L2 normalized after concatenation.

The hyper-parameters used with these MLPs
were determined by grid search on 24 different
configurations which were tested on the validation
set. The parameters tested were hidden layer sizes
((embedding size, 100) or (100)), solver (adam or
sgd), batch size (32 or 64), and maximum number
of iterations (50, 100 or 200).

Static embeddings are based on fastText (Bo-
janowski et al., 2017) and learned from Twitter
data on the same corpora used for Loureiro et al.
(2022a). These embeddings are trained with skip-
gram for 300-dimensions, min-ngram size 2 and
max-ngram size 12.

Model Accuracy Macro-F1

RoBERTa-base 68.11% (0.77%) 55.00% (1.88%)
RoBERTa-large 68.82% (1.06%) 55.17% (2.60%)
TimeLMs-2019-90M 68.68% (0.68%) 58.62% (0.81%)
TimeLMs-2021-124M 68.23% (0.90%) 57.55% (3.57%)
BERTweet-base 65.51% (0.91%) 57.03% (3.56%)
BERTweet-large 66.55% (0.59%) 54.16% (0.09%)

Table 5: Performance of MLP trained with concatena-
tion of the target word’s contextual embeddings (SP-
WSD pooling), tuned on the validation set. Reporting
average of 3 runs, and standard deviation.

Model Accuracy Macro-F1

CommonCrawl 55.53% (0.78%) 48.98% (0.57%)
TimeLMs-2019-90M 57.64% (0.71%) 49.46% (0.28%)
TimeLMs-2021-124M 55.20% (0.31%) 52.30% (0.57%)

Table 6: Performance of MLP trained with concatena-
tion of the average of static embeddings from each tweet.
Reporting average of 3 runs, and standard deviation.

B Pooling Contextual Embeddings

Table 7 reports results using the similarity method
described in the main paper with alternative choices
for layer pooling. We considered the final layer and
the sum of the last 4 layers as these are common
choices in word sense disambiguation settings.

Model Final Layer Sum Last 4 SP-WSD

RoBERTa-base 40.89% 60.33% 52.89%
RoBERTa-large 38.80% 53.32% 67.09%
TimeLMs-2019-90M 59.93% 67.69% 70.33%
TimeLMs-2021-124M 53.14% 60.26% 63.51%
BERTweet-base 67.35% 66.91% 65.16%
BERTweet-large 38.80% 41.75% 56.95%

Table 7: Performance of Contextual Similarity method
according to choice of layer pooling approach.


