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Abstract

Relation extraction in the biomedical domain
is challenging due to the lack of labeled
data and high annotation costs, needing do-
main experts. Distant supervision is com-
monly used to tackle the scarcity of anno-
tated data by automatically pairing knowledge
graph relationships with raw texts. Such a
pipeline is prone to noise and has added chal-
lenges to scale for covering a large num-
ber of biomedical concepts. We investi-
gated existing broad-coverage distantly super-
vised biomedical relation extraction bench-
marks and found a significant overlap between
training and test relationships ranging from
26% to 86%. Furthermore, we noticed sev-
eral inconsistencies in the data construction
process of these benchmarks, and where there
is no train-test leakage, the focus is on inter-
actions between narrower entity types. This
work presents a more accurate benchmark
MEDDISTANT19 for broad-coverage distantly
supervised biomedical relation extraction that
addresses these shortcomings and is obtained
by aligning the MEDLINE abstracts with the
widely used SNOMED Clinical Terms knowl-
edge base. Lacking thorough evaluation with
domain-specific language models, we also con-
duct experiments validating general domain re-
lation extraction findings to biomedical rela-
tion extraction.

1 Introduction

Extracting structured knowledge from unstructured
text is important for knowledge discovery and man-
agement. Biomedical literature and clinical narra-
tives offer rich interactions between entities men-
tioned in the text (Craven and Kumlien, 1999; Xu
and Wang, 2014), which can be helpful for applica-
tions such as bio-molecular information extraction,
pharmacogenomics, and identifying drug-drug in-
teractions (DDIs), among others (Luo et al., 2017).

∗ Equal contribution.

Iron deficiency is the most common MND worldwide and leads to microcytic anemia , 
decreased capacity for work , as well as impaired immune and endocrine function .

Iron deficiency anaemia ( IDA ) and beta-thalassaemia are the most common causes of 
microcytic anaemia .

Studies here reported indicated that the anemia is hypochromic and microcytic anemia 
of blood loss and iron deficiency , in spite of the presence of large amounts of iron in 

the pulmonary tissue .

The high proportion of microcytic anaemia and the fact that gender differences were 
only seen after the menarche period in women suggest that iron deficiency was the 

main cause of anaemia .

MCV/RBC and (MCV)2 X MCH separated successfully the subjects with microcytic 
anaemia ( heterozygous thalassaemia and iron deficiency ) from normal controls .

Significantly higher serum homocysteine levels were reported in the iron deficiency 
anemia group compared to normal controls and in subjects with microcytic anemia and 

normal ferritin.

CUI: (C0240066, C0085576)
Semantic Type: (Disease or Syndrome, Disease or Syndrome)

Semantic Group: (Disorders, Disorders) 
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Figure 1: An example of a bag instance represent-
ing the UMLS concept pair (C0240066, C0085576)
from the MEDDISTANT19 dataset, expressing the re-
lation cause_of. In this example, three out of six sen-
tences express the relation, while others are incorrect
labels resulting from the distant supervision.

Manually annotating these relations for train-
ing supervised learning systems is an expensive
and time-consuming process (Segura-Bedmar et al.,
2011; Kilicoglu et al., 2011; Segura-Bedmar et al.,
2013; Li et al., 2016), so the task often involves
leveraging rule-based (Abacha and Zweigenbaum,
2011; Kilicoglu et al., 2020) and weakly supervised
approaches (Peng et al., 2016; Dai et al., 2019).

To scale to a large number of biomedical enti-
ties, recent works have focused on broad-coverage
relation extraction (Amin et al., 2020a; Xing et al.,
2020; Hogan et al., 2021), where we investigated
these benchmarks for possible train-test leakage
of knowledge graph triples and found significant
portions overlapping (Table 2). Such leakage im-
pacts the model performance as it allows to score
higher by simply memorizing the training rela-
tions rather than generalizing to new, previously
unknown ones. We identify the sources of these
issues as normalizing the textual form of concept
mentions to their unique identifiers and improper
handling of inverse relations. In contrast, more ac-
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Benchmark Relations No Train-Test Overlap Broad-Coverage Ontology

UMLS.v1 (Roller and Stevenson, 2014) 7 - 7 UMLS
DTI (Hong et al., 2020) 6 3 7 DrugBank

UMLS.v2 (Amin et al., 2020a) 355 7 3 UMLS
BioRel (Xing et al., 2020) 125 7 3 NDFRT, NCI

UMLS.v3 (Hogan et al., 2021) 275 7 3 UMLS
TBGA (Marchesin and Silvello, 2022) 4 3 7 DisGeNET

MedDistant19 22 3 3 SNOMED CT

Table 1: The landscape of distantly supervised biomedical relation extraction (Bio-DSRE) benchmarks: all the
existing broad-coverage datasets have corpus-level triples overlap between the train and test splits (Table 2), where
the knowledge graph (KG) is also extracted from multiple ontologies. The DTI and TBGA benchmarks focus
on harmonized ontology but are limited to drug-target interactions and gene-disease associations. In contrast,
MEDDISTANT19 has a broader coverage of entities and their semantic types and is normalized to a single ontology,
SNOMED CT, which has significant clinical relevance. We named the datasets from (Roller and Stevenson, 2014;
Amin et al., 2020a; Hogan et al., 2021) to UMLS.v1/2/3 since the original works had no names. For UMLS.v1,
there is no publicly available code to reconstruct the dataset; thus, the overlap information is missing.

curate benchmarks exist (Hong et al., 2020; March-
esin and Silvello, 2022) but focus on narrower types
of interactions. To alleviate the broad-coverage
benchmark issues and bridge this gap, we present
a new benchmark MEDDISTANT19 which draws
its knowledge graph from the widely used health-
care ontology SNOMED CT (Chang et al., 2020).
Further, with the success of domain-specific pre-
trained language models for biomedical and clini-
cal tasks (Gu et al., 2021), and inspired by existing
thorough relation extraction studies in the general
domain (Peng et al., 2020; Alt et al., 2020; Gao
et al., 2021), we conduct an extensive evaluation
using MEDDISTANT19 for the biomedical domain.

2 Related Work

Relation Extraction (RE) is an important task in
biomedical applications. Traditionally, supervised
methods require large-scale annotated corpora,
which is impractical to scale for broad-coverage
biomedical relation extraction (Kilicoglu et al.,
2011, 2020). Distant Supervision (DS) allows for
the automated collection of noisy training exam-
ples by aligning a given knowledge base (KB) with
a collection of text sources (Mintz et al., 2009). DS
was used in recent works (Alt et al., 2019; Amin
et al., 2020a) with pre-trained language models
using Multi-Instance Learning (MIL) by creating
bags of instances (Riedel et al., 2010) for corpus-
level triple extraction.1 In biomedical domain,

1RE is used to refer to two different tasks: sentence-level
detection of relational instances and corpus-level triples extrac-
tion, a kind of knowledge graph completion or link prediction
task (Amin et al., 2020b).

Roller and Stevenson (2014) first proposed the use
of the Unified Medical Language System (UMLS)
Metathesaurus (Bodenreider, 2004) as a KB with
PubMed (Canese and Weis, 2013) MEDLINE ab-
stracts as text collection.

For broad-coverage tasks, Dai et al. (2019) im-
plemented a knowledge-based attention mecha-
nism (Han et al., 2018) for mutual learning with
knowledge graph completion and entity type clas-
sification. Xing et al. (2020) introduced a large-
scale BioRel benchmark focusing on drug-disease
and gene-cancer interactions and showed signif-
icant performance using a comprehensive selec-
tion of baselines. Recent works focused on us-
ing domain-specific pre-trained language models
for distantly supervised biomedical relation extrac-
tion (Bio-DSRE). Amin et al. (2020a) extended
relation enriched sentence-level BERT (Wu and
He, 2019) to handle bag-level MIL and demon-
strated that preserving the direction of the KB re-
lationships can denoise the training signal. They
also outlined the steps to create a broad-coverage
benchmark from UMLS. Following this, Hogan
et al. (2021) introduced the concept of abstracti-
fied MIL (AMIL), by including different argument
pairs belonging to the same semantic type pair in
one bag, boosting performance on rare triples.

For domain-specific Bio-DSRE, Hong et al.
(2020) introduced the BERE framework for la-
tent tree learning and self-attention to use the se-
mantic and syntactic information in the sentence
for MIL. They also introduced a drug-target in-
teractions (DTI) Bio-DSRE benchmark, suitable
for drug repositioning, drawn from DrugBank
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Triples Train Valid Test

UMLS.v2 211,789 41,993 (26.7%) 89,486 (26.5%)
BioRel 39,969 17,815 (86.17%) 17,927 (86.37%)

UMLS.v3 23,163 2,643 (44.38%) 5,184 (40.12%)

Table 2: Training-test leakage we identified in the ex-
isting broad-coverage benchmarks. Numbers between
parentheses show the percentage overlap of CUI triples.

(Wishart et al., 2018). Concurrent work of March-
esin and Silvello (2022) introduced a large-scale
semi-automatically curated benchmark TGBA for
gene-disease associations (GDA). TGBA uses Dis-
GeNET (Piñero et al., 2020), which collects data
on human genotype-phenotype relationships.

This work investigates recent results from the
broad-coverage Bio-DSRE literature by probing
the respective datasets for overlaps between train-
ing and test sets. Specifically, in UMLS, each
concept is mapped to a Concept Unique Identifier
(CUI), and a given CUI might have different surface
forms (Bodenreider, 2004), we thus probe for CUI-
based KG triples leakage. Our results are shown in
Table 2 for UMLS.v2 (Amin et al., 2020a), BioRel
(Xing et al., 2020), and UMLS.v3 (Hogan et al.,
2021). For UMLS.v2 and UMLS.v3, the triples use
surface forms of CUIs rather than the CUIs them-
selves, which results in an overlap between train-
ing and test sets. For example, consider a relation-
ship between a pair of UMLS entities (C0013798,
C0429028). These two entities can appear in dif-
ferent forms within a text, such as (electrocardio-
graphy, Q-T interval), (ECG, Q-T interval), and
(EKG, Q-T interval); each of these distinct pairs
still refers to the same original pair (C0013798,
C0429028). Amin et al. (2020a) claim no such
text-based leakage, but when canonicalized to their
CUIs, this results in leakage across the splits as re-
ported in Table 2. In contrast, BioRel directly splits
CUI triples without accounting for inverse relations
that can also result in leakage (Chang et al., 2020).
Since DSRE aims at corpus-level triples extrac-
tion, train-test triples leakage is problematic (see
Table 3) compared to supervised sentence-level RE,
where we aim to generalize to newer contexts.

We found no such overlap for DTI and TBGA,
where the datasets used in (Roller and Steven-
son, 2014; Dai et al., 2019) are not publicly avail-
able. Noting these shortcomings, we introduce
a new and accurate benchmark MEDDISTANT19
for broad-coverage Bio-DSRE. Our benchmark uti-
lizes clinically relevant SNOMED CT Knowledge

Model and Data Original Filtered
AUC F1 AUC F1

Amin et al. (2020a) 68.4 64.9 50.8 53.1
Hogan et al. (2021)† 82.6 77.6 11.8 19.8

Table 3: State-of-the-art Bio-DSRE language models
were evaluated on the respective datasets before (Origi-
nal) and after (Filtered) removing overlapping relation-
ships. † Our re-run of the AMIL (Type L) model; origi-
nal scores are 87.2 (AUC) and 81.2 (F1).

Graph (Chang et al., 2020), extracted from the
UMLS, that offers a careful selection of the con-
cept types and is suitable for large-scale biomedical
relation extraction. Table 1 summarizes the current
landscape of Bio-DSRE benchmarks.

In supervised RE, ChemProt (Krallinger et al.,
2017) and DDI-2013 (Herrero-Zazo et al., 2013)
focus on multi-class interactions between chemical-
protein and drug-drug respectively. EU-ADR (van
Mulligen et al., 2012) and GAD (Bravo et al., 2015)
focus on binary relations between genes and dis-
eases, while CDR (Li et al., 2016) focuses on binary
relations between chemicals and diseases.

3 Constructing the MedDistant19
Benchmark

Documents We used PubMed MEDLINE ab-
stracts published up to 20192 as our text source,
containing 32,151,899 abstracts. Following Hogan
et al. (2021), we used SCISPACY 3 (Neumann
et al., 2019) for sentence tokenization, resulting
in 150,173,169 unique sentences. We further intro-
duce the use of SCISPACY for linking entity men-
tions to their UMLS CUIs and filtering disabled
concepts from UMLS, which resulted in entity-
linked mentions at the sentence-level.

Named entity recognition (NER) and normaliza-
tion were two primary sources of errors in biomed-
ical RE, as shown in Kilicoglu et al. (2020). While
SCISPACY is reasonably performant among other
options for biomedical entity linking, it remains
quite noisy in practice; e.g., Vashishth et al. (2021)
showed that SCISPACY had only about a 50% accu-
racy on extracting concepts in benchmark datasets.
Despite this being a limitation, using SCISPACY is
better than relying on string matching alone (Dai
et al., 2019; Amin et al., 2020a; Hogan et al., 2021).

2https://lhncbc.nlm.nih.gov/ii/
information/MBR/Baselines/2019.html

3https://github.com/allenai/scispacy

https://lhncbc.nlm.nih.gov/ii/information/MBR/Baselines/2019.html
https://lhncbc.nlm.nih.gov/ii/information/MBR/Baselines/2019.html
https://github.com/allenai/scispacy
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Figure 2: Type hierarchy in UMLS, where each concept is classified under a taxonomy. The coarse-grained and
fine-grained entity types are referred to as Semantic Group (SG) and Semantic Type (STY) respectively.

Knowledge Base We use UMLS2019AB 4 as
our primary knowledge source and apply a set of
rules, resulting in a distilled and carefully reduced
version of UMLS2019AB. The UMLS Metathe-
saurus (Bodenreider, 2004) covers concepts from
222 source vocabularies, thus being the most ex-
tensive ontology of biomedical concepts. However,
covering all ontologies can be challenging, given
the interchangeable nature of the concepts. For
example, programmed cell death 1 ligand 1 is an
alias of concept C1540292 in the HUGO Gene
Nomenclature Committee ontology (Povey et al.,
2001), and it is an alias of concept C3272500
in the National Cancer Institute Thesaurus. This
makes entity linking more challenging since a sur-
face form can be linked to multiple entity identifiers
and easier to have overlaps between training and
test sets since the same fact may appear in both
with different entity identifiers.

Furthermore, benchmark corpora for biomedi-
cal NER (Doğan et al., 2014; Li et al., 2016) and
RE (Herrero-Zazo et al., 2013; Krallinger et al.,
2017) focuses on specific entity types (e.g. diseases,
chemicals, proteins), and are usually normalized to
a single ontology (Kilicoglu et al., 2020). Follow-
ing this trend, we also focus on a single vocabulary
for Bio-DSRE. We use SNOMED CT, the most
widely used clinical terminology worldwide for
documentation and reporting in healthcare (Chang
et al., 2020).

Since UMLS classifies each entity in a type
taxonomy of semantic types (STY) and seman-
tic groups (SG) (Fig. 2), this allows for narrow-
ing the concepts of interest. Following Chang
et al. (2020), we first consider 8 semantic groups
in SNOMED CT: Anatomy (ANAT), Chemicals

4https://download.nlm.nih.gov/umls/
kss/2019AB/umls-2019AB-full.zip

& Drugs (CHEM), Concepts & Ideas (CONC),
Devices (DEVI), Disorders (DISO), Phenom-
ena (PHEN), Physiology (PHYS), and Proce-
dures (PROC). We then remove CONC and PHEN
as they are far too general to be informative for Bio-
DSRE. For a complete list of semantic types cov-
ered in MEDDISTANT19, see Table A.4. Similarly,
each relation is categorized into a type and has a re-
ciprocal relation in UMLS (Table A.3), which can
result in train-test leakage (Dettmers et al., 2018).

These steps follow Chang et al. (2020), with
the difference that we only consider relations of
type has relationship other than synonymous, nar-
rower, or broader (RO); this is consistent with prior
works in Bio-DSRE. We also exclude uninforma-
tive relations, same_as, possibly_equivalent_to, as-
sociated_with, temporally_related_to, and ignore
inverse relations as generally is the case in RE.

In addition, Chang et al. (2020) ensures that the
validation and test set do not contain any new enti-
ties, making it a transductive learning setting where
we assume all test entities are known beforehand.
However, we are expected to extract relations be-
tween unseen entities in real-world applications
of biomedical RE. To support this setup, we de-
rive MEDDISTANT19 using an inductive KG split
method proposed by Daza et al. (2021) (see Ap-
pendix A in their paper). Table 5 summarizes the
statistics of the KGs used for alignment with the
text. We use split ratios of 70%, 10%, and 20%.
Relationships are defined between CUIs and have
no overlap between training, validation, and test.

3.1 Knowledge-to-Text Alignment

We now describe the procedure for searching fact
triples to match relational instances in text.

Let E and R respectively denote the set of
UMLS CUIs and relation types, and let G ⊆

https://download.nlm.nih.gov/umls/kss/2019AB/umls-2019AB-full.zip
https://download.nlm.nih.gov/umls/kss/2019AB/umls-2019AB-full.zip
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Properties Prior MD19

approximate entity linking 3

unique NA sentences 3

inductive 3

triples leakage 3

NA-type constraint 3

NA-argument role constraint 3

Table 4: MEDDISTANT19 (MD19) key data con-
struction properties compared with the recent broad-
coverage Bio-DSRE works.

Facts Training Validation Testing

Inductive 261,797 48,641 97,861
Transductive 318,524 28,370 56,812

Table 5: The number of raw inductive and transductive
SNOMED KG triples used for alignment with text.

E × R × E denote the set of relationships con-
tained in UMLS. For producing a training-test split,
we first create a set G+ ⊆ E × E of related entity
pairs as:

G+ = {(ei, ej) | 〈ei, p, ej〉 ∈ G ∨ 〈ej , p, ei〉 ∈ G}

Following this, we obtain a set of unrelated entity
pairs by corrupting one of the entities in each pair
in G+ and making sure it does not appear in G+,
obtaining a new set G− ⊆ E × E of unrelated
entities, defined as follows:

G− = {(ei, ej) | (ei, ej) ∈ G+ ∧ (ei, ej) 6∈ G+}
∪ {(ei, ej) | (ei, ej) ∈ G+ ∧ (ei, ej) 6∈ G+}

During the corruption process, we enforce two con-
straints: 1) type constraint – the two entities appear-
ing in each negative pair in G− should belong to
an entity type pair from G+, and 2) role constraint
– the noisy head (tail) entity in negative pair must
have appeared in head (tail) role from a pair in G+.

A naive choice for the negative group could be
G− = (E × E) − G+, for which the current ap-
proach is only a subset; however, enumerating all
possible entity pairs can be infeasible if |E| is high.
Furthermore, we do not assume the completeness
of UMLS, and only derive a fixed sub-graph from
the 2019 version subject to the constraints. This
process is similar to Local-Closed World Assump-
tion (LCWA, Dong et al., 2014; Nickel et al., 2016),
in which a KG is assumed to be only locally com-
plete: if we observed a triple for a specific entity

Summary Entities Relations STY SG
20,256 22 51 6

Split Instances Facts Bags Inst. per Bag NA (%)

Train 450,071 5,455 88,861 5.06 90.0%
Valid 39,434 842 10,475 3.76 91.2%
Test 91,568 1,663 22,606 4.05 91.1%

Table 6: Summary statistics of the MEDDISTANT19
dataset using Inductive SNOMED KG split (Table 5).
The number of relations includes the unknown relation
type (NA).

Figure 3: (Left) Entity distribution based on Semantic
Types. (Right) Relations distribution.

ei ∈ E , then we assume that any non-existing re-
lationship (ei, ej) denotes a false fact and include
them in G−. Therefore, it is likely that if a triple
emerges in a new PubMed article such that it vio-
lates the negative sampling assumptions, it will be
considered a false negative. However, this amount
is negligible due to intractable search space that
scales with the size of the KG.

For each entity-linked sentence, we only con-
sider those sentences that have SNOMED CT enti-
ties and have pairs in G+ and G−. Selected positive
and negative pairs are mutually exclusive and have
no overlap across splits. Since we only consider
unique sentences associated with a pair, this makes
for unique negative training instances, in contrast
to Amin et al. (2020a), who considered generating
positive and negative pairs from the same sentence.
We define negative examples as relational sentences
mentioning argument pairs with unknown relation
type (NA), i.e. there might be a relationship, but the
considered set of relations does not cover it. Our
design choices are summarized in Table 4.

We also remove mention-level overlap across
the splits and apply type-based mention pruning.
Specifically, we pool mentions by type and remove
the sentences which have the mention appearing
more than 10,000 times. We selected the threshold
based on manual inspection of frequent mentions
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Model Bag Strategy AUC F1-micro F1-macro P@100 P@200 P@300 P@1k P@2k

CNN

- AVG 27.3 33.0 16.1 50.0 46.0 44.0 41.0 33.6
- ONE 30.4 36.7 18.2 67.0 58.5 52.6 43.5 34.4

3 AVG 30.4 36.2 19.8 70.0 58.0 56.0 46.0 35.5
3 ONE 34.6 40.4 17.8 77.0 72.5 67.6 50.0 37.3
3 ATT 35.0 40.1 19.8 78.0 73.5 68.6 51.4 36.4

PCNN

- AVG 27.2 32.4 12.9 54.0 49.5 50.3 40.7 33.2
- ONE 29.8 36.7 16.2 66.0 55.5 52.3 44.4 34.2

3 AVG 29.6 37.3 20.5 59.0 50.5 50.0 47.0 35.9
3 ONE 28.6 36.5 18.1 66.0 65.0 62.0 44.7 33.7
3 ATT 32.5 38.2 14.4 71.0 71.0 67.3 49.0 35.2

GRU

- AVG 42.7 47.4 27.8 78.0 74.0 76.0 59.2 42.7
- ONE 46.4 49.3 29.2 86.0 80.5 78.3 61.2 44.9

3 AVG 28.6 37.2 17.9 57.0 57.0 56.0 45.3 35.4
3 ONE 32.6 40.8 17.7 73.0 70.5 66.3 51.2 37.0
3 ATT 36.6 40.9 22.2 77.0 72.0 67.6 51.3 38.7

BERT

- AVG 79.8 76.1 65.3 95.0 96.0 96.0 90.2 67.2
- ONE 79.3 76.1 64.7 93.0 94.0 94.0 89.2 67.4

3 AVG 78.3 73.1 51.1 99.0 97.5 96.6 87.8 66.0
3 ONE 67.0 55.7 44.4 89.0 90.5 91.0 78.7 57.8
3 ATT 64.6 56.4 42.7 89.0 87.5 85.6 75.4 57.9

Table 7: Baseline results for MEDDISTANT19.

in each semantic type, so the information loss is
minimal. At the same time, we still removed gen-
eralized mentions such as disease, drugs, temper-
ature etc. We provide a complete list of mentions
removed by this step in Table A.2. Table 6 shows
the final summary of MEDDISTANT19 using in-
ductive split covering 20,256 entities with 51 types
and 343 type pairs. Fig. 3 shows entity and relation
plots, following a long-tail distribution.

4 Experiments

MEDDISTANT19 is released in a format that is
compatible with the widely adopted RE frame-
work OpenNRE (Han et al., 2019).5 To report
our results, we use the corpus-level Area Under
the Precision-Recall (PR) curve (AUC), Micro-
F1, Macro-F1, and Precision-at-k (P@k) with
k ∈ {100, 200, 300, 1k, 2k}, and the sentence-
level Precision, Recall, and F1. Due to the im-
balanced nature of relational instances, following
Gao et al. (2021), we report Macro-F1 values, and
following Hogan et al. (2021), we report sentence-
level RE results on relationships, including fre-
quent and rare triples.

5https://github.com/suamin/
MedDistant19

4.1 Baselines

Our baseline experiments largely follow the setup
of Gao et al. (2021) with the addition of GRU mod-
els.6 For sentence encoding, we use CNN (Liu
et al., 2013), PCNN (Zeng et al., 2015), bidirec-
tional GRU (Hong et al., 2020), and BERT (De-
vlin et al., 2019). We use GloVe (Pennington et al.,
2014) and Word2Vec (Mikolov et al., 2013) for CN-
N/PCNN/GRU models and initialize BERT with
BioBERT (Lee et al., 2020).

We trained our models both at sentence-level
and at bag-level. In contrast, prior works only
considered bag-level training for Bio-DSRE. The
sentence-level setup is similar to standard RE (Wu
and He, 2019), with the difference that the evalua-
tion is conducted at the bag-level. We also consider
different pooling strategies, namely average (AVG),
which averages the representations of sentences in
a bag, at least one (ONE, Zeng et al., 2015), which
generates relation scores for each sentence in a bag,
and then selects the top-scoring sentence, and atten-
tion (ATT), which learns an attention mechanism
over the sentences within a bag.

Table 7 presents our main results. In all the cases,
the BERT sentence encoder performed better than

6https://github.com/pminervini/
meddistant-baselines

https://github.com/suamin/MedDistant19
https://github.com/suamin/MedDistant19
https://github.com/pminervini/meddistant-baselines
https://github.com/pminervini/meddistant-baselines
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Figure 4: Precision-Recall curves for BERT baselines.

Model 1-1 1-M M-1

BERT+bag+AVG 66.6 48.3 66.6
BERT+bag+ONE 52.6 33.2 47.1
BERT+bag+ATT 56.4 30.7 26.4

Table 8: Averaged F1-micro score on relation-specific
category for bag pooling methods. The categories are
defined using the cardinality of head and tail SGs.

others since pre-trained language models are ef-
fective for entity-centric transfer learning (Amin
and Neumann, 2021), domain-specific fine-tuning
(Amin et al., 2019), and can implicitly store rela-
tional knowledge during pre-training (Petroni et al.,
2019). This trend is similar to the general domain,
and the BERT-based experiments provide consis-
tent baselines lacking in the prior works. Similar
to the general domain (Gao et al., 2021), we find
sentence-level training to perform better than the
bag-level. However, BERT+bag+AVG had much
better precision for the top-scoring triples at the
expense of long-tail performance. At the sentence-
level, those instances that have been correctly la-
beled by distant supervision (e.g. Fig. 1) provide
enough learning signal, given the generalization
abilities of LMs. However, the model is supposed
to jointly learn from clean and noisy samples in bag-
level training, thus limiting its overall performance.
But, we do not find this trend for CNN/PCNN.
Instead, the bag-level models performed slightly
better except for GRU. We further plot Precision-
Recall (PR) curves for BERT-based baselines in
Fig. 4.

Pooling Strategies In all cases, AVG proved to
be a better pooling strategy; this finding is consis-
tent with prior works. Both Amin et al. (2020a)

Model P R F1

All Triples

BERT+sent+AVG 0.79 0.65 0.71
BERT+bag+AVG 0.72 0.64 0.68

Common Triples

BERT+sent+AVG 0.98 0.62 0.76
BERT+bag+AVG 0.96 0.60 0.74

Rare Triples

BERT+sent+AVG 0.97 0.70 0.82
BERT+bag+AVG 0.95 0.73 0.83

Table 9: Sentence-level RE comparing BERT baselines
trained at bag and sentence-level with AVG pooling on
Rare and Common subsets of MEDDISTANT19. The
triples include NA relational instances.

and Gao et al. (2021) found ATT to produce less ac-
curate results with LMs, which we also find to hold
true for MEDDISTANT19. To further study the im-
pact of bag-level pooling strategies, we analyze the
relation category-specific results. Following Chang
et al. (2020), we grouped the relations based on
cardinality, where the cardinality is defined as for a
given relation type if the set of head or tail entities
belongs to only one semantic group, then it has a
cardinality one otherwise, M (many). The results
are shown in Table 8 for bag-level BERT-based
models with three pooling schemes. On average,
models struggled the most with the 1-M category
due to a lack of enough training signal to differ-
entiate between heterogeneous entity types pooled
over instances in a bag. While we would expect
symmetric performance, to some extent, in 1-M
and M-1 categories, the difference highlights that
the KB-direction plays a role in Bio-DSRE, which
previously has been used to de-noise the training
signal (Amin et al., 2020a).

Long-Tail Performance Following Hogan et al.
(2021), we also perform sentence-level triples eval-
uation of BERT-based encoders trained at sentence-
level and bag-level. The authors divided the
triples (including NA instances) into two categories:
those with 8 or more sentences are defined as
common triples and others as rare triples. Ta-
ble 9 shows these results. We note that both
training strategies performed comparably on rare
triples with BERT+sent+AVG more precise than
BERT+bag+AVG at the expense of low recall.
However, we find a noticeable difference in com-
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Figure 5: Ablation showing the effect of different text
encoding methods with MEDDISTANT19.

mon triples where BERT+sent+AVG performed
better. At the bag level, the model can overfit to cer-
tain type and mention heuristics, whereas sentence-
level training allows more focus on context. The
current state-of-the-art model from Hogan et al.
(2021) creates a bag of instances by abstracting en-
tity pairs belonging to the same semantic type pair
into a single bag, thus producing heterogeneous
bags. Due to such bag creation, it is not suited for
sentence-level models.

4.2 Analysis
Context, Mention, or Type? RE models are
known to heavily rely on information from entity
mentions, most of which is type information, and
existing datasets may leak shallow heuristics via
entity mentions that can inflate the prediction re-
sults (Peng et al., 2020). To study the importance
of mentions, contexts, and entity types in MED-
DISTANT19, we take inspiration from (Peng et al.,
2020; Han et al., 2020) and conduct an ablation
of different text encoding methods. We consider
entity mentions with special entity markers (Amin
et al., 2020a) as the Context + Mention (CM) set-
ting, which is common in RE with LMs. We then
remove the context and only use mentions, the Only
Mention (OM) setting, which reduces to KG-BERT
(Yao et al., 2019) for relation prediction. We then
only consider the context by replacing subject and
object entities with special tokens, resulting in the
Only Context (OC) setting. Lastly, we consider two
type-based (STY) variations as Only Type (OT) and
Context + Type (CT). We train the models at the
sentence-level and evaluate them at the bag-level.

We observe in Fig. 5 that the CM method had
the highest performance, but surprisingly, OM per-
formed quite well. This highlights the ability of

Split AUC F1-micro F1-macro

Inductive 79.9 76.2 65.4
Transductive 79.6 73.3 65.9

Table 10: BERT+sent+AVG performance on corpora
created with an inductive and transductive set of triples.

LMs to memorize the facts and act as soft KBs
(Petroni et al., 2019). This trend is also consis-
tent with general-domain (Peng et al., 2020). The
poor performance in the OC setting shows that the
model struggles to understand the context, more
pronounced in noise-prone distant RE than in super-
vised RE. Our CT setup can be seen as a sentence-
level extrapolation of the AMIL model (Hogan
et al., 2021), which struggles to perform better than
the baseline (OM). However, comparing OC with
CT, it is clear that the model benefits from type
information as it can help constrain the space of
the relations. Using only the type information had
the least performance as the model fails to disam-
biguate between different entities belonging to the
same type.

Inductive or Transductive? To study the im-
pact of transductive and inductive splits (Table 5),
we created another Bio-DSRE corpus using trans-
ductive train, validation, and test triples. The cor-
pus generated differs from the inductive one, but it
can offer insights into the model’s ability to handle
seen (transductive) and unseen (inductive) men-
tions. As shown in Table 10, the performance us-
ing inductive is slightly better than transductive for
corpus-level extractions in terms of AUC. However,
the F1-macro score is better for transductive. We
conclude that the model can learn patterns that ex-
ploit mentions and type information to extrapolate
to unseen mentions in the inductive setup.

Does Expert Knowledge Help? We now con-
sider several pre-trained LMs with different knowl-
edge capacities, specific to biomedical and clinical
language understanding, to gain insights about the
state-of-the-art encoders’ performance and effec-
tiveness on the MEDDISTANT19 benchmark.

We use BERT (Devlin et al., 2019) as baseline.
We next consider only those pre-trained models
trained with masked language modeling (MLM)
objectives using domain-specific corpora. This in-
cludes ClinicalBERT (Alsentzer et al., 2019), Blue-
BERT (Peng et al., 2019), BioBERT (Lee et al.,
2020), SciBERT (Beltagy et al., 2019), and Pub-
MedBERT (Gu et al., 2021). We categorize these
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Encoder Knowledge Type AUC
Biomedical Clinical Type Triples Synonyms

NON-EXPERT MODELS

BERT 0.72
ClinicalBERT 3 3 0.73

BlueBERT 3 0.78
SciBERT 3 0.78
BioBERT 3 0.79

PubMedBERT 3 0.80

EXPERT KNOWLEDGE MODELS

MedType 3 3 0.77
KeBioLM 3 3 0.80

UmlsBERT 3 3 3 0.75
SapBERT 3 3 0.78

Table 11: Expert and non-expert pre-trained language
models performance on MEDDISTANT19.

models as non-experts.
Secondly, we consider expert models that modify

the MLM objective or introduce new pre-training
tasks using external knowledge, such as UMLS.
MedType (Vashishth et al., 2021), initialized with
BioBERT, is pre-trained to predict semantic types.
KeBioLM (Yuan et al., 2021), initialized with Pub-
MedBERT, uses relational knowledge by initial-
izing the entity embeddings with TransE (Bordes
et al., 2013), improving entity-centric tasks, includ-
ing RE. UmlsBERT (Michalopoulos et al., 2021),
initialized with ClinicalBERT, modifies MLM to
mask words belonging to the same CUI and further
introduces semantic type embeddings. SapBERT
(Liu et al., 2021), initialized with PubMedBERT,
introduces a metric learning task for clustering syn-
onyms together in an embedding space.

Table 11 shows the results of these sentence en-
coders fine-tuned on the MEDDISTANT19 dataset
at sentence-level with AVG pooling. With-
out domain-specific knowledge, BERT performs
slightly worse than the lowest-performing biomed-
ical model, highlighting the presence of shallow
heuristics in the data common to the general and
biomedical domains. While domain-specific pre-
training improves the results, similar to Gu et al.
(2021), we find clinical LMs underperform on the
biomedical RE task. There was no performance
gap between BlueBERT, SciBERT, and BioBERT.
However, PubMedBERT brought improvement,
consistent with Gu et al. (2021).

For expert knowledge-based models, we noted a
negative impact on performance. While we would
expect type-based models, MedType and Umls-
BERT, to bring improvement, their effect can be
attributed to overfitting certain types and patterns.
KeBioLM, initialized with PubMedBERT, has the

same performance despite seeing the triples used in
MEDDISTANT19 during pre-training, highlighting
the difficulty of the Bio-DSRE. SapBERT, which
uses the knowledge of synonyms, also hurt Pub-
MedBERT’s performance, suggesting that while
synonyms can help in entity linking, RE is a more
challenging task in noisy real-world scenarios.

5 Discussion

In the biomedical domain, health experts are of-
ten concerned with a particular type of interac-
tion, for example, drug-target and gene-disease.
However, the number of ontologies is constantly
growing (222 in UMLS2019AB), thus a growing
need for a more general purpose relation extraction
benchmark. Broad-coverage benchmarks exist for
biomedical entity linking, such as MedMentions
(Mohan and Li, 2018), but they still lack many
important concepts involved in relational learning.
The research community has come up with several
RE benchmarks (see Table 1), but the challenge re-
mains as new entities, and relations emerge with the
constant growth of biomedical literature. Hence,
constructing a broad benchmark for biomedical
RE is challenging due to domain requirements;
nonetheless, having an accurate benchmark could
offer a utility for future research. We supplement
this discussion with Appendix D for a note on limi-
tations.

Further, the train-test overlap highlights the need
to systematically assess the proposed benchmarks
for inconsistencies that can overestimate the model
performance. Similar assessments have shown up
in QA generalization where train-test overlap in-
flates the model performance (Liu et al., 2022). Re-
lated to RE generalization, Rosenman et al. (2020)
exposed shallow heuristics while Taillé et al. (2021)
showed that neural RE models could retain triples,
primarily due to type hints. MEDDISTANT19 par-
tially addresses these issues by an inductive setup
that can offer insights into the generalization trend
in biomedical RE using unseen entities.

6 Conclusion

In this work, we highlighted a need for an accu-
rate broad-coverage benchmark for Bio-DSRE. We
bridged this gap by utilizing SNOMED CT for con-
structing the benchmark and laying out the best
practices. We thoroughly evaluated the benchmark
with baselines and state-of-the-art, showing there
is room to conduct further research.
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Legal & Ethical Considerations

Does the dataset contain information that
might be considered sensitive or confidential?
(e.g. personally identifying information) We use
PubMed MEDLINE abstracts (Canese and Weis,
2013)7 that are publicly available and is distributed
by National Library of Medicine (NLM). These
texts are in the biomedical and clinical domains
and are almost entirely in English. It is standard to
use this corpus as a text source in several biomed-
ical LMs (Gu et al., 2021). We cannot claim the
guarantee that it does not contain any confidential
or sensitive information e.g, it has clinical find-
ings mentioned throughout the abstracts such as
A twenty-six-year-old male presented with high-
grade fever, which identifies the age and gender of
a patient but not the identity. We did not perform a
thorough analysis to distill such information since
it is in the public domain.

References
Asma Ben Abacha and Pierre Zweigenbaum. 2011.

Automatic extraction of semantic relations between
medical entities: a rule based approach. Journal of
Biomedical Semantics, 2(5):1–11.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Asso-
ciation for Computational Linguistics.

Christoph Alt, Aleksandra Gabryszak, and Leonhard
Hennig. 2020. TACRED revisited: A thorough eval-
uation of the TACRED relation extraction task. In
7https://lhncbc.nlm.nih.gov/ii/

information/MBR/Baselines/2019.html

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1558–
1569, Online. Association for Computational Lin-
guistics.

Christoph Alt, Marc Hübner, and Leonhard Hennig.
2019. Fine-tuning pre-trained transformer language
models to distantly supervised relation extraction.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
1388–1398, Florence, Italy. Association for Compu-
tational Linguistics.

Saadullah Amin, Katherine Ann Dunfield, Anna
Vechkaeva, and Günter Neumann. 2020a. A Data-
driven Approach for Noise Reduction in Distantly
Supervised Biomedical Relation Extraction. In
Proceedings of the 19th SIGBioMed Workshop on
Biomedical Language Processing, pages 187–194,
Online. Association for Computational Linguistics.

Saadullah Amin and Günter Neumann. 2021. T2NER:
Transformers based Transfer Learning Framework
for Named Entity Recognition. In Proceedings of
the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 212–220. Association
for Computational Linguistics.

Saadullah Amin, Günter Neumann, Katherine Ann
Dunfield, Anna Vechkaeva, Kathryn Annette Chap-
man, and Morgan Kelly Wixted. 2019. MLT-DFKI
at CLEF eHealth 2019: Multi-label Classification of
ICD-10 Codes with BERT. In Conference and Labs
of the Evaluation Forum (Working Notes), pages 1–
15.

Saadullah Amin, Stalin Varanasi, Katherine Ann Dun-
field, and Günter Neumann. 2020b. LowFER:
Low-rank Bilinear Pooling for Link Prediction. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pages 257–268.
PMLR.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Olivier Bodenreider. 2004. The unified medical
language system (UMLS): integrating biomed-
ical terminology. Nucleic acids research,
32(suppl_1):D267–D270.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,

http://dx.doi.org/10.1186/2041-1480-2-S5-S4
http://dx.doi.org/10.1186/2041-1480-2-S5-S4
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/2020.acl-main.142
https://doi.org/10.18653/v1/2020.acl-main.142
https://lhncbc.nlm.nih.gov/ii/information/MBR/Baselines/2019.html
https://lhncbc.nlm.nih.gov/ii/information/MBR/Baselines/2019.html
https://doi.org/10.18653/v1/P19-1134
https://doi.org/10.18653/v1/P19-1134
https://doi.org/10.18653/v1/2020.bionlp-1.20
https://doi.org/10.18653/v1/2020.bionlp-1.20
https://doi.org/10.18653/v1/2020.bionlp-1.20
https://aclanthology.org/2021.eacl-demos.25
https://aclanthology.org/2021.eacl-demos.25
https://aclanthology.org/2021.eacl-demos.25
http://ceur-ws.org/Vol-2380/paper_67.pdf
http://ceur-ws.org/Vol-2380/paper_67.pdf
http://ceur-ws.org/Vol-2380/paper_67.pdf
https://proceedings.mlr.press/v119/amin20a.html
https://proceedings.mlr.press/v119/amin20a.html
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html


2269

Lake Tahoe, Nevada, United States, pages 2787–
2795.

Àlex Bravo, Janet Piñero, Núria Queralt-Rosinach,
Michael Rautschka, and Laura I. Furlong. 2015. Ex-
traction of relations between genes and diseases
from text and large-scale data analysis: implica-
tions for translational research. BMC Bioinformat-
ics, 16(1):1–17.

Kathi Canese and Sarah Weis. 2013. PubMed: the bib-
liographic database. The NCBI Handbook, 2:1.

David Chang, Ivana Balažević, Carl Allen, Daniel
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A UMLS

This section presents additional details about
UMLS, including the final set of relations con-
sidered in MEDDISTANT19 (with their inverses
obtained from the UMLS) and a complete list of
semantic types (STY). Since, in relation extraction
(RE), we are not interested in bidirectional extrac-
tions, therefore it is sufficient to only model one
direction. Previous studies (Xing et al., 2020; Amin
et al., 2020a; Hogan et al., 2021) fail to account
the inverse relations, and with naive split, it can
lead to train-test leakages. For more discussion
on the relations in UMLS, including transitive clo-
sures, see Section 3.1 in Chang et al. (2020). We
used UMLS2019AB to be consistent with the prior
works.

A.1 UMLS Files

In UMLS (Bodenreider, 2004), a concept is pro-
vided with a unique identifier called Concept
Unique Identifier (CUI), a term status (TS), and
whether or not the term is preferred (TTY) in a
given vocabulary, e.g., SNOMED CT. The con-
cepts are stored in a file distributed by UMLS called
MRCONSO.RRF.8 Each concept further belongs to
one or more semantic types (STY), provided in
a file called MRSTY.RRF, with a type identifier
TUI. There are 127 STY9 in the UMLS2019AB
version, which are mapped to 15 semantic groups
(SG).10. The relationships between the concepts
are organized in a multi-relational graph distributed
in a file called MRREL.RRF11. The final set of rela-
tions considered in MEDDISTANT19 is presented
in Table A.3.

Note that we only consider relations belonging to
the RO (has a relationship other than synonymous,
narrower, or broader) type, which is consistent
with prior works. This consideration ignores rela-
tions such as isa, which defines hierarchy among
relations.

8https://www.ncbi.nlm.nih.gov/books/
NBK9685/table/ch03.T.concept_names_and_
sources_file_mr/

9https://lhncbc.nlm.nih.gov/ii/tools/
MetaMap/Docs/SemanticTypes_2018AB.txt

10https://lhncbc.nlm.nih.gov/ii/tools/
MetaMap/Docs/SemGroups_2018.txt

11https://www.ncbi.nlm.nih.gov/books/
NBK9685/table/ch03.T.related_concepts_
file_mrrel_rrf/?report=objectonly

Figure A.1: Relative proportions of the entities present
in MEDDISTANT19, based on the semantic groups.

A.2 Semantic Groups and Semantic Types
As we noted in Fig. 3, entities and relations follow
a long-tail distribution. This has a major impact
on the quality of the dataset created. For exam-
ple, in the general domain, the standard bench-
mark NYT10 (Riedel et al., 2010) has more than
half of the positive instances belonging to one rela-
tion type /location/location/contains.
Fig. A.1 shows the relative proportions of the se-
mantic groups in MEDDISTANT19.

Further, we used an inductive split set with 70,
10, and 20 proportions of train, validation, and test
splits for constructing MEDDISTANT19. Below is
an example instance from the dataset in OpenNRE
(Han et al., 2019) format:

{
"text": "In one patient who
showed an increase of plasma
prolactin level , associated
with low testosterone and
LH , a microadenoma
of the pituitary gland
( prolactinoma ) was
detected .",
"h": {

"id": "C0032005",
"pos": [130, 145],
"name": "pituitary gland"

},
"t": {

"id": "C0033375",
"pos": [148, 160],
"name": "prolactinoma"

},
"relation": "finding_site_of"

}

/-----------------------------/

https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.concept_names_and_sources_file_mr/
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.concept_names_and_sources_file_mr/
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.concept_names_and_sources_file_mr/
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemanticTypes_2018AB.txt
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemanticTypes_2018AB.txt
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemGroups_2018.txt
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/SemGroups_2018.txt
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.related_concepts_file_mrrel_rrf/?report=objectonly
https://www.ncbi.nlm.nih.gov/books/NBK9685/table/ch03.T.related_concepts_file_mrrel_rrf/?report=objectonly
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{
"text": "Severe heart disease
may result in cardiac cirrhosis
in the elderly , with ascites
and hepatomegaly .",
"h": {
"id": "C0018799",
"pos": [7, 20],
"name": "heart disease"

},
"t": {
"id": "C0085699",
"pos": [35, 52],
"name": "cardiac cirrhosis"

},
"relation": "cause_of"

}

/-----------------------------/

{
"text": "Complications
closely associated to the
osteosynthesis appeared
only in instable
fractures ( 7 % ) .",
"h": {
"id": "C0016658",
"pos": [81, 90],
"name": "fractures"

},
"t": {
"id": "C0016642",
"pos": [40, 54],
"name": "osteosynthesis"
},
"relation":
"direct_morphology_of"

}

/-----------------------------/

{
"text": "Gluten proteins ,
the culprits in celiac
disease ( CD ) , show
striking similarities in
primary structure with
human salivary proline-rich
proteins ( PRPs ) .",
"h": {

"id": "C2362561",
"pos": [0, 15],
"name": "Gluten proteins"

},
"t": {

"id": "C0007570",
"pos": [34, 48],
"name": "celiac disease"

},
"relation":
"causative_agent_of"

}

/-----------------------------/

{
"text": "Postherpetic
neuralgia is an unfortunate
aftermath of shingles ,
and is most likely to
develop , and most
persistent , in elderly
patients .",
"h": {

"id": "C0032768",
"pos": [0, 22],
"name": "Postherpetic
neuralgia"

},
"t": {

"id": "C0019360",
"pos": [54, 62],
"name": "shingles"

},
"relation": "occurs_after"

}

B UMLS License Agreement

To use the MEDDISTANT19 benchmark, the user
must have signed the UMLS agreement12. The
UMLS agreement requires those who use the
UMLS (Bodenreider, 2004) to file a brief report
once a year to summarize their use of the UMLS.
It also requires acknowledging that the UMLS con-
tains copyrighted material and that those restric-
tions are respected. The UMLS agreement requires
users to agree to obtain agreements for each copy-
righted source before its use within a commercial
or production application.

12https://uts.nlm.nih.gov/license.html

https://uts.nlm.nih.gov/license.html
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C Risks

While our work does not have direct risk, we pro-
vide the dataset while asking users to respect the
UMLS license before downloading it. This user
agreement is needed to use our benchmark and to
respect the source ontologies licenses. We pro-
vide this with the hope to accelerate reproducible
research in Bio-DSRE by having ready-to-use cor-
pora, with only the condition that the user has ob-
tained the license. We provide users with this note
and hope this will be respected. However, there
is a risk that users may download the data and re-
distribute it without respecting the UMLS license.
In case of such exploitation, we will add the UMLS
authentication layer to protect data, where the user
will be required to provide a UMLS API key, which
will be validated, and only then will the data be al-
lowed to be downloaded.

D Limitations

We provide several limitations of our work as pre-
sented in its current form. MEDDISTANT19 aims
to introduce a new benchmark with good practices.
However, it is still limited in its scope of ontologies
considered. It also has a limited subset of relation
types provided by UMLS. For example, the cur-
rent benchmark does not include an important rela-
tion may_treat, because it is outside SNOMED CT.
Since MEDDISTANT19 is focused on SNOMED
CT, it lacks coverage of important protein-protein
interactions, drug side-effects, and relations involv-
ing genes as provided by RxNorm (Nelson et al.,
2011), Gene Ontology (Consortium, 2018), etc.

MEDDISTANT19 is automatically-created and
susceptible to noise and thus needs to be ap-
proached carefully as a potential source for biomed-
ical knowledge. While the dataset was not created
to represent true biomedical knowledge, it has the
potential to be treated as a reliable reference.

E Experimental Setup and
Hyperparameters

We followed the experimental setup of Gao et al.
(2021) for BERT-based experiments. Specifically,
we used batch size 64, with a learning rate of 2e-
5, maximum sequence length 128, and bag size 4.
We used a single NVIDIA Tesla V100-32GB for
BERT-based experiments. Each experiment took
about 1.5hrs, with half an hour per epoch. We
also attempted to perform a grid search for BERT

Encoder Bag Size Batch Size Embedding

CNN+sent+AVG - 128 biowordvec
CNN+sent+ONE - 128 biowordvec
CNN+bag+AVG 8 128 GloVe
CNN+bag+ONE 16 256 GloVe
CNN+bag+ATT 8 256 GloVe

PCNN+sent+AVG - 128 biowordvec
PCNN+sent+ONE - 128 biowordvec
PCNN+bag+AVG 4 128 GloVe
PCNN+bag+ONE 8 128 GloVe
PCNN+bag+ATT 8 128 GloVe

GRU+sent+AVG - 128 biowordvec
GRU+sent+ONE - 128 biowordvec
GRU+bag+AVG 8 128 biow2v
GRU+bag+ONE 16 256 GloVe
GRU+bag+ATT 16 128 GloVe

Table A.1: Best hyperparameters for CNN, PCNN, and
GRU sentence encoders.

experiments, but it was too expensive to continue;
therefore, we abandoned those jobs. Since we only
used the base models, they amount to 110 million
parameters. During fine-tuning, we do not freeze
any parts of the model.

For CNN and PCNN, we performed grid search
with Adam (Kingma and Ba, 2015) optimizer us-
ing learning rate 0.001 for 20 epochs with: batch
size ∈ {128, 256}, bag size ∈ {4, 8, 16, 32},
200-d word embeddings ∈ {Word2Vec (Mikolov
et al., 2013)13, GloVe (Pennington et al., 2014)},
and with (test-time) pooling ∈ {ONE,AVG}
when using sentence-level training and pooling in
{ONE,AVG,ATT} when using bag-level training.
We ran this job on a cluster with support for array
jobs. These amounted to over 700 experiments and
took 3 days. We fixed other hyperparameters from
literature (Han et al., 2018), with position dimen-
sion set to 5, kernel size set to 3, and dropout set to
0.5. These are also default in OpenNRE (Han et al.,
2019). The hyperparameters that had the most in-
fluence were batch size, bag size, and pre-trained
word embeddings. All the experiments reported in
this work are with a single run.

For sentence tokenization with ScispaCy, it took
9hrs with 32 CPUs (4GB each) and a batch size
of 1024 to extract 151M sentences. Further, the
ScispaCy entity linking job took about half TB of
RAM with 72 CPUs (6GB each) with a batch size
of 4096 with 40hrs of run-time to link 145M unique
sentences.

13We used domain-specific word embeddings biowordvec
and biow2v following Marchesin and Silvello (2022).
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Semantic Type 10k-20k 20k-30k ≥ 30k

Body Part, Organ, or Organ Component bladder, heart, retinal, lungs, spinal, kidneys, colon eyes, lung, kidney, intestinal liver, brain
Organism Function death period, blood pressure -
Body Location or Region head - -

Therapeutic or Preventive Procedure
injection, prevention, chemotherapy, application stimulation, delivery intervention, procedure, removal, operation
resection, infusion, treatments, therapeutic
surgical treatment, CT, surgical, transplantation

Neoplastic Process cancer - tumor, tumors
Disease or Syndrome obesity, disorder, disorders diseases, stroke disease, infection, condition, hypertension
Laboratory Procedure test, erythrocytes - cells
Diagnostic Procedure US, biopsy, ultrasound MRI -
Finding lesion, interaction, mass, difficulty, dependent abnormal presence, positive, negative, severe, lesions
Hormone insulin - -
Biologically Active Substance amino acids, glucose, ATP protein, proteins
Pharmacologic Substance medication - drugs, drug
Injury or Poisoning strains injury, exposure damage
Tissue tissue, bone marrow, tissues - -
Organism Attribute male - temperature, age
Immunologic Factor antibody, antibodies - -
Health Care Activity investigations examination assessment
Body Substance plasma, blood, skin - -
Body System - cardiovascular -
Mental Process - - concentrations, concentration
Congenital Abnormality - abnormalities -

Table A.2: Semantic types affected by type-based mention pruning with removed mentions placed in their respec-
tive frequency bins as discussed in Section 3.1.

Relation Inverse Relation

finding_site_of has_finding_site
associated_morphology_of has_associated_morphology

method_of has_method
interprets is_interpreted_by

direct_procedure_site_of has_direct_procedure_site
causative_agent_of has_causative_agent
active_ingredient_of has_active_ingredient

interpretation_of has_interpretation
component_of has_component

indirect_procedure_site_of has_indirect_procedure_site
direct_morphology_of has_direct_morphology

cause_of due_to
direct_substance_of has_direct_substance

uses_device device_used_by
focus_of has_focus

direct_device_of has_direct_device
procedure_site_of has_procedure_site

uses_substance substance_used_by
associated_finding_of has_associated_finding

occurs_after occurs_before
is_modification_of has_modification

Table A.3: (Left) 21 relations included in MEDDISTANT19, excluding NA relation. (Right) For completeness, we
also include their inverse relations.
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SG TUI Semantic Type

ANAT

T017 Anatomical Structure
T029 Body Location or Region
T023 Body Part, Organ, or Organ Component
T030 Body Space or Junction
T031 Body Substance
T022 Body System
T021 Fully Formed Anatomical Structure
T024 Tissue

CHEM

T116 Amino Acid, Peptide, or Protein
T195 Antibiotic
T123 Biologically Active Substance
T103 Chemical
T200 Clinical Drug
T196 Element, Ion, or Isotope
T126 Enzyme
T131 Hazardous or Poisonous Substance
T125 Hormone
T129 Immunologic Factor
T130 Indicator, Reagent, or Diagnostic Aid
T197 Inorganic Chemical
T114 Nucleic Acid, Nucleoside, or Nucleotide
T109 Organic Chemical
T121 Pharmacologic Substance
T192 Receptor
T127 Vitamin

DEVI
T074 Medical Device
T075 Research Device

DISO

T020 Acquired Abnormality
T190 Anatomical Abnormality
T049 Cell or Molecular Dysfunction
T019 Congenital Abnormality
T047 Disease or Syndrome
T033 Finding
T037 Injury or Poisoning
T048 Mental or Behavioral Dysfunction
T191 Neoplastic Process
T046 Pathologic Function
T184 Sign or Symptom

PHYS

T201 Clinical Attribute
T041 Mental Process
T032 Organism Attribute
T040 Organism Function
T042 Organ or Tissue Function
T039 Physiologic Function

PROC

T060 Diagnostic Procedure
T065 Educational Activity
T058 Health Care Activity
T059 Laboratory Procedure
T063 Molecular Biology Research Technique
T062 Research Activity
T061 Therapeutic or Preventive Procedure

Table A.4: 51 semantic types (STY) along with their TUIs and semantic groups (SG) covered in MEDDISTANT19.


