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Abstract

One typical approach to long-form document
matching is first conducting alignment between
cross-document sentence pairs and then aggre-
gating all of the sentence-level matching sig-
nals. However, this approach could be prob-
lematic because the alignment between doc-
uments is partial — despite two documents
as a whole are well-matched, most of the sen-
tences could still be dissimilar. Those dissim-
ilar sentences lead to spurious sentence-level
matching signals which may overwhelm the
real ones, increasing the difficulties of learn-
ing the matching function. Therefore, accu-
rately selecting the key sentences for document
matching is becoming a urgent problem. To ad-
dress this issue, we propose a novel matching
approach that equips existing document match-
ing models with an Optimal Partial Transport
(OPT) based component, namely OPT-Match,
which selects the sentences that play a major
role in matching. Enjoying the partial transport
properties of OPT, the selected key sentences
can not only effectively enhance the matching
accuracy, but also be explained as the ratio-
nales for the matching results. Extensive ex-
periments on four publicly available datasets
demonstrated that existing methods equipped
with OPT-Match consistently outperformed the
corresponding underlying methods. Evalua-
tions also showed that the sentences selected
by OPT-Match were consistent with human-
provided rationales.

1 Introduction

Long-form document matching, which identifies
the semantic relationship between a source docu-
ment and a target document, has become a funda-
mental problem in both NLP and IR. Representa-
tive tasks include cite recommendation (Jiang et al.,
2019) and plagiarism detection (Foltýnek et al.,
2020) etc. For example, in cite recommendation,
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Document 2: medicinal and aromatic plants are nowadays
becoming the main constituents for medicines, colorings,
preservatives, and fragrances… although it is of high
priority, the effect of slowgrowth conservation on the
chemical profile of prestored medicinal plants after
conservation was not extensively investigated .this research
aimed to analyze in vitro stored thymbra spicata l. var. …

Document 1: ... the attraction of medicinal and aromatic
plants as worthy farm crops has grown due to the demand
created by consumer interest in these plants for culinary,
medicinal, and other anthropogenic applications … an
understanding of future opportunities in the medicinal and
aromatic plant industry who 2003 is necessary to enable us
growers to envision and invest in medicinal and aromatic
crops that will meet market demands.

Figure 1: A pair of matched long-form documents from
S2ORC dataset. Documents 1 focuses on the future op-
portunities in the medicinal and aromatic plant industry.
Document 2 studies the vitro storage of spicata. Though
most sentences are not similar, Document 1 cites Docu-
ment 2 (matched) because they both take medicinal and
aromatic plants as examples (the highlighted sentences).

the document matching has been used to recom-
mend existing papers to be cited in a new paper.
In plagiarism detection, the document matching
model has been used to determine whether a paper
is plagiarized from another paper.

Existing approaches to long-form document
matching typically follow the paradigms developed
for short-text (sentence) matching, i.e., they con-
duct matching based on all of the sentences in the
documents. For example, Jiang et al. (2019); Pap-
pagari et al. (2019); Zhou et al. (2020) map the doc-
uments into a latent semantic space from a hierar-
chical perspective (e.g., word, sentence, paragraph)
and conduct matching in the semantic space. How-
ever, these methods ignore the fact that a long-form
document usually contains multiple paragraphs and
sentences, which convey complex and diverse se-
mantics. Unlike short-text matching where almost
every word-level matching signal matters, in long-
form document matching, the alignment between a
document pair is partial and a few matching signals



2364

Selected Sentences

Cost Matrix CC 

Paired
Input Docs

Hard/ Soft Selection

Sentence 
Encoding

Component

OPT Plan T *T *

Matching
Component

OPT

OPT-Match

Prediction

Figure 2: The architecture of OPT-Match. The sentence
encoding component and the matching component are
with existing methods (the underlying models).

between the key sentences can determine the match-
ing result at the document level. Figure 1 illustrates
a typical example: two matched paper abstracts
(Document 1 cites Document 2) from the Semantic
Scholar Open Research Corpus (S2ORC) (Lo et al.,
2020). These two abstracts are matched because of
the highly matched signals between the highlighted
key sentences. Other parts of the abstracts are not
important for matching. This observation inspires
us that it is unnecessary to force a matching model
to aggregate all of the sentence pairs. More im-
portantly, the introduced noise may overwhelm the
matching signals between key sentences. Thus,
identifying key sentences is becoming an essential
step for document matching.

In this paper, we propose a novel Optimal Par-
tial Transport (OPT) (Figalli, 2010) based sentence
selection component for existing long-form doc-
ument matching model, namely OPT-Match. As
illustrated in Figure 2, OPT-Match models the doc-
ument alignment as an OPT process by regarding
two input documents (two sets of sentences) as
two piles of earth. To achieve partial alignment,
OPT-Match poses a limitation on how much the
earth from one pile (Document 1) needs to be trans-
ported to the other pile (Document 2 ). Based on
the cost matrix whose elements are defined as in-
verse (or negative) similarities between sentences
from different documents, OPT-Match generates
an optimal transport plan (matrix) (Benamou et al.,
2015) which indicates the alignment of sentences.
Therefore, key sentences can be extracted based
on the transport plan. To make OPT-Match eas-
ily incorporated into existing document matching

models, we provide two strategies to achieve the
sentence selection.

Compared to existing OT-based methods (Kus-
ner et al., 2015; Chen et al., 2018, 2019; Zhang
et al., 2020), OPT-Match offers the following ad-
vantages in modeling the long-form document
alignment: 1) OPT-Match models the partial na-
ture of document alignment explicitly and flexibly,
through limiting how much the mass to be trans-
ported; 2) OPT-Match allows the source and the tar-
get domains are not necessarily with the same total
mass, which fits well with the phenomenon that the
lengths of two documents may vary greatly. The
OT-based methods, however, cannot take this into
consideration; 3) OPT-Match is a model-agnostic
approach, it can be easily plugged into a wide range
of document matching models.

To summarize, this paper makes the following
main contributions: (1) We highlight the critical im-
portance of the key sentence selection in long-form
document matching, which has not yet been thor-
oughly studied in existing models. (2) We propose
a wide applicable component called OPT-Match,
which selects key sentences for document match-
ing by conducting partial document alignments. (3)
We conducted extensive empirical studies on four
large-scale publicly available datasets. The exper-
imental results demonstrated that OPT-Match im-
proved existing document matching models and the
sentences selected by OPT-Match were consistent
with human rationales.

2 Proposed OPT-Match Method

2.1 Problem Statement

Suppose that we are given a set of labeled data
tuples: D = {(Xi, Yi, zi)}, where the elements in
the i-th training instance Xi ∈ X , Yi ∈ Y , and
zi ∈ Z respectively denote the source document,
the target document, and the label which indicates
the semantic relationship of Xi and Yi. Both the
source and the target documents consist of a num-
ber of sentences, i.e., Xi = [sXi

1 , sXi
2 , . . . , sXi

M ],
Yi = [sYi

1 , sYi
2 , . . . , sYi

N ], where the M and N de-
note the number of sentences in Xi and Yi respec-
tively. The learning objective of existing docu-
ment matching models is f : X × Y −→ Z , which
takes all sentences in the input documents as in-
put and outputs a prediction of the relationship
between them. As the key idea of this paper, we
aim at learning f ′ which selects the key sentences
SX ⊆ X,SY ⊆ Y from input documents and con-
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ducts matching based on those selected sentences
rather than all sentences.

2.2 The Principle of Our Method

To learn f ′, we develop a novel sentence selec-
tion method from the viewpoint of optimal partial
transport (OPT), which is an extension of optimal
transport (OT). Originally, OT defines a distance
between probability distributions. Given two prob-
ability distributions µ and ν which can be viewed
as two piles of earth with equivalent mass, the
optimal transport distance is defined as the min-
imum cost of turning one pile into the other, and
the corresponding optimal transport plan provides
a soft matching between two piles in a probabilis-
tic way. Existing OT-based NLP studies (Kusner
et al., 2015; Chen et al., 2018, 2019; Zhang et al.,
2020) set the distributions µ and ν uniform, i.e.,
µ = 1

M 1M and ν = 1
N 1N , where 1D represents

the D-dimensional all-one vector, and accordingly,
the optimal transport distance between them is:

T∗ = arg minT∈Π(µ,ν) Em,n∼T[c(s
X
m, sYn )]

= arg minT∈Π(µ,ν)

M∑
m=1

N∑
n=1

Tmn · c(sXm, sYn ),

(1)
where T ∈ Π(µ,ν) = {T ∈ RM×N

+ |T1N =
µ,T⊤1M = ν} represents an arbitrary joint dis-
tribution of the sentences with marginals µ and ν.
C = [c(sXm, sYn )] ∈ RM×N is a sentence-level cost
matrix, whose element c(sXm, sYn ) measures the dis-
crepancy between the two sentences. As shown
in Eq. (1), OT corresponds to the minimum expec-
tation of the sentence-level discrepancy, and thus
shares a similar spirit with existing methods, which
aggregate all sentence-level matching signals.

However, OT suffers from the following issues
in modeling long-form document matching: 1) OT
requires that µ and ν have identical total mass.
This setting is unsuitable for document matching
because the number of sentences in documents
may vary greatly and the lengthy document con-
tains more semantics in general. 2) OT requires
the source points must exactly map to the targets.
However, in document matching, only some key
sentences from the source document align to that
from the target document, and thus there should
be only a fraction of mass from the source should
be transported to the target. 3) OT aggregates all
sentence-level aligning signals which inevitably in-
volves noises to the matching. In this work, we

solve these issues by modeling the sentence-level
alignment as an OPT process (issue 1,2) and incor-
porating it into existing document matching meth-
ods as a sentence selection module (issue 3).

2.3 OPT-based Sentence-level Alignment
To fix the issue 1 and 2, we need to break the con-
straint that µ and ν must have the same total mass
and limit the transporting mass, which leads to an
OPT problem:

T∗ = argminT∈Π≤(µ,ν),1⊤
MT1N=ϵ⟨T,C⟩. (2)

where T ∈ Π≤(µ,ν) = {T1N ≤ µ,T⊤1M ≤
ν}, <,> represents the Frobenius dot-product. For
the issue 1, considering that in OPT, µ and ν are
not necessarily with the same total mass (Benamou
et al., 2015) and usually the longer documents con-
tains more semantics, we set a unit mass on each
sentence, i.e., µ = 1M ,ν = 1N . For the issue
2, as shown in Eq. (2), we set ϵ, indicating a pro-
portion of total mass min(||µ||1, ||ν||1) to be trans-
ported, to control the degree of the document align-
ment. Intuitively, with the lower ϵ, OPT-Match
focuses more on strongly aligned sentence pairs,
while filtering out more spurious alignment signals.

To measure the discrepancy between two cross-
document sentences, we define the cost matrix C
in Eq. (2) based on the similarity between sentence
pairs derived from (X,Y ):

c(sXm, sYn ) = −sim(sXm, sYn ), (3)

sim(sXm, sYn ) is the similarity between sXm and sYn .
Intuitively, we expect more similar pairs of sen-
tences to be transported at a lower cost, and thus
can be more strongly aligned. In Eq. (3), various
methods can be adopted to measure sim(sXm, sYn ),
leading to different kinds of cost, for example,
the cosine similarity between sentence embed-
dings, and the overlapping words ratio after remov-
ing stop-words of (sXm, sYn ) (Mihalcea and Tarau,
2004). We respectively apply these two methods to
soft selection strategy and hard selection strategy
which we will introduce in Sec. 2.4 and Sec. 2.5.

To solve the OPT problem in Eq. (2), a number
of algorithms have been proposed. As a represen-
tative method, Benamou et al. (2015) propose to
add an entropic regularizer (Cuturi, 2013; Xie et al.,
2018) and solve it with iterative Bregman projec-
tions (Bregman, 1967) and Dykstra algorithm (Dyk-
stra, 1983). See also (Chizat et al., 2018; Zhou
et al., 2020). For the fast approximation of OPT, an
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entropic regularizer E(T) (Cuturi, 2013) is added
and the the optimal transport plan is

T∗ = argmin
T∈Π≤(µ,ν),1⊤

MT1N=ϵ

⟨T ·C⟩+λE(T), (4)

where λ is the trade-off coefficient. Thus, the op-
timal partial transport plan T∗ can be iteratively
calculated by Bregman-Dykstra iterations (Breg-
man, 1967; Dykstra, 1983; Benamou et al., 2015):

T1
n = diag

(
min

(
µ

Tn−11
,1

))
Tn−1,

T2
n = T1

n · diag
(
min

(
ν

T1⊤
n 1

,1

))
,

Tn = T2
n ·

ϵ

1⊤T2
n1

,

(5)

where T0 = exp (−C/λ). T∗ indicates the
amount of probability mass moved from one pile of
earth to the other under the constraint that limited
mass should be transported. In the sentence align-
ment scenario, T∗ can be regarded as the degree
of the alignment between the source sentences and
the target sentences in which only those strongly
aligned sentences are be highlighted.

2.4 Sentence Selection
To fix the issue 3, we need to select sentences
SX , SY for matching according to T∗. We pro-
vide two strategies to achieve that.

Hard Selection. We take an aggressive approach
to filter out the noise in the document, that is, we
select k sentences from the source and the target
document respectively with the highest alignment
in the optimal transport plan and discarding the
rest of the sentences, where k is a hyper-parameter
which stands for the desirable number of key sen-
tences. Specifically, T∗ is summed by rows, and
the sentences in the source document correspond-
ing to the top-k indexes of T∗1n are selected, then
placed to SX . Similarly, for the target document,
SY is constructed based on the top-k indexes of
1⊤nT

∗. Although this strategy is non-differentiable,
it effectively filters out noise.

Soft Selection. To make the selection differen-
tiable, we provide an alternative. Given T∗ as the
sampling probabilities, the key sentences are sam-
pled using the Gumbel softmax (Jang et al., 2016),
which provides a differentiable sampling process:

ui ∼ U(0, 1), gi = − log(− log(ui)),

wi =
exp ((log(probi) + gi)/τ)∑
j exp ((log(probi) + gi)/τ)

,
(6)

where U(0, 1) represents the uniform distribution
between 0 and 1, and τ is a temperature hy-
perparameter, probi represents the probability of
choosing each sentence as the selected sentence.
For the source document, probi is normalized
T∗1N , for the target document, probi is normal-
ized 1⊤MT∗. Therefore, we obtain the selection
weight wi for each sentence, and the key sen-
tence sets are SX = (wX

1 sX1 , · · · , wX
MsXM ) and

SY = (wY
1 s

Y
1 , · · · , wY

NsYN ).

2.5 Combination with existing models
Till now, OPT-Match has extracted SX and SY , a
paired subset of sentences from input documents.
As a widely applicable module, OPT-match can be
easily combined with various document matching
models. In this work, we take two representative
methods as the underlying models for OPT-Match.

For models which hierarchically encode docu-
ment (Jiang et al., 2019; Pappagari et al., 2019;
Zhou et al., 2020), they suppose that documents
present a hierarchical structure including words,
sentences, and paragraphs. OPT-Match can be
plugged at the sentence level, because hierarchi-
cal models explicitly represent all sentences in a
document. For example, once the sentence repre-
sentations are obtained, one can construct the cost
matrix C based on the cosine similarity between
sentence embeddings (Eq.3), then use the soft se-
lection strategy. OPT-Match also can be used be-
fore sentence encoding by adopting the overlapping
words ratio cost and the hard selection strategy.

For BERT and its variants (Devlin et al., 2019;
Dai et al., 2019; Beltagy et al., 2020), since they fo-
cus on token-level interaction and do not explicitly
generate sentence representations, OPT-Match can
be regarded as a pre-processing to combining with
BERT and its variants. One can use the overlapping
words ratio as the OPT cost and select sentences
using the hard selection strategy.

2.6 Training
As aforementioned, OPT-Match is a sentence selec-
tion module before matching, and thus the learning
objective of OPT-Match equipped models is iden-
tical to its underlying models. In the underlying
models, the cross-entropy loss which measures the
discrepancy between the model’s predictions and
ground-truth labels is widely used for training:

L =
∑
i

ℓ(M(SXi , SYi), zi) =
∑
i

zilogpi+(1−zi)log(1−pi)

(7)
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Algorithm 1 Training process of OPT-Mach based
models.
Require: Training set D = {(Xi, Yi, zi)}Ni=1;

mini-batch sizes nb; learning rates η; Bregman-
Dykstra iterations step iter; entropic regular-
izer coefficient λ; mass to be transported ϵ,
number of selected sentences k, Gumbel tem-
perature τ .

1: repeat
2: � OPT-Match component
3: Sample mini-batch {(Xi, Yi, zi)}nb

i=1 ⊆ D
4: Calculate the cost matrix C {Eq. (3)}
5: T = exp (−C/λ)
6: for t = 1 to iter do
7: T← diag

(
min

( µ
T1 ,1

))
T

8: T← T · diag
(
min

(
ν

T⊤1
,1

))
9: T← T · ϵ

1⊤T1
{Eq. (5)}

10: end for
11: if Hard Selection then
12: SX ← top k indexes (sentences) of T1N
13: SY ← top k indexes (sentences) of 1⊤MT
14: else if Soft Selection then
15: SX ← (wX

1 sX1 , · · · , wX
n sXn ){Eq. (6)}

16: SY ← (wY
1 s

Y
1 , · · · , wY

msYm){Eq. (6)}
17: end if
18: � Matching component M
19: L =

∑nb
i=1 ℓ(M(SX , SY ;Θ), zi){Eq. (7)}

20: Θ← Θ− η▽Θ L
21: until convergence
22: return Θ

where zi is the ground-truth label, pi =
M(SXi , SYi) is the final matching prediction, and
M represents the matching component. We include
the training procedure of OPT-Match equipped
matching models in Alg. 1.

3 Experiments

3.1 Experimental Setup
Datasets. The experiments are conducted on four
large-scale publicly available long-form document
matching datasets 1. Table 1 provides the dataset
statistics. Data splits and preprocessing for all
datasets follow (Zhou et al., 2020).

Citation recommendations is a task to predict
whether a paper cites another. In the experiments,
AAN (Radev et al., 2013), OC (Bhagavatula et al.,
2018), and S2ORC (Lo et al., 2020) are exploited
for this task. Note that following the practice of

1https://github.com/XuhuiZhou/CDA

Table 1: Statistics of datasets. ‘#Word’ denotes the
average number of words per document, and ‘#Sent.’
denotes the average number of sentences per document.

Dataset Train Dev Test #Word #Sent.
PAN 17,968 2,908 2,906 1,569.7 47.4
S2ORC 152,000 19,000 19,000 263.7 9.3
AAN 106,592 13,324 13,324 122.7 4.9
OC 240,000 30,000 30,000 190.4 7.0

(Zhou et al., 2020), we only use the paper abstract
of AAN. S2ORC contains human annotations to
indicate which sentences in the source document
cite the target document. These annotations can be
used to assess the quality of selected sentences by
OPT-Match.

Plagiarism detection is a task to detect whether
a text span in the source document plagiarizes a text
span in the target document. PAN (Potthast et al.,
2013) is used for this task. PAN also contains hu-
man annotations to indicate which sentences in the
source document plagiarizes the target document.

Baselines. For document matching, we take two
representative kinds of methods including the hi-
erarchical models and the variants of BERT as the
underlying model and compare the performance of
these models with and without OPT-Match.

The hierarchical models include GRU-
HAN (Jiang et al., 2019) which uses stacked
GRU and attention networks to encode documents
following the order of words, sentences, para-
graphs, and documents; BERT-HAN (Pappagari
et al., 2019) which replaces sentence encoder of
GRU-HAN with BERT; GRU-HAN-CDA and
BERT-HAN-CDA (Zhou et al., 2020) which
add cross-document attention to GRU-HAN and
BERT-HAN respectively. Following (Zhou et al.,
2020), the attention scores of sentences are used to
indicate the model’s selection of key sentences.

Variants of BERT includes BERT (Devlin et al.,
2019), Transformer-XL (Dai et al., 2019), and
Longformer (Beltagy et al., 2020). For BERT, we
choose the ‘bert-base-uncased’ and truncate the
first 510 words of the document. For Transformer-
XL and Longformer, we choose “transfoxl-wt103’
and ‘allenai/longformer-base-4096’ respectively.

To further verify the impact of partial alignment
between documents, we consider two OT-based
method: (Kusner et al., 2015) which uses OT as a
similarity function between sentences and (Swan-
son et al., 2020) which conducts sparse OT between
sentences by adding dummy nodes2.

2We consider the relaxed 1-to-k assignment which is suit-

https://github.com/XuhuiZhou/CDA
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Table 2: Experimental results on S2ORC, PAN, AAN and OC test sets. x-OPT denotes OPT-Match equipped model
x. (soft) and (hard) indicate the soft selection strategy and the hard selection strategy respectively. † indicates the
statistically significant difference between the model equipped with OPT-Match and the corresponding underlying
model (p-value < 0.05).

AAN OC S2ORC PAN
Models Acc. F1 Acc. F1 Acc. F1 Acc. F1
GRU-HAN 68.01 67.23 84.46 82.26 82.36 83.28 75.70 75.88
GRU-HAN-OPT (soft) 69.87† 69.30† 85.76† 85.89† 83.82† 84.29† 76.28† 76.63†

GRU-HAN-OPT (hard) 71.02† 70.91† 85.49† 85.74† 85.14† 85.65† 76.76† 77.03†

GRU-HAN-CDA 74.51 74.81 88.71 88.96 88.91 89.92 77.04 78.23
GRU-HAN-CDA-OPT (soft) 75.88† 76.06† 89.94† 90.11† 89.15 89.84 78.10† 78.39
GRU-HAN-CDA-OPT (hard) 76.96† 76.65† 88.62 88.78 89.72† 89.96† 78.52† 78.84†

BERT-HAN 67.32 64.97 85.96 86.33 90.67 90.76 87.57 87.36
BERT-HAN-OPT (soft) 68.72† 68.98† 87.30† 87.44† 90.75 90.87 87.74 87.25
BERT-HAN-OPT (hard) 70.57† 71.22† 88.21† 88.49† 91.40† 91.55† 88.12† 88.01†

BERT-HAN-CDA 71.57 69.08 87.81 87.89 91.92 92.07 86.23 86.19
BERT-HAN-CDA-OPT (soft) 73.85† 73.42† 89.07† 89.01† 92.52† 92.61† 87.13† 86.89†

BERT-HAN-CDA-OPT (hard) 75.56† 75.62† 90.58† 90.54† 92.74† 92.81† 87.61† 87.14†

BERT 88.05 88.09 94.52 94.45 95.64 95.64 59.58 69.71
BERT-OPT (hard) 89.31† 89.35† 95.06† 94.97† 96.85† 96.82† 89.09† 88.61†

Transformer-XL 83.18 82.92 91.19 91.26 92.50 92.39 58.25 69.07
Transformer-XL-OPT (hard) 85.03† 84.99† 92.37† 92.43† 93.80† 93.69† 80.28† 80.11†

Longformer 88.01 88.29 93.46 93.51 96.02 96.07 56.82 69.78
Longformer-OPT (hard) 88.92† 89.07† 94.88† 94.87† 96.61† 96.56† 82.68† 82.21†

Evaluation Metrics. We use Accuracy and F1
as the evaluation metrics since all the datasets
have binary labels for document matching. Fol-
lowing (Zhou et al., 2020), we use MRR as the
evaluation metric for sentence selection since the
sentence selection is regarded as a ranking task.

Implementation Details. All hyper-parameters
in OPT-Match3 are tuned using grid search on
the validation set. The tuning range of hyperpa-
rameters are as follows: the proportion of mass
to be transported ϵ in Eq. (2) is tuned among
{0.25, 0.50, 0.75}; coefficient λ in Eq. (4) is
tuned between [0.5, 1.0]; Gumbel temperature τ
in Eq. (6) is tuned between [0.5, 1.0]. For OPT-
Match equipped hierarchical models, the settings
of optimizer, learning rate, batch size and hidden di-
mension are consistent with corresponding underly-
ing models. For OPT-Match equipped BERT’s vari-
ants, the fine-tuning optimizer is Adam (Kingma
and Ba, 2014) with β1 = 0.9, β2 = 0.999, the
learning rate is tuned between [0.00001, 0.00005];
the batch size is tuned between [4, 8].

3.2 Matching performances
Table 2 reports the evaluation results of different
models. All the methods are trained ten times and
the averaged results are reported. Since BERT and
its variants do not explicitly generate sentence rep-
resentations, we only applied the word-overlap ra-
tio cost and the hard selection versions of OPT-
able for long-form document matching.

3The source code of OPT-Match is available at https:
//github.com/ruc-wjyu/OPT-Match

Match on these models. For a fair comparison, we
follow (Swanson et al., 2020) and keep the number
of selected sentences as 5 in the hard selection.

We summarize our observations from the results
as follows: 1) in general, the models equipped
with OPT-Match consistently outperform their cor-
responding underlying models across four datasets.
The results verify the effectiveness of OPT-Match
in terms of enhancing matching accuracy. 2) BERT
and its variants such as Transformer-XL and Long-
former achieve much worse performances on PAN,
comparing to their good performances on other
datasets. PAN has a large average document length
(> 1500 words) and a large average number of sen-
tences per document (> 40 sentences). The noise
in the extremely long documents makes BERT and
its variations perform poorly. OPT-Match equipped
models, however, are not affected by the document
length. It is because OPT-Match successfully fil-
ters out the noise in the document by selecting key
sentences for matching. The results indicate that
OPT-Match is more effective especially when the
document length is extremely long; 3) Comparing
the performances of OPT-Match in the soft selec-
tion version to that of in the hard selection version,
the hard selection versions achieve better perfor-
mances in most cases. We analyze the results, and
the reason is that the soft selection is a weighting
strategy, aiming at sampling sentences according
to the optimal transport plan of OPT-Match. How-
ever, the soft selection cannot completely filter out
the noise in documents, which often has negative
impacts on the matching.

https://github.com/ruc-wjyu/OPT-Match
https://github.com/ruc-wjyu/OPT-Match
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Table 3: The impact of degree of the document align-
ment ϵ in OPT-Match. BHC-OPT denotes BERT-HAN-
CDA-OPT model in the soft selection and BERT-OPT
is in the hard selection version.

S2ORC PAN
Models Acc. F1 Acc. F1
BHC-OT(Kusner et al., 2015) 91.46 91.50 85.90 85.98
BHC-SOT (Swanson et al., 2020) 91.91 91.96 86.55 86.32
BHC-OPT(ϵ = 0.75) 92.33 92.46 86.95 86.59
BHC-OPT (ϵ = 0.50) 92.65 92.74 87.08 86.75
BHC-OPT (ϵ = 0.25) 92.74 92.81 87.61 87.14
BERT-OT (Kusner et al., 2015) 95.27 95.31 66.28 65.47
BERT-SOT (Swanson et al., 2020) 96.05 96.13 87.86 87.95
BERT-OPT (ϵ = 0.75) 96.79 96.75 88.02 87.44
BERT-OPT (ϵ = 0.50) 96.77 96.76 88.67 88.24
BERT-OPT (ϵ = 0.25) 96.85 96.82 89.09 88.61

3.3 Impact of Partial Alignment

To test the effects of the partial alignment between
documents, we compare the performances of OPT-
Match with different proportion of mass ϵ (degree
of alignment) to two representative OT-based (full
alignment) methods (Kusner et al., 2015; Swan-
son et al., 2020). We suppose that with the lower
ϵ, OPT-Match focuses more on strongly aligned
sentence pairs, while filtering out more spurious
alignment signals. Please note that (Kusner et al.,
2015) conduct traditional OT between documents
which denotes the full alignment and (Swanson
et al., 2020) add dummy sentences and conducts
full alignment between real sentences and dummy
ones in order to achieve partial alignment within
real sentences. As illustrated in Table 3, we find
that models with partial alignment (ϵ < 1) always
achieve better performances than that of the full
alignment on S2ORC and PAN datasets. The re-
sults verify that the alignment between documents
is partial. Moreover, we find that OPT-Match tends
to achieve better performance with smaller ϵ. The
results indicate that only a small fraction of strongly
aligned sentences contributed to document match-
ing, filtering out the noise sentences is helpful. In
addition, although (Swanson et al., 2020) aims at
partial alignment, the way of adding dummy nodes
may not suit long-form documents matching be-
cause the document length varies greatly leading
to many dummy nodes, and the alignment between
dummy nodes and real sentences may dominate in
the full alignment and overwhelm the real align-
ments between sentences.

3.4 Impact of the number of selected sentences.

We further conduct experiments to investigate how
the number of selected sentences in OPT-Match
affects the matching. Specifically, we configure
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Figure 3: The impact of the number of selected sentence
on OPT-Match. Results from BERT-OPT of the hard
selection version on S2ORC and OC.

Table 4: Faithfulness evaluation. (all), (selected), and
(all \selected) respectively denotes using all sentences,
using sentences selected by OPT-Match, and using the
sentences not selected by OPT-Match as the inputs.

S2ORC PAN
Models Acc. F1 Acc. F1
BERT-HAN (all\selected) 73.62 74.33 56.76 53.52
BERT-HAN (all) 90.67 90.76 77.04 78.23
BERT-HAN (selected) 91.40 91.55 88.12 88.01
BERT-HAN-CDA (all\selected) 77.30 77.94 57.28 53.73
BERT-HAN-CDA (all) 91.92 92.07 86.23 86.19
BERT-HAN-CDA (selected) 92.74 92.81 87.61 87.14

BERT-OPT (hard) to select a different number of
sentences (from 1 to the average number of sen-
tences in a document) and then conduct matching
using these sentences. Figure 3 illustrates matching
accuracy curves w.r.t. the number of selected sen-
tences on the datasets of S2ORC and OC. We find
that BERT-OPT shows a competitive performance
when only 1 or 2 sentences are selected. The re-
sults show the effectiveness of OPT-Match in terms
of accurately selecting sentences key to document
matching. Additionally, the accuracy curves first
steadily increase and reach the peak when 4 or 5
sentences are selected for matching. After that,
the curves drop with more selected sentences. The
phenomenon is intuitive and can be explained as
follows: when the number of selected sentences is
too small, the model needs more information from
the selected sentences to infer the document-level
matching. However, the number of selected sen-
tences is greatly less than the number of all of the
sentences in the document. Therefore, after some
thresholds, the additional selected sentences be-
come noisy, which causes the drop of the matching
accuracy. The results verify our assumption that
not all the sentences in the document contribute to
the long-form document matching.
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Figure 4: Plausibility comparison among BERT-HAN,
BERT-HAN-CDA and BERT-HAN-CDA-OPT (hard)
on S2ORC (Citation) and PAN (Plagiarism).

3.5 Selected Sentences as Rationales

To further assess the quality of the key sentence
selected by OPT-Match, we regard the selected
sentences as the rationales for the document-level
matching prediction. Following (Strout et al., 2019;
DeYoung et al., 2020), we adopt plausibility and
faithfulness as the evaluation metrics. Plausibil-
ity measures how well the rationales provided by
models align with human annotations, and faithful-
ness measures the degree to which the rationales
influence the corresponding predictions.

Following the setting of (Zhou et al., 2020), we
first compare the sentences selected by OPT-Match
(hard) with human annotations in S2ORC and
PAN. As shown in Figure 4, the sentences selected
by OPT-Match are more consistent with human an-
notations compared with that of the sentence-level
attention scores in BERT-HAN and BERT-CDA.

In terms of the faithfulness, we test the matching
performance of BERT-HAN and BERT-HAN-CDA
under three conditions: respectively using all sen-
tences (denoted as (all)), using sentences selected
by OPT-Match (hard) (denoted as (selected)), and
using sentences except those selected by OPT-
Match (hard) (denoted as all\selected) as the
model’s input. From the results reported in Table 4,
we find that the sentences selected by OPT-Match
play a critical role in document matching, i.e., if
the sentences selected by OPT-Match are removed
from a model’s input, the matching accuracy of
the model drops dramatically. In addition, if all
sentences are used as a model’s input (note that the
input still contains the sentences selected by OPT-
Match), the predictive accuracy still drops to some
extent because of the noise from other sentences.
From the results, we conclude that OPT-Match is
capable of accurately selecting the key sentences
for document matching and filtering the noise.

Table 5: Training time (s/batch) on a single Nvidia Tesla
V100 16GB. Batch size = 256 for both models.

Models S2ORC PAN
BERT-HAN-CDA 0.0992 0.2711
BERT-HAN-CDA-OPT (soft) 0.1004 0.2917
BERT-HAN-CDA-OPT (hard) 0.0934 0.1490

3.6 Time Complexity Analysis
Existing long-form document matching methods
usually apply attention mechanism at the word
level, which have a time complexity of O(N2

all),
where Nall denotes the number of tokens in the
input document. For OPT-Match, the computing
overhead mainly comes from the calculation of the
optimal transport plan (line 6-9 in Algorithm 1).
With the help of the entropic regularizer (Cuturi,
2013) and Bregman-Dykstra iterations (Bregman,
1967), the calculation of the optimal transport plan
have a time complexity of O(N2

s ) (Benamou et al.,
2015), where the Ns denotes the number of the
sentences in the input document. Since usually the
number of sentences is far less than the number of
tokens in a document, i.e., Ns ≪ Nall, we suppose
the computational cost of OPT-Match is accept-
able. In addition, if the word overlapping cost is
applied, the hard selection version of OPT-Match
can be used as a data pre-processing, therefore,
OPT-Match does not increase the training time of
the model. Also note that the input of the matching
model equipped with OPT-Match is the selected
sentences rather than all of the sentences. There-
fore, the hard selection version of OPT-Match with
word overlapping cost can effectively reduce the
training time of the matching model. For the soft
selection version of OPT-Match, although OPT-
Match brings additional computational cost, con-
sidering OPT-Match is applied at the sentence level,
the additional computation cost is not significant.

We further compare the average training time
between BERT-HAN-CDA and BERT-HAN-CDA-
OPT. From the results shown in Table 5, we can see
that the soft selection version of OPT-Match brings
an acceptable additional computation cost, while
the hard selection version of OPT-Match effectively
reduce the training time of the matching model.

4 Related Work

4.1 Long-form Document Matching
In long-form document matching, there are two
representative methods in the literature — the hier-
archical models and the variants of BERT.
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The hierarchical models suppose that a docu-
ment represents a hierarchical structure of words,
sentences, paragraphs, and documents. Inspired by
this idea, researchers exploit neural network to en-
code document in a hierarchical way. The represen-
tative method is (Jiang et al., 2019). This method
first separately models input document pair as se-
mantic vectors using RNN and Hierarchical Atten-
tion Network (Yang et al., 2016; Zhou et al., 2020).
Then, the matching score is calculated by feeding
the concatenation of the document vector to an
MLP. Pappagari et al. (2019) improves (Jiang et al.,
2019) by replacing the RNN-based encoder with
the transformer-based encoder. Zhou et al. (2020)
focuses on the interaction between documents and
proposed the hierarchical cross-document attention
to improve the document representation.

Although BERT has been dominated in the field
of short-text matching, the quadratic time com-
plexity of intrinsic attention mechanism makes
BERT difficult to be applied in the long-form doc-
ument matching. To tackle this issue. Dai et al.
(2019) proposed Transformer-XL which consists
of a segment-level recurrence mechanism and a po-
sitional encoding scheme. Transformer-XL enables
learning dependency beyond a fixed length with-
out disrupting temporal coherence. Beltagy et al.
(2020) proposed dilated sliding windows attention
which gradually increases the receptive field as the
model goes deeper.

Recently, Pang et al. (2021) proposed to first fil-
ter out sentence-level noise from documents by ap-
plying PageRank on the sentence similarity graph
and then plug PageRank into transformer layers to
filter out word-level noise. Although these studies
achieved improvement in document matching per-
formances, they ignore the alignment between sen-
tences in a document pair would be partial which
inevitably introduced noises to the final matching.

4.2 OT in NLP

In recent years, OT have been widely studied in
NLP. Kusner et al. (2015) formulated the distance
between two sentences as an optimal transport prob-
lem and proposed Word Mover’s Distance (WMD)
which measures the dissimilarity between two text
documents as the minimum amount of distance
that words of one document need to transport to
the words of another document. Yokoi et al. (2020)
pointed out that the angle of semantic vectors is a
good proxy for word similarity and proposed Word

Rotator’s Distance on top of WMD. Xu et al. (2018)
proposed a Wasserstein method with a distillation
mechanism, yielding joint learning of word embed-
dings and topics. Inspired from Order-Preserving
OT (Su and Hua, 2017, 2019; Su et al., 2019), Liu
et al. (2018) proposed to factorize sentence hierar-
chically based on Abstract Meaning Representation
and obtain the reordered sentence representations.
Then the semantic distance between a pair of text
snippets can be solved by a penalized OT. Yu et al.
(2020, 2022b) proposed to use OT to bridge the
gap between heterogeous text pairs for sentence
matching in asymmetrical domains. Chen et al.
(2019); Zhang et al. (2020) respectively applied OT
and OPT to sequence-to-sequence learning tasks
such as text generation. (Li et al., 2019; Yu et al.,
2022a) proposed to learn the similarity between
texts using inverse optimal transport.

5 Conclusion

In this paper, we highlight the critical role of con-
ducting partial alignment in long-form document
matching. A novel key sentence selection com-
ponent based on optimal partial transport is pro-
posed, called OPT-Match. OPT-Match automati-
cally selects key sentences for document match-
ing, addressing the issue that not every sentence
in one document can correspond to a sentence in
another document. Moreover, OPT-Match can be
easily incorporated into existing document match-
ing models. Comprehensive experiments on four
public datasets show that OPT-Match consistently
outperformed its underlying document matching
models. The empirical analysis also verifies that
the sentences selected by OPT-Match are not only
consistent with human-provided rationales but also
contributed to document matching.
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