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Abstract

Achieving good performance on few-shot or
zero-shot datasets has been a long-term chal-
lenge for NER. The conventional semantic
transfer approaches on NER will decrease
model performance when the semantic distri-
bution is quite different, especially in Chinese
few-shot NER. Recently, prompt-tuning has
been thoroughly considered for low-resource
tasks. But there is no effective prompt-tuning
approach for Chinese few-shot NER. In this
work, we propose a prompt-based Parent and
Child BERT (PCBERT) for Chinese few-shot
NER. To train an annotating model on high-
resource datasets and then discover more im-
plicit labels on low-resource datasets. We fur-
ther design a label extension strategy to achieve
label transferring from high-resource datasets.
We evaluated our model on Weibo and the
other three sampling Chinese NER datasets,
and the experimental result demonstrates our
approach’s effectiveness in few-shot learning.

1 Introduction

NER is a fine-grained sequence labeling task, a
slight change in each token will significantly im-
pact the model results. A big challenge of NER is
to enhance the performance in low-resource sce-
narios. There are some prior works (Yang et al.,
2017; Lee et al., 2017; Abhishek et al., 2017) that
demonstrate that transfer learning can improve the
model performance. However, they all rely on simi-
lar semantic distribution between source and target
datasets, and both datasets should contain rich an-
notated data. A significant difficulty of few-shot
or zero-shot NER is the lack of annotated labels
in practical application. Another challenge of Chi-
nese NER is the implicit word boundary, which
makes it difficult for the model to distinguish the
entity boundary. The lexicon-based approach is a
standard solution to solve the above issue. But the
performance of traditional lexicon-based models in
Chinese few-shot NER is still unsatisfactory.

Recently, prompt-tuning (Lester et al., 2021) on
the pre-trained language models (PLMs) has been
thoroughly considered for low-resource scenarios
because the prompt-tuning process is highly con-
sistent with the target task. Previous work (Cui
et al., 2021; Ma et al., 2022; Chen et al., 2021) has
demonstrated that prompt-tuning can more effec-
tively enhance the model performance on few-shot
NER compared with fine-tuning. However, when
the semantic distribution is quite different, using
prompt-tuning for semantic transfer learning will
decrease model performance, which implies the se-
mantic transfer is unsuitable for NER in the above
situation. Besides, the implicit boundaries of Chi-
nese words make the size of the prompt template
uncertain and require a higher ability to judge its
boundary. Moreover, using inappropriate prompt
construction engineering on Chinese few-shot NER
datasets can not improve model performance effec-
tively but increases training time.

In this work, we introduce an enhanced lexicon
feature and a prompt-based label transfer approach
to address the above issues. We leverage the lex-
icon feature to enhance Chinese word boundary
distinction ability in few-shot NER datasets. We
further design a label extension strategy to achieve
label transferring from high-resource datasets. We
propose a Parent and Child BERT(PCBERT) model
powered by a label lexicon adapter and a prompt-
tuning component to integrate the lexicon fea-
ture and the implicit label feature. And it is
worth noting that our implementation with a trans-
former encoder is more efficient than some decod-
ing template-based approaches. We evaluated our
model on Weibo(Peng and Dredze, 2015) and the
other three samplings of Chinese NER datasets,
and the experimental result demonstrates our ap-
proach’s effectiveness in few-shot learning. Our
model outperforms other related work in all exper-
iments and achieves state-of-the-art F1 scores on
Weibo.
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The contributions of this work can be summa-
rized as follows:

1. We introduce a label extension strategy to
implement the label transfer learning in few-shot
NER, which can effectively enhance the model
performance.

2. We propose a new PCBERT model consisting
of a P-BERT component and a C-BERT component
to integrate the lexicon feature and the implicit
label feature.

3. Experimental results verify that our ap-
proaches are suitable for Chinese few-shot NER
transfer learning and achieve excellent performance
on few-shot learning.

2 Preliminaries

2.1 Problems of Few-shot NER

In the few-shot NER tasks, given the high-resource
source domain dataset S = {PS , LS}, where the
PS =

{(
X1

S , Y
1
S

)
, . . . ,

(
XR

S , Y
R
S

)}
is the set of

input text and corresponding labels, and LS =
{l1, . . . , lm} is the set of entity label categories
with size m. Then given the low-resource target
domain dataset T = {PT , LT }, the task aims to en-
hance the model performance in the target domain
dataset by utilizing the resources of the source do-
main dataset. However, the traditional NER trans-
fer learning approaches face two main challenges:
the semantic distribution difference between the
source and target domains; the same category la-
bels have different definitions in different datasets.

2.2 Label Extension Strategy

Formally, we denote DP (X) to represent the se-
mantic space of input text X , andDE (L) represent
the semantic distribution that contains label l ∈ L.
The correlation between model performance p and
the semantic distribution can be explained as:

p ∝ DP (XS) ∩ DP (XT )

DP (XS)−DP (XT )
(1)

p ∝ DE (LS) ∩ DE (LT )

DE (LS)−DE (LT )
(2)

when the semantic space gap between the source
domain and the target domain is large, the se-
mantic intersection of S and T is quite limited
compared with the semantic difference between S
and T (i.e., DP (XS) ∩ DP (XT ) � DP (XS) −
DP (XT )). The semantic deviation makes the pre-
trained model more difficult to fine-tune than the

uniform distribution model and even decreases per-
formance in the target domain. Therefore, it is
tough to carry out cross-domain semantic migra-
tion on few-shot NER datasets.

In this work, we use label extension to enrich
the label features in T . As shown in Equation 2,
DE (LS) ∩ DE (LT ) represents the semantic distri-
bution range that implicitly contains the intersec-
tion of LS and LT . It may include entity labels
from S and does not exist in T , making label exten-
sion reasonable as T is a low-resource dataset with
fewer labels. The label extension can be imple-
mented with an annotation model with fully super-
vised training on S and annotating on T . However,
some issues may impact the label extension accu-
racy. One is the annotation model performance; an-
other is that the same category labels may explain
the different meanings between S and T . These
issues can be treated as label noise that affects the
target task performance. To address the above is-
sues, we adopt a prompt-based approach with a
label fusion layer in our proposed model to reduce
the influence of label noise.

3 Method

In this paper, we propose a two-stage model named
PCBERT for Chinese few-shot NER, which con-
sists of the Parent and the Child component. Both
components are implemented with BERT (Devlin
et al., 2019), and we defined them as P-BERT and
C-BERT, respectively. The overall model structure
of PCBERT is illustrated in Figure 1. The P-BERT
is a prompt-based model to extract the implicit
label extension features in the target dataset; the
C-BERT is a lexicon-based model inspired by the
LEBERT (Liu et al., 2021a) and further incorpo-
rates multi-label features of each lexicon. In the
first stage, the P-BERT pre-trains on the label exten-
sion dataset. Then the P-BERT is set to be frozen
in the second stage, providing label extension fea-
tures to fine-tune the C-BERT. The structure and
functionality are described in the following.

3.1 P-BERT

The primary function of P-BERT is prompt-tuning
on the label extension dataset and providing prompt
features for C-BERT. The label extension dataset
is constructed by the method mentioned in Sec-
tion 2.2. The inspiration for prompt-tuning comes
from models like GPT-3 (Brown et al., 2020), and
T5 (Raffel et al., 2020), which transform the tar-



2201

Figure 1: The overall structure of PCBERT. The P-BERT is trained on the label extension dataset in the prompt-
tuning stage and provides label extension features for the C-BERT in the fine-tuning stage. While fine-tuning, the
P-BERT is set to be frozen.

get task into text-to-text form and directly model
text using PLMs. In this work, our prompt-tuning
approach is designed toward the target task, consist-
ing of a template function TP (X,Y ) that converts
the raw input to prompt input. The label in the
template input is a textual string instead of an en-
tity category index, which helps leverage implicit
knowledge from PLMs and reduces the influence
of label noise in the label extension dataset.

We use vanilla BERT as P-BERT, each input
X = {x1, . . . , xn} in the label extension dataset
is converted into prompt input Xprompt with the
TP (X,Y ). The prompt input consists of the fol-
lowing parts:

Xprompt = [CLS]X [SEP]TP (X,Y ) (3)

where the first part ofXprompt is the origin input
X , and the second part is label templates computed
by the TP (X,Y ). [CLS] and [SEP] are the spe-
cial token of BERT. Each label template follows
the form as “[Index]is[Z]”, where the index slot
[Index] indicates each token position inX , and the
label slot [Z] is the Chinese word that represents
the label Y . Each label template is concatenated
with a comma. Then, the label slot is padded to the
same size by the tokenizer to adapt parallel train-
ing better and locate the output features. During
prompt-tuning, the label slot of each input will be
masked with the [MASK] token, and its task goal

is to restore the masked label tokens. Then the loss
function can be defined with the cross-entropy loss:

Lprompt = −
∑
i

zi log (p (ẑi | X)) (4)

where zi ∈ Z and ẑi is the corresponding pre-
dicted token.

3.2 C-BERT
Chinese NER tasks are more challenging because
the word boundary of sentences is not explicit.
Many works (Sui et al., 2019; Li et al., 2020; Zhang
and Yang, 2018) have demonstrated that leverag-
ing lexicon information can effectively enhance the
model performance. In few-shot NER, the lexi-
con information is vital in promoting the model to
understand token-level semantic information. For
each input sequence X , we construct a lexicon tree
following the method of (Liu et al., 2021a). As
shown in Figure 2, the lexicon set of token xi
can be embedded as ωi = {ωi1, . . . ωim}, where
xi ∈ R1×H ,ωi ∈ Rm×H′ , H is the hidden dimen-
sion of each token and H ′ is the hidden dimen-
sion of each word. Moreover, we further intro-
duce a label set for each word. In this work, we
adopt a BERT classifier model pre-trained on the
high-resource dataset to predict top-k labels em-
beddings Lij =

{
L1
ij , . . . , L

k
ij

}
for ωij , where

Lij ∈ Rk×H∗ , H∗ is the hidden dimension of a
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Figure 2: Each token xi corresponds to a lexicon set,
and each lexicon corresponds to a label set.

label string. It is worth noting that each lexicon
comes from the external dictionary and is a subset
of the input.

A variant of LEBERT is designed to serve as
C-BERT in our implementation. As shown in Fig-
ure 1, C-BERT’s word embedding is the sum of
the P-BERT and its word embeddings. We pro-
pose a Label Lexicon Adapter (LLA) after the first
encoder layer in C-BERT to leverage the lexicon
and corresponding labels information. Figure 3.
displays the detailed structure of C-BERT, where
Ho

1 = {ho1, . . . , hon} is the set of original output
hidden states in the first encoder layer, where the
n is the length of the input sequence. In the LLA,
the input contains the hidden states Ho from the
first encoder layer; the lexicon set ωi in each token
position and corresponding top-k label embedding
Li = {Li1, . . . Lim}.

We use label attention to compute the relevance
between multi-label and lexicon context features,
and ξij = [hoi ;ωij ] is the concatenation between
word ωij and the hidden state hoi in position i. Then
we transform the multi-label features to align the
lexicon context features:

L̃ij =W
L
2

(
tanh

(
W L

1L
T
ij + b

L
1

))
+ bL2 (5)

where WL
1 ∈ R(H′+H)×H∗ and WL

2 ∈
R(H′+H)×(H′+H) are weight matrices; bL1 , bL2 are
biases. The label attention score can be calculated
as:

αij = softmax
(
ξijW

L
attnL̃ij

)
(6)

where W L
attn ∈ R(H′+H)×(H′+H) is the label

attention weight matrix. The multi-label features
can be further computed by the weighted sum:

FL
ij =

1

k

k∑
t=1

αijL̃
t
ij (7)

Figure 3: The implementation details of C-BERT.

We fuse features of lexicons with the correspond-
ing label sets to enhance the lexicon representation,
and the multi-label features can effectively alleviate
the label noise from P-BERT:

Fω
ij =

[
ωij ;F

L
ij

]
(8)

The computed lexicon features Fω
i are directly

injected into the BERT following (Liu et al., 2021a)
with the word attention, the lexicon information is
calculated by:

ω̃ij =W
ω
2

(
tanh

(
W ω

1F
ωT

ij + bω1

))
+ bω2 (9)

βij = softmax (hoiW
ω
attnω̃ij) (10)

FX
ij =

1

m

m∑
j=1

βijω̃ij (11)

where W ω
1 ∈ RH×(H′+H∗), Wω

2 ∈ RH×H are
weight matrices; W ω

attn ∈ RH×H is the word at-
tention weight matrix; and bω1 , bω2 are biases.

Finally, the fusion features of each token are
computed by:

H ′1 = Ho
1 + FX (12)



2203

3.3 Interactive Training
During fine-tuning, the primary function of P-
BERT is to provide label extension features for
C-BERT. We intercept the label templates part of
the P-BERT output, and the label extension fea-
tures FP

i = {f1, . . . , fd} are the label slot part
corresponding to each label template, where d is
the max size of the label string. Then the prompt
feature for each token is computed as:

Pi =
1

d

d∑
j=1

fj (13)

We use a bidirectional LSTM (BiLSTM) model
to enhance the timing information of C-BERT out-
put:

HB = BiLSTM(Ho
N ) (14)

where Ho
N =

{
h̃1, . . . h̃n

}
is the C-BERT out-

put hidden states.
To further mitigate the impact of the potential

label noise, an interactive attention mechanism is
applied to calculate the relevance between the out-
put hidden states of BiLSTM HB =

{
ĥ1, . . . ĥn

}
and the prompt features P :

γi = softmax
(
ĥiW

P
attnP

T
i

)
(15)

P̃i =

n∑
i=1

γiPi (16)

where W P
attn ∈ RH×H is the interactive atten-

tion weight matrix, and the fusion features ϕ can
be calculated as:

ϕi =
[
ĥi; P̃i

]
(17)

Finally, fusion features are taken into a Condi-
tional Random Field (CRF) layer and predict the
label for each token. And the loss function of fine-
tuning can be defined by minimizing the negative
likelihood loss as:

L = −
∑
i

log(p(Y |X)) (18)

4 Experiments

4.1 Datasets
We investigate the effectiveness of our model on
four Chinese NER datasets. Including Weibo (Peng

Table 1: The statistics of the target datasets.

Dataset Train Dev Test Entity Types
Weibo 1.4k 0.27k 0.27k 8
Ontonotes 15.7k 4.3k 4.3k 4
Resume 3.8k 0.46k 0.48k 8
MSRA 46.4k - 4.4k 3

Table 2: The statistics of the high-resource dataset.

Subset Train Dev Test Entity Types
CLUENER 10.7k 1.34k 1.34k 10
CNERTA 38.5k 4.44k 4.44k 5
RenMinRiBao 50.7k 4.63k 4.63k 4
Others 27.0k 2.83k 2.83k 10
Sum 126.9k 13.2k 13.2k 18

and Dredze, 2015), Ontonotes 5.0 (Weischedel
et al., 2011), Resume (Zhang and Yang, 2018) and
MSRA (Levow, 2006). The statistics of the target
datasets are shown in Table 1, and we randomly
sample a small train set from each original dataset
during training to simulate the few-shot scene.

Besides, we construct a high-resource dataset to
implement the label extension. The high-resource
dataset is integrated with multiple datasets, includ-
ing CLUENER (Xu et al., 2020), CNERTA (Sui
et al., 2021), RenMinRiBao (Xia et al., 2005), and
datasets from unknown sources. The high-resource
dataset covers plenty of data and labels, and it
can accurately support the label expansion on the
low-resource datasets. The statistics of the high-
resource dataset are shown in Table 2.

4.2 Experimental Settings

We implement the PCBERT based on the Trans-
formers (Wolf et al., 2020) BERT with 12 layers
of transformer in this work. The encoder hidden
dimension H of P-BERT and C-BERT is 768; the
word embedding dimension of the lexicon H ′ and
label string H∗ are both set as 200.

We use the Adam optimizer in all experiments.
Before training all the target datasets, we first train
a pre-labeled model on the high-resource dataset to
annotate the extension entity labels for each train
set and generate the label extension train set. Then
our P-BERT is trained on the label extension train
set. The learning rate of prompt-tuning is set as
1e-4. During fine-tuning on the original train set,
the P-BERT is set as frozen, and we use an initial
learning rate of 1e-5 for the C-BERT and 1e-2 for
other parameters. We sample the same size from all
datasets for few-shot learning, the max sequence
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length is set as 150, and we train a maximum epoch
number of 20 in all datasets.

To evaluate our proposed PCBERT, we compare
it with the following approaches:

BERT. (Devlin et al., 2019) The BERT model
with a token classifier is the baseline of the BERT-
based NER approach.

BERT-LC. Based on the vanilla BERT, we fur-
ther add a BiLSTM-CRF layer behind the BERT
output layer to better compare with our proposed
PCBERT.

Lattice LSTM. (Zhang and Yang, 2018) A
lexicon-based Chinese NER approach is imple-
mented with a lattice-structure LSTM model.

FLAT. (Li et al., 2020) An enhanced lattice-
structured NER approach. By constructing a flat
structure Transformer to fully leverage the lattice
information and utilize the parallelism of GPUs.

LEBERT. (Liu et al., 2021a) A lexicon en-
hanced the Chinese sequence labeling model. In-
tegrating external lexicon knowledge into BERT
with a Lexicon Adapter layer.

LEBERT-LC. Based on the vanilla LEBERT,
we further add a BiLSTM layer behind the BERT
output layer in LEBERT to better compare with our
proposed PCBERT.

4.3 Overall Results

We randomly sample different samples from the
dataset in Table 1 to simulate NER in the few-shot
scenario. The train set sampling sizes K are 250,
500, 1000, and 1350 (the max size of Weibo is
1350), respectively. We use the standard F1-score
evaluation metrics to compare the performance.

Table 3 illustrates the experimental results of the
Chinese few-shot NER. Our model outperforms
all related approaches when K is 250 and achieves
the best result on all the samples of Weibo and
Ontonotes. Besides, our model performance in
Weibo at K=250 outperforms other approaches at
K=1350, demonstrating that our approach achieves
excellent performance on the few-shot dataset.

The experimental results also indicate that all
models’ performance in different datasets is quite
different even under the same sample size. We
speculate that it is related to the semantic environ-
ment quality of the dataset rather than the number
of entity types. Furthermore, our PCBERT shows
more significant advantages on Weibo and Resume
datasets with worse semantic environment quality.

Table 3: The overall results on Chinese Few-shot NER.

Dataset Methods K=250 K=500 K=1000 K=1350

Weibo

BERT 56.42 62.21 61.27 61.21
BERT-LC 65.10 71.14 72.03 72.45
Lattice LSTM 40.37 49.54 53.80 58.27
FLAT 51.42 56.95 58.70 64.27
LEBERT 65.83 67.12 70.34 69.12
LEBERT-LC 66.92 71.11 71.80 73.42
PCBERT 73.52 73.49 76.58 77.88

Ontonotes

BERT 63.85 69.50 71.33 72.42
BERT-LC 65.69 73.54 74.97 77.19
Lattice LSTM 39.71 45.46 54.54 57.48
FLAT 49.01 46.35 49.34 57.44
LEBERT 69.48 69.01 73.78 74.84
LEBERT-LC 70.26 69.89 73.83 76.01
PCBERT 74.42 75.62 78.33 81.52

Resume

BERT 53.80 62.64 69.36 70.65
BERT-LC 92.26 94.66 95.16 96.41
Lattice LSTM 85.63 89.60 92.01 93.13
FLAT 84.62 90.77 92.97 87.79
LEBERT 89.15 92.56 94.02 95.19
LEBERT-LC 91.60 93.03 95.40 95.16
PCBERT 93.42 94.01 94.96 95.97

MSRA

BERT 68.44 72.28 81.21 82.28
BERT-LC 79.01 83.13 87.84 89.32
Lattice LSTM 54.69 63.61 74.27 76.31
FLAT 59.62 70.20 80.79 64.95
LEBERT 79.11 85.18 87.77 89.35
LEBERT-LC 80.92 86.09 88.11 88.70
PCBERT 81.08 85.25 87.88 89.72

4.4 Analysis and Discussion

Ablation Study

We analyze the impact of each module in our
PCBERT by designing several experiments. Ta-
ble 4 presents the performance comparison be-
tween PCBERT and other ablation models. First,
we observe a performance decline when remov-
ing the P-BERT component, demonstrating that P-
BERT plays a vital role in model performance. We
then observe that its results outperform LEBERT
and LEBERT-LC on Weibo and Ontonotes when
K is less than or equal to 500, which verifies that
multi-label features can improve the model perfor-
mance in the few-shot scenario. Moreover, after
removing the label extension strategy (LEA) by
using the original annotated dataset to train the
model, the performance also decreases, indicating
that the label extension strategy is effective in our
approach.

To further analyze the impact of the label exten-
sion strategy, we replace the label extension dataset
with the high-resource dataset to train the P-BERT
(LEB). The results in Table 4 show a severe model
performance decrease when directly adopting the
high-resource dataset for prompt-tuning. Further-
more, the phenomenon becomes more prominent
when the sample size K becomes smaller. And we
observed there are different decrease degrees in
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Table 4: Results of the Ablation Study on Chinese Few-
shot NER.

Dataset Methods K=250 K=500 K=1000 K=1350

Weibo

PCBERT 73.52 73.49 76.58 77.88
-P-BERT 67.28 71.85 70.02 72.66
-LEA 67.06 70.31 71.88 72.73
-LEB 61.95 67.01 68.62 69.33

Ontonotes

PCBERT 74.42 75.62 78.33 81.52
-P-BERT 72.94 72.42 72.55 74.66
-LEA 69.13 72.10 74.24 72.62
-LEB 62.23 66.07 68.86 70.09

Resume

PCBERT 93.42 94.01 94.96 95.97
-P-BERT 91.18 92.99 94.41 95.41
-LEA 91.28 94.33 94.96 95.55
-LEB 87.17 91.64 92.97 93.96

MSRA

PCBERT 81.08 85.25 87.88 89.72
-P-BERT 80.59 85.50 86.95 87.88
-LEA 82.77 84.32 86.20 84.32
-LEB 79.09 81.36 83.61 84.75

Figure 4: t-SNE visualization of each sampled train set
and the high-resource dataset.

different datasets. For example, the performance
on Weibo decreased by 11.57% (K=250), while
MSRA decreased by only 1.99% (K=250). We
present the visualization of semantic distribution
between each sampled (K=1350) train set and the
high-resource dataset (HRD) in Figure 4. The
sentence-level representation is obtained from the
BERT embedders onto a 2-dimensional space using
t-SNE (Van der Maaten and Hinton, 2008). It can
be concluded from Figure 4 and Table 4 that when
the semantic space gap between the source dataset
and the target dataset increases, transfer training
directly from the source dataset will decrease the
model performance.

Impact of Feature Injection

The results in Table 3 and Table 4 have demon-
strated that the injected lexicon and multi-label fea-
tures in C-BERT can effectively enhance the model
performance. We speculate that multi-type lexi-
con or multi-label features injection can improve

Table 5: Comparison between LEBERT with random
initial lexicon embeddings (LEBERT-RW) and original
LEBERT.

Dataset Methods K=250 K=500 K=1000 K=1350

Weibo LEBERT 65.83 67.12 70.34 69.12
LEBERT-RW 64.08 67.16 68.89 70.42

Ontonotes LEBERT 69.48 69.01 73.78 74.84
LEBERT-RW 66.65 71.41 73.93 75.96

Resume LEBERT 89.15 92.56 94.02 95.19
LEBERT-RW 90.77 93.44 94.77 95.68

MSRA LEBERT 79.11 85.18 87.77 89.35
LEBERT-RW 79.34 83.83 88.74 88.59

the model’s perception of fine-grained information
and judgment of entity boundaries. Moreover, we
further adopt LEBERT with random initial lexi-
con embeddings (LEBERT-RW) to compare the
original LEBERT on four datasets. As shown in
Table 5, the performance of LEBERT-RW is simi-
lar to LEBERT, which indicates that the boundary
information introduced by feature injection is more
critical to the model than the semantic distribution
of the word embeddings.

Impact of Label Extension

To further analyze the impact of the label extension
strategy, we evaluate the PCBERT performance
when each extension label is removed from the
label extension train set of Weibo (K=1350). Fig-
ure 6 illustrates the results, sorted in descending
order according to each metric. We can conclude
that, in most cases, removing an extension label
will cause the model performance to decrease. It
also shows that in the Weibo dataset, introducing
any extension label will bring the final performance
improvement in prompt-tuning, which indirectly
indicates that our prompt-based PCBERT can ef-
fectively suppress the label extension noise.

Sentence Length

Figure 5 shows the F1-score trend of all baselines
and PCBERT on the four datasets in Table 1 with
the sampling size of 250. As shown in the results,
we discover that PCBERT significantly improves
performance in all sentence length intervals of the
Weibo and Ontonotes datasets. Comparing the re-
sults of LEBERT and LEBERT-LC, it can be ob-
served that adding the BiLSTM layer improves
performance in the sampled Weibo and MSRA
datasets. One potential reason is that the BiLSTM
has a better awareness of directionality and short-
distance information. To achieve more stable per-
formances, we add the BiLSTM layer behind the
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Figure 5: F1-scores against the sentence length.

Figure 6: F1-score, Precision, and Recall comparison of
PCBERT on the Weibo dataset when removing each ex-
tension entity label, where NULL indicates the original
label extension train set.

C-BERT.

5 Related Works

Chinese NER

NER is a fine-grained sequence labeling task. With
the advent of PLMs, the benchmark of Chinese
NER has been dramatically improved. Pre-trained
models based on large-scale corpus (Devlin et al.,
2019; Lewis et al., 2020; Radford et al., 2019) pro-
vide excellent semantic representation for Chinese
NER and are used by many works. Some work adds
a softmax on PLMs (Yang, 2019) and achieves sig-
nificant performance; others (Peters et al., 2018;
Zheng et al., 2021; Nan et al., 2021) take PLMs as
the backbone model to further enhance the original
model performance.

Despite the remarkable achievements of PLMs,
most existing models still need to be improved
in judging Chinese word boundaries. Lexicon-
based approaches (Zhang and Yang, 2018; Ma
et al., 2020; Gui et al., 2019; Zhao et al., 2020)
can effectively alleviate this issue. In particular,
many lexicon-based works like Lex-BERT (Zhu
and Cheung, 2021) need a high-quality vocabulary
with entity-type information. (Zhang and Yang,
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2018) proposed the Lattice LSTM approach to
leverage all potential words in each segment and
only need word vectors, which provided great in-
spiration for the later work. Recently many works
(Xiao et al., 2019; Sperber et al., 2019; Zhang et al.,
2019a,b) presented lattice-based transformers to
promote parallel computing performance and fuse
the PLMs representation into the model. How-
ever, most lattice-based transformers only fuse dic-
tionary features in external input sequences with-
out integrating them into the PLM structure. (Liu
et al., 2021a) proposed LEBERT integrates lexicon
knowledge into BERT layers and achieved state-
of-the-art performance in multiple Chinese NER
datasets.

Prompt-tuning

With the emergence of GPT-3 (Brown et al., 2020),
the target-task-oriented pre-training form attracted
a lot of attention (Schick and Schütze, 2021).
Prompt-tuning (Lester et al., 2021) can be regarded
as a new template-based pre-training paradigm. Un-
like fine-tuning, the downstream task of prompt-
tuning is homologous to pre-training. Prompt-
tuning is more dependent on the prior distribution
of the model, while fine-tuning is more dependent
on the posterior distribution (Qiu et al., 2020).

Designing appropriate prompt templates for dif-
ferent tasks is crucial in prompt-tuning perfor-
mance (Liu et al., 2021b). There is no universal
template for all NLP tasks. (Jiang et al., 2020; Yuan
et al., 2021; Haviv et al., 2021) proposed discrete
prompts to disassemble and replace sentence com-
ponents for text inference tasks; and (Gao et al.,
2021; Ben-David et al., 2021) designed the gener-
ation prompt to build generated templates by au-
tomatically extracting semantic information from
sentences.

In NER tasks, the model requires more spe-
cific semantic fine-grained information. Therefore,
prompt templates construction approaches for other
natural language understanding tasks can not work
out well on NER tasks. (Ma et al., 2022) put for-
ward a template-free approach to complete the en-
tity template using the word vector mean of the
same entity in the dataset. And (Chen et al., 2021)
use an encoder-decoder model to translate the NER
task into a prompt-based generation task.

6 Conclusion

In this paper, we propose a Parent and Child BERT
for Chinese few-shot NER tasks and achieve state-
of-the-art results on the Weibo dataset. Our model
consists of P-BERT and C-BERT, where P-BERT is
a prompt-based model for providing richer seman-
tic information, and C-BERT is a lexicon-based
model. The experimental results demonstrate that
our PCBERT effectively improves the performance
on the Chinese few-shot NER task. In the future,
we will further analyze the performance improve-
ment of label extension strategy in domain-specific
datasets.
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