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Abstract

Continual relation extraction (CRE) aims to ex-
tract relations towards the continuous and itera-
tive arrival of new data, of which the major chal-
lenge is the catastrophic forgetting of old tasks.
In order to alleviate this critical problem for en-
hanced CRE performance, we propose a novel
Continual Relation Extraction framework with
Contrastive Learning, namely CRECL, which
is built with a classification network and a pro-
totypical contrastive network to achieve the
incremental-class learning of CRE. Specifically,
in the contrastive network a given instance is
contrasted with the prototype of each candi-
date relations stored in the memory module.
Such contrastive learning scheme ensures the
data distributions of all tasks more distinguish-
able, so as to alleviate the catastrophic forget-
ting further. Our experiment results not only
demonstrate our CRECL’s advantage over the
state-of-the-art baselines on two public datasets,
but also verify the effectiveness of CRECL’s
contrastive learning on improving CRE perfor-
mance.

1 Introduction

In some scenarios of relation extraction (RE), mas-
sive new data including new relations emerges con-
tinuously, which can not be solved by traditional
RE methods. To handle such situation, continual
relation extraction (CRE) (Wang et al., 2019) was
proposed. Due to the limited storage and comput-
ing resources, it is impractical to store all training
data of previous tasks. As new tasks are learned
where new relations emerge constantly, the model
tends to forget the existing knowledge about old re-
lations. Therefore, the problem of catastrophic for-
getting damages CRE performance severely (Hass-
abis et al., 2017; Thrun and Mitchell, 1995).

In recent years, some efforts have focused on the
alleviating catastrophic forgetting in CRE, which
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Figure 1: The data distribution map (better viewed in
color) after training a classification model for an old
task and then a new task. Many different relation data
(different colors) of the old (dots) and new (crosses) task
are mixed due to the catastrophic forgetting, making it
hard to distinguish the new task’s relations from the old
task’s relations.

can be divided into consolidation-based methods
(Kirkpatrick et al., 2017), dynamic architecture
methods (Chen et al., 2015; Fernando et al., 2017)
and Memory-based methods (Chaudhry et al.,
2018; Han et al., 2020; Cui et al., 2021). Despite
these methods’ effectiveness on CRE, most of them
have not taken full advantage of the negative rela-
tion information in all tasks to alleviate catastrophic
forgetting more thoroughly, result in suboptimal
CRE performance.

Through our empirical studies, we found that
the catastrophic forgetting of a model results in the
indistinguishability between the data (instances)
distributions of all tasks, making it hard to distin-
guish the relations of all tasks. We illustrate it with
the data distribution map after training a relation
classification model for a new task, as shown in
Figure 1 where the dots and crosses represent the
data of the old and new task respectively, and dif-
ferent colors represent different relations. It shows
that the data points of different colors in either
dot group (old task) or cross group (new task) are
distinguishable. However, many dots and crosses
are mixed, making it hard to discriminate the new
task’s relations from the old task’s relations. There-
fore, making the data distributions of all tasks more



1886

distinguishable is crucial to achieve better CRE.
To address above issue, in this paper we pro-

pose a novel Continual Relation Extraction frame-
work with Contrastive Learning, namely CRECL,
which is built with a classification network and a
contrastive network. In order to fully leverage the
information of negative relations to make the data
distributions of all tasks more distinguishable, we
design a prototypical contrastive learning scheme.
Specifically, in the contrastive network of CRECL,
a given instance is contrasted with the prototype of
each candidate relation stored in the memory mod-
ule. Such sufficient comparisons ensure the align-
ment and uniformity between the data distributions
of old and new tasks. Therefore, the catastrophic
forgetting in CRECL is alleviated more thoroughly,
resulting in enhanced CRE performance. In addi-
tion, different to the classification for a fixed (rela-
tion) class set as (Han et al., 2020; Cui et al., 2021),
CRECL achieves an incremental-class learning of
CRE which is more feasible to real-world CRE
scenarios.

Our contributions in this paper are summarized
as follows:

1. We propose a novel CRE framework CRECL
that combines a classification network and a pro-
totypical contrastive network to fully alleviate the
problem of catastrophic forgetting.

2. With the contrasting-based mechanism,
our CRECL can effectively achieve the class-
incremental learning which is more practical in
real-world CRE scenarios.

3. Our extensive experiments justify our
CRECL’s advantage over the state-of-the-art
(SOTA) models on two benchmark datasets, TA-
CRED and FewRel. Furthermore, we provide our
deep insights into the reasons of the compared mod-
els’ distinct performance.

2 Related Work

In this section, we briefly introduce continual learn-
ing and contrastive learning which are both related
to our work.

Continual learning (Delange et al., 2021; Parisi
et al., 2019) focuses on the learning from a con-
tinuous stream of data. The models of continual
learning are able to accumulate knowledge across
different tasks without retraining from scratch. The
major challenge in continual learning is to allevi-
ate catastrophic forgetting which refers to that the
performance on previous tasks should not signif-

icantly decline over time as new tasks come in.
For overcoming catastrophic forgetting, most re-
cent works can be divided into three categories.
1) Regularized-based methods impose constraints
on the update of parameters. For example, LwF
approach (Li and Hoiem, 2016) enforces the net-
work of previously learned tasks to be similar to the
network of current task by knowledge distillation.
However, LwF depends heavily on the data in new
task and its relatedness to prior tasks. EWC (Kirk-
patrick et al., 2016) adopts a quadratic penalty on
the difference between the parameters for old and
new tasks. It models the parameter relevance with
respect to training data as a posterior distribution,
which is estimated by Laplace approximation with
the precision determined by the Fisher Information
Matrix. WA (Zhao et al., 2020) maintains discrimi-
nation and fairness among the new and old task by
adjust the parameters of the last layer. 2) Dynamic
architecture methods change models’ architectural
properties upon new data by dynamically accom-
modating new neural resources, such as increased
number of neurons. For example, PackNet (Mallya
and Lazebnik, 2017) iteratively assigns parameter
subsets to consecutive tasks by constituting prun-
ing masks, which fixes the task parameter subset
for future tasks. DER (Yan et al., 2021) proposes
a novel two-stage learning approach to get more
effective dynamically expandable representation.
3) Memory-based methods explicitly retrain the
models on a limited subset of stored samples dur-
ing the training on new tasks. For example, iCaRL
(Rebuffi et al., 2017) focuses on learning in a class-
incremental way, which selects and stores the sam-
ples most close to the feature mean of each class.
During training, distillation loss between targets ob-
tained from previous and current model predictions
is added into overall loss, to preserve previously
learned knowledge. RP-CRE (Cui et al., 2021)
introduces a novel pluggable attention-based mem-
ory module to automatically calculate old tasks’
weights when learning new tasks.

Since classification-based approaches require
relation schema in the classification layer,
classification-based models have an unignorable
drawback on class-incremental learning. Many
researchers leverage metric learning to solve this
problem. (Wang et al., 2019; Wu et al., 2021) uti-
lize sentence alignment model based on Margin
Ranking Loss (Nayyeri et al., 2019), while lack the
intrinsic ability to perform hard positive/negative
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Figure 2: The overall structure of our proposed CRECL. The framework is built with a shared encoding layer, a
classification network and a contrastive network.

mining, resulting in poor performance. Recently,
contrastive learning has been widely imported into
self-supervised learning frameworks in many fields
including computer vision, natural language pro-
cessing and so on. Contrastive learning is a dis-
criminative scheme that aims to group similar sam-
ples more closer and diverse samples far from each
other. (Wang and Liu, 2021) proves that contrastive
learning can promote the alignment and stability of
data distribution, and (Khosla et al., 2020) verifies
that using modern batch contrastive approaches,
such as InfoNCE loss (Oord et al., 2018), outper-
forms traditional contrastive losses, such as margin
ranking loss, and also achieves good results in su-
pervised contrastive learning tasks.

3 Methodology

3.1 Task Formalization

The CRE task aims to identify the relation be-
tween two entities expressed by one sentence in
the task sequence. Formally, given a sequence
of K tasks {T1, T2, . . . , TK}, suppose Dk and Rk

denote the instance set and relation class set of
the k-th task Tk, respectively. Dk contains Nk in-
stances {(x1, t1, y1), . . . , (xNk

, tNk
, yNk

)} where
instance (xi, ti, yi), 1 ≤ i ≤ Nk represents that
the relation of entity pair ti in sentence xi is
yi ∈ Rk. One CRE model should perform
well on all historical tasks up to Tk, denoted as
T̃k = ∪k

i=1Ti, of which the relation class set is
R̃k = ∪k

i=1Ri. We also adopt an episodic mem-
ory module Mr = {(x1, t1, r), . . . , (xL, tL, r)} to
store typical instances of relation r, similar to (Han
et al., 2020; Cui et al., 2021), where L is the mem-

ory size (typical instance number). The overall
episodic memory for the observed relations in all
tasks is M̃k = ∪r∈R̃k

Mr.

3.2 Framework Overview

The overall structure of our CRECL is depicted
in Figure 2, which has two major components,
i.e., a classification network and a contrastive net-
work. The procedure of learning the current task in
CRECL is described by the algorithm in Alg. 1.

At first, suppose the current task is Tk, the repre-
sentation of each instance in Tk is obtained through
the encoder and dropout layer shared by the two
networks. In the classification network, each in-
stance’s relation is predicted based on its represen-
tation (line 1-3). Then, we apply K-means algo-
rithm over the instance representations to select L
typical instances for each relation in Tk, which are
used to generate the relation prototypes and stored
into memory M̃k for the subsequent contrast (line
4-13). There are two training processes in the con-
trastive network. The first is to compare current
task instances with the stored relation prototypes
of T̃k (line 14-17). The second is to compare each
typical instance with all relation prototypes which
are both stored in M̃k (line 18-24). These two
training procedures ensure each compared instance
keep distance from sufficient negative relations in
R̃k. Therefore, the data distributions of R̃k are
distinguishable enough to alleviate CRECL’s catas-
trophic forgetting of old tasks. Next, we detail the
operations in CRECL.
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Algorithm 1: Training procedure for Tk

Input: Dk, Rk, R̃k−1, M̃k−1

Output: M̃k

1 for i = 1 to epochs1 do
2 update Encoder EN , Dropout layer DR and

Classifier CL by loss L1 on Dk;
3 end
4 R̃k = R̃k−1 ∪Rk;
5 p = ∅;
6 for r ∈ Rk do
7 dr = {d|d ∈ Dk, yd = r};
8 hr=DR(EN(dr))//Eq. 1;
9 apply K-means to all hr and store L typical

instances into memory Mk;
10 get prototype pr from Mk by Eq. 4;
11 p = p ∪ pr;
12 end
13 M̃k = M̃k−1 ∪Mk;
14 generate contrastive training data Ck by random

sampling from Dk;
15 for i = 1 to epochs2 do
16 update EN , DR, PJ by loss L2 on Ck and p;
17 end
18 generate contrastive training data C̃k by random

sampling from M̃k;
19 for i = 1 to epochs3 do
20 if yi ∈ C̃k is old class then
21 use Eq. 1 to generate M embeddings;
22 end
23 update EN , DR, PJ by loss L2 on C̃k and p;
24 end

3.3 Shared Encoding Layer

The classification network and the contrastive net-
work in CRECL are designed to promote each
other, where the former classifies the current task
based on its instance embeddings, and the latter
effectively adjusts instance embeddings to keep
uniformity and alignment. According to this prin-
ciple, the two networks share the same layers in
CRECL.

Specifically, for an instance i of current task Tk,
we use special tokens to represent the entities in i as
(Cui et al., 2021). As shown in Figure 2, the head
entity and tail entity in i are represented by two spe-
cial position tokens [E11, E12] and [E21, E22],
respectively. The embedding of instance i before
the dropout layer, denoted as ei ∈ R2h, is the
concatenation of token embeddings of [E11, E12]
and [E21, E22] generated by BERT (Devlin et al.,
2019) where h is the dimension of two token em-
beddings. Then, ei is fed into the dropout layer to
obtain i’s hidden embedding as

hi =
(
W Dropout(ei) + b

)
∈ Rd, (1)

where W ∈ Rd×2h (d is dimension of hidden

layer) and b ∈ Rd are both trainable parameters. In
CRECL, hi is regarded as i’s representation.

3.4 Classifying Current Task
With instance i’s representation hi, i’s probability
distribution denoted as Pi ∈ R|Rk|, is calculated in
the classification network as

Pi = softmax
(
W 1 LN

(
GELU(hi)

)
+ b1

)
,
(2)

where W 1 ∈ R|Rk|×d, b1 ∈ R|Rk| are trainable
parameters, and |Rk| is the relation number of cur-
rent task Tk which is much less than the relation
number of all tasks. LN(·) is layer normalization
operation. Then, classification loss for current task
Tk is calculated as

L1 = − 1

Nk

Nk∑
i=1

|Rk|∑
r=1

yi,r logPr
i , (3)

where yi,r=1 if i’s real relation label is r, otherwise
yi,r=0. Pr

i is the r-th entry in Pi.

3.5 Generating Relation Prototypes
After learning current task, for each relation r in
current task, we first apply K-means algorithm
upon the representations (hi) of all instances be-
longing to r to cluster them into L clusters. Then,
for each cluster, we select the instance most closest
to the centroid of this cluster as one typical instance.
Thus, L typical instances of relation r are selected
and then stored into the memory module. With
the stored typical instances of r, we average their
representations as r’s prototype pr, that is

pr =
1

L

L∑
i=1

hr
i , (4)

where hr
i is a typical instance i’s representation of

relation r. Such prototype best represents r since
the L typical instances have the minimal distance
sum to the L cluster centroids. Another merit of
such prototypes for representing relations is their
insensitivity to the value of L.

3.6 Contrastive Network
In this contrastive network, the instances are com-
pared with the relation prototypes stored in the
memory module to refine the data distributions
of all tasks, so as to alleviate CRECL’s catas-
trophic forgetting. Its basic principle is that, an
instance’s representation should be close to the pro-
totype of its (positive) relation, and be far away
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from the prototypes of the rest (negative) rela-
tions. Please note that, the positive and negative
relations are identified by the real labels of the
training instances. Thus it is different from the
self-supervised contrastive learning in other mod-
els (Chen et al., 2020).

Contrastive Learning Objective As shown in
the right part of Figure 2, the contrastive network
is built with a twin-tower architecture. In the left
tower, for a relation r, its prototypes pr ∈ Rd are
obtained by Eq. 4. Then, r’s compared embedding
is denoted as sr ∈ R

d
2 and computed as

sr = W 3GELU(W 2pr + b2) + b3, (5)

where W 2 ∈ Rd×d, b2 ∈ Rd, W 3 ∈ R
d
2
×d, b3 ∈

R
d
2 are both trainable parameters.
In the right tower, for a compared instance i, its

compared embedding is denoted as si ∈ R
d
2 and

obtained by the same operation in Eq. 5 where only
pr is replaced by hi from Eq. 1.

For each instance i in current task Tk, suppose
the compared embedding of i’s relation yi is syi
which can also be obtained by Eq. 5, since the
typical instances of yi have been stored in M̃k be-
fore. We apply Euclidean norm to si and syi . Then,
we use contrastive learning’s InfoNCE loss (Oord
et al., 2018) to calculate the cosine similarity loss
of Tk as

Lcos = − 1

Nk

Nk∑
i=1

log
exp (sisyi/τ)∑

r∈R̃k

exp (sisr/τ)
, (6)

where τ is a temperature hyper-parameter.
To increase the similarity score gap of the correct

label and the closest wrong label, inspired by (Koch
et al., 2015), we propose a contrastive margin loss

Lmag =
1

Nk

Nk∑
i=1

max
(
m−sisyi+siski , 0

)
, (7)

where relation ki = argmax
k∈R̃k

sisk s.t. k ̸= yi, that

is i’s closest negative relation label. The margin
loss penalizes that the similarity gap less than m.
At last, the total loss is defined as

L2 = λ1Lcos + (1− λ1)Lmag, (8)

where λ1 ∈ [0, 1] is the controlling parameter.

Training Processes of Contrastive Learning
There are two training processes in the contrastive
network, which both use the loss in Eq. 8 to make
the network parameters more fit to current task and
all historical tasks, respectively.

The first training process is conducted with cur-
rent task Tk and complements the classification
network, it is an optional step with relatively small
training epoch. However, it can not ensure the
model fit to all tasks, because the model pays more
attention to current task rather than the old tasks
during this training process. In other words, as
we have explained in the example of Figure 1, the
model tends to ensure the instances of different
relations in Tk distinguishable, but forgets to mean-
while keep the instances of different relations in all
historical tasks also distinguishable. As a result,
the model’s catastrophic forgetting still happens.

To alleviate CRECL’s catastrophic forgetting
more thoroughly, we introduce the second training
process in the contrastive network. In this process,
all typical instances stored in the memory module
are compared with all prototypes of stored rela-
tions, which cover in all tasks. We also conduct
M times forward propagation in the dropout layer,
to generate M embeddings for each old relation in
R̃k−1. Due to the randomness of dropout layer, we
can get M probability distributions for an old re-
lation to reduce the imbalance of data distribution
of old and new relation. Accordingly, this train-
ing process can effectively prevent the model from
severe catastrophic forgetting.

3.7 Relation Prediction

For a predicted instance i, we only measure its sim-
ilarity to each stored relation, which is computed
as the cosine distance between i’s representation
and the relation’s prototype. Then, we choose the
most similar (closest) relation as i’s predicted class
label, that is

y∗i = argmax
r∈R̃k

sisr. (9)

4 Experiments

4.1 Datasets

Our experiments were conducted upon the follow-
ing two benchmark CRE datasets.
FewRel (Han et al., 2018) is a popular relation
extraction dataset originally constructed for few-
shot relation extraction. The dataset is annotated
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Table 1: Accuracy (%) comparisons on different test sets of historical cumulative tasks, showing that CRECL
outperforms the compared models.

FewRel
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2
EMAR 88.5 73.2 66.6 63.8 55.8 54.3 52.9 50.9 48.8 46.3
CML 91.2 74.8 68.2 58.2 53.7 50.4 47.8 44.4 43.1 39.7
EMAR+BERT 98.8 89.1 89.5 85.7 83.6 84.8 79.3 80.0 77.1 73.8
RP-CRE+MA 98.0 91.4 91.8 86.8 87.6 86.9 83.7 81.9 80.1 79.5
RP-CRE 97.9 92.7 91.6 89.2 88.4 86.8 85.1 84.1 82.2 81.5
CRECL+ATM(Ours) 96.3 91.4 89.3 90.0 88.1 86.7 84.5 83.2 82.6 81.0
CRECL(Ours) 97.8 94.9 92.7 90.9 89.4 87.5 85.7 84.6 83.6 82.7
Improvement(%) -1.01 2.37 0.98 1.91 1.13 0.69 0.71 0.59 1.70 1.47

TACRED
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 47.5 40.1 38.3 29.9 28.4 27.3 26.9 25.8 22.9 19.8
EMAR 73.6 57.0 48.3 42.3 37.7 34.0 32.6 30.0 27.6 25.1
CML 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4
EMAR+BERT 96.6 85.7 81.0 78.6 73.9 72.3 71.7 72.2 72.6 71.0
RP-CRE+MA 97.1 91.4 87.4 82.1 78.3 77.8 74.9 73.5 73.6 72.3
RP-CRE 97.6 90.6 86.1 82.4 79.8 77.2 75.1 73.7 72.4 72.4
CRECL+ATM(Ours) 93.2 80.2 77.3 76.0 71.8 71.5 69.2 72.3 70.0 71.2
CRECL(Ours) 96.6 93.1 89.7 87.8 85.6 84.3 83.6 81.4 79.3 78.5
Improvement(%) -1.02 1.86 2.63 6.55 7.27 8.35 11.32 10.45 7.74 8.43

by crowd workers and contains 100 relations and
70,000 samples in total. In our experiments, to keep
consistent with the previous baselines, we used its
version of 80 relations.
TACRED (Zhang et al., 2017) is a large-scale re-
lation extraction dataset containing 42 relations
(including no_relation) and 106,264 samples from
news and web documents. Based on the open rela-
tion assumption of CRE, we removed no_relation
in our experiments. To limit the sample imbalance
of TACRED, we limited the number of training
samples of each relation to 320, and the number
of test samples of each relation to 40, which is
also consistent with previous baselines. Compared
with FewRel, the tasks in TACRED are more dif-
ficult due to its relation imbalance and semantic
difficulty.

4.2 Compared Models
We compare our framework with the following
baselines in our experiments.
EA-EMR (Wang et al., 2019) proposes a sentence
alignment model with replay memory module to
alleviate catastrophic forgetting.
EMAR (Han et al., 2020) proposes a novel memory
replay, activation and reconsolidation method to
alleviate catastrophic forgetting effectively.
EMAR+BERT is an advanced version of EMAR
where the original encoder (Bi-LSTM) is replaced
with BERT.
CML (Wu et al., 2021) proposes a curriculum-meta

learning method to tackle the order-sensitivity and
catastrophic forgetting in CRE.
RP-CRE (Cui et al., 2021) is a SOTA CRE
model introducing a novel pluggable attention-
based memory module to automatically calculate
the weight of old tasks when learning new tasks.
RP-CRE+MA is an advanced version of RP-CRE
where a memory activation step is added before
attention operation.

In our CRECL, we adopted the Bert-base-
uncased pre-trained by HuggingFace (Wolf et al.,
2020) as the encoder, which is also used in
EMAR+BERT, RP-CRE and RP-CRE+MA. Other
baselines cannot be easily replaced by the BERT
due to their architectures. In addition, we
propose another version of CRECL, namely
CRECL+ATM, which incorporates an attention
memory module proposed by (Cui et al., 2021)
in the contrastive network and used to verify its
effectiveness of refining relation prototypes.

4.3 Experimental Settings
Our evaluation metric is Accuracy which is popu-
larly used in previous baselines.

For fair comparisons, we followed the experi-
ment settings in RP-CRE. At first, to verify whether
a CRE model suffers from catastrophic forgetting,
we use Tk to represent the test set of all historical
cumulative tasks from the first task to the k-th task
Tk (Please note the difference between Tk and Tk).
In our ablation studies, we also report the perfor-
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(a) Accuracy of historical cumulative tasks on FewRel. (b) Accuracy of current task on FewRel.

(c) Accuracy of historical cumulative tasks on TACRED. (d) Accuracy of current task on TACRED.

Figure 3: Ablation study results on historical cumulative tasks and current task.

mance on the test set of current task. To simulate
different tasks, we randomly divided all instances
into 10 groups (corresponding to 10 tasks). The
task order of all compared models is exactly the
same to reduce contingency. We also set the mem-
ory size in the baselines the same as ours. Relations
are first divided into 10 clusters to simulate 10 tasks.
All the reported results of the related baselines are
the same as (Cui et al., 2021). For those special
hyper-parameters in our experiments are as follows.
The batch size is 32, the learning rate is set to 5e-
5, τ is 0.08. We adopted 10 and 15 classification
epochs for TACRED and FewRel, respectively. We
also adopted 10 epochs for the first training pro-
cess (for current task) and 5 epochs for the second
training process (for all tasks) in the contrastive
network.

Because the total matrix operations and the
data amount of second training in contrastive
learning are very small, CRECLl’s training time
(1h31min) is very close to the SOTA model RP-
CRE (1h28min). To reproduce our experiment
results conveniently, CRECL’s source code to-
gether with the datasets are provided at https:
//github.com/PaperDiscovery/CRECL.

4.4 Experimental Results and Analyses

The following reported results of CRECL and its
ablated variants are the average scores of running
models for 5 times.

4.4.1 Overall Performance Comparisons
The overall performance of all compared baselines
are reported in Table 1, where the results of the
baselines directly come from (Cui et al., 2021) and

the baselines’ hyper-parameter settings were the
same as their original papers. The last row in the
table is the improvement ratio of CRECL’s perfor-
mance relative to the best baseline’s performance
(underline). Based on these results, we have the
following conclusions:

(1) Our CRECL outperforms the SOTA model
RP-CRE on both datasets. Compared with FewRel,
CRECL has more apparent improvement over the
baselines on TACRED. This may be due to that
FewRel’s tasks are not difficult enough as TA-
CRED, proving that CRECL is good at handling
more difficult tasks.

(2) In T1, our CRECL is inferior to RP-CRE
because the classification and contrastive network
in CRECL have not been fully trained at the begin-
ning. When more tasks are cumulated, CRECL is
trained sufficiently, resulting in its superiority over
the baselines and less performance drop. Since the
catastrophic forgetting becomes more severe on
such scenarios, the results imply that CRECL can
tackle the catastrophic forgetting better.

(3) All compared models’ performance is well
on T1, but declines when more new tasks arrive
due to more severe catastrophic forgetting. Com-
pared with EA-EMR, EMAR and CML, the rest
models’ performance decline is more slight. For
example, from the comparison between EMAR (us-
ing Bi-LSTM) and EMAR+BERT, we can see that
EMAR+BERT’s performance decline significantly
slows down, proving that BERT helps the model
alleviate the catastrophic forgetting better. It is be-
cause BERT has good feature discrimination ability
and better captures the relevant features, making

https://github.com/PaperDiscovery/CRECL
https://github.com/PaperDiscovery/CRECL
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(a) CRECL (b) RP-CRE (c) CRECL vs. RP-CRE in T9/T10

Figure 4: Performance comparisons with different memory sizes on TACRED.

catastrophic forgetting less severe.
(4) CREL+ATM’s results show that incorpo-

rating attention memory module fails to improve
CRECL’s performance well, because the con-
trastive network is able to maintain the uniformity
and the alignment of data distribution. Thus there
is no need for additional attention memory module
to help the model refine relation prototypes.

(5) Compared with the models using
metric learning (EA-EMR, EMAR, CML,
EMAR+BERT), we adopt InfoNCE loss instead of
the margin ranking loss as our loss function. With
this loss, CRECL is taught by more negative rela-
tion information to understand how to regularize
data representation space, resulting in the more
alleviation of catastrophic forgetting.

4.4.2 Ablation Studies
In order to verify the effectiveness and rationality of
our framework’s important components (steps), we
further conducted a series of ablation experiments.
CRECL’s ablated variants include:
CRECL-MAG: It is the variant without the margin
loss Lmag in the contrastive network.
CRECL-CL1: It is the variant without the first
training process in the contrastive network.
CRECL-CL2: It is the variant without the second
training process in the contrastive network.
CRECL-CL: It is the variant only having the clas-
sification network.
CRECL-K: In this variant, the typical instances of
each relation are selected at random instead of by
K-means algorithm.
CRECL(C): This variant uses the classification
network to identify the relation of a test instance
instead of the similarity comparison in Eq. 9.

Figure 3 (a) and (b) display all compared models’
accuracy of historical cumulative tasks and current
task. Due to space limitation, only the results on
TACRED are shown, based on which we have the

following analyses.
(1) CRECL-CL performs very well on current

task (subfigure (b)) but performs very poorly on his-
torical tasks (subfigure (a)), showing that it overfits
current task and its catastrophic forgetting is very
severe. It is because that the classification parame-
ters are always tuned to fit with current task rather
than old tasks. It shows that the contrastive network
is significant to alleviate catastrophic forgetting.

(2) As more new tasks arrive, CRECL-CL1’s
performance decline on current task (subfigure (b))
is more obvious than its performance decline on
historical tasks (subfigure (a)), because CRECL-
CL1 pays more attention to distinguish the different
relations in old tasks rather than that in current task.
It is due to that the data distributions of all histori-
cal tasks are adjusted in the second training process
that CRECL-CL1 only has in its contrastive net-
work. Comparatively, CRECL-CL2’s performance
on historical tasks and current task both declines. It
shows that only distinguishing the data distribution
of current task from that of old tasks in the first
training process of contrastive network, is not ade-
quate to alleviate its catastrophic forgetting. Even
worse, such adjusting also harms the accuracy of
classifying current task.

(4) CRECL-K is inferior to CRECL, showing
that the randomly selected instances cannot well
represent relations as those selected by K-means
algorithm. As a result, the data distributions of
all tasks cannot be adjusted precisely, which can
not alleviate catastrophic forgetting effectively. In
addition, CRECL-K’s accuracy on current task is
not stable also due to the randomness led by its
selection strategy of typical instances.

(5) Although the contrastive learning loss L2 is
different from the classification network’s loss L1,
and the parameters of the encoding layer are shared,
the contrastive network’s training processes hardly
weaken the classification network’s fitness to cur-
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Table 2: Our framework’s accuracy (%) with different memory sizes on FewRel.

CRECL T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
L=5 97.1 92.1 89.7 90.0 88.2 86.6 84.4 82.8 82.5 80.2
L=10 97.8 94.9 92.7 90.9 89.4 87.5 85.7 84.6 83.6 82.7
L=15 98.9 96.3 93.8 92.6 91.4 90.0 88.0 86.6 85.8 83.5
L=20 98.1 96.0 94.1 92.8 91.9 89.7 88.5 86.3 86.1 85.2

rent task. Thus CRECL(C) still performs well on
current task as shown in Figure 3 (b). CRECL-
MAG’s has a relatively small decline on both cur-
rent and historical tasks, proving that the margin
loss Lmag improves the performance by increas-
ing the gap between the optimal and suboptimal
results.

4.4.3 Performance Influence of Memory Size
For memory-based CRE methods, the model per-
formance is usually related to the storage capacity
of their memory modules. Specifically, we found
that previous models’ performance is very sensitive
to the number of stored typical instances L. Recall
that in CRECL, a relation prototype is the aver-
age of L typical instances’ representations. The
representational ability of such prototype is less
sensitive to L when L exceeds a certain value, re-
sulting in CRECL’s performance also less sensitive
to L, as we emphasized in Section 3.5.

Figure 4 displays the performance of CRECL
and RP-CRE on TACRED w.r.t. different memory
sizes (L), where the two compared models’ per-
formance in T9 and T10 is specially shown in the
subfigure (c). It shows that although CRECL’s per-
formance also declines when L becomes small, it
is more stable and higher than RP-CRE’s perfor-
mance, especially when L ≥ 8. Such results justi-
fies our claim about CRECL’s less sensitivity to L.
In addition, RP-CRE’s performance fluctuation is
more obvious, possibly because it re-constructs the
attention memory network upon each task, so the
different task features are not shared in the network.

4.4.4 Contrastive Learning’s Effectiveness on
Refining Data Distributions

In addition, to investigate the contrastive learning’s
effects on alleviating catastrophic forgetting, we
use t-SNE (Van der Maaten and Hinton, 2008)
to visualize the data distributions of the same
case in Figure 1 after the training processes of
CRECL’s classification network and contrastive
network. The data distribution map is shown in
Figure 5, which has the same settings of color and
point style as Figure 1. Through comparing these

two maps, we find that the data distributions of dif-
ferent relations in the new and old task in Figure 5
are more distinguishable than that in Figure 1. Such
results are mainly attributed to the prototypical con-
trastive learning in CRECL on adjusting all data
distributions of all tasks, which obviously alleviate
CRECL’s catastrophic forgetting. It has been also
proved by CRECL’s superior performance over the
baselines displayed in aforementioned experiments.
We also note that some yellow dots still intersect
the pink crosses, possibly due to the insufficient
sampling in the contrastive learning, resulting in
less coverage on all relations. We can handle this
situation by increasing the batch size.

Figure 5: Data distribution map (better viewed in color)
after the contrastive learning in CRECL. Compared with
Fig. 1, the data distributions of different relations (dif-
ferent colors) are obviously distinguishable, making
CRECL classify different relations more easily.

5 Conclusion
In this paper, we propose a novel CRE framework,
namely CRECL, that consists of a classification net-
work and a contrastive network designed for allevi-
ating the catastrophic forgetting in CRE. Through
the prototypical contrastive learning in CRECL, the
data distributions of different relations in all tasks
are adjusted to be more distinguishable, resulting
in CRE performance gains. Moreover, CRECL
has the ability of class-incremental learning due
to its contrasting-based mechanism of achieving
relation classification, which is more practical in
real-world CRE scenarios than the previous models
of classification-based mechanism. Our extensive
experimental results demonstrate that CRECL out-
performs the SOTA CRE baselines and obtains the
best performance on two benchmark datasets.
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