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Abstract

Forcing the answer of the Question Answer-
ing (QA) task to be a single text span might
be restrictive since the answer can be multiple
spans in the context. Moreover, we found that
multi-span answers often appear with two char-
acteristics when building the QA system for
a real-world application. First, multi-span an-
swers might be caused by users lacking domain
knowledge and asking ambiguous questions,
which makes the question need to be answered
with conditions. Second, there might be hierar-
chical relations among multiple answer spans.
Some recent span-extraction QA datasets in-
clude multi-span samples, but they only con-
tain unconditional and parallel answers, which
cannot be used to tackle this problem. To
bridge the gap, we propose a new task: con-
ditional question answering with hierarchical
multi-span answers, where both the hierarchi-
cal relations and the conditions need to be ex-
tracted. Correspondingly, we introduce CMQA,
a Conditional Multiple-span Chinese Question
Answering dataset to study the new proposed
task. The final release of CMQA consists of
7,861 QA pairs and 113,089 labels, where all
samples contain multi-span answers, 50.4% of
samples are conditional, and 56.6% of samples
are hierarchical. CMQA can serve as a bench-
mark to study the new proposed task and help
study building QA systems for real-world appli-
cations. The low performance of models drawn
from related literature shows that the new pro-
posed task is challenging for the community
to solve. CMQA can be accessed at https:
//github.com/juyiming/CMOQA.

1 Introduction

Question answering (QA) is a challenging bench-
mark task, which can drive the development of nat-
ural language understanding (NLU) methods and
has significant utility to users (Kwiatkowski et al.,
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2019). This research area has made significant
progress with many sizable datasets and standard
benchmarks. Notably, the span-extraction task is
one of the most studied subtasks because of its wide
applicability and easy evaluation characteristics.

Most existing span-extraction QA datasets (Ra-
jpurkar et al., 2016; Yang et al., 2018; Choi et al.,
2018; Kwiatkowski et al., 2019; Chen et al., 2020)
only contain single-span samples, where the an-
swer is a single text span in the context. However,
limiting the answer to be a single span in the con-
text might be restrictive since the answer of some
questions can be multiple text spans in real-world
QA scenarios. Take the case in Figure 1 for ex-
ample, given the question asking about ‘drugs for
face acne redness’, the corresponding drugs (green
and blue highlighted text spans) appear in differ-
ent parts of the context. A single span including
all these drugs is extremely long, thus it is more
suitable to use multi-span answers to answer this
question. Moreover, when building the QA sys-
tem for a real-world application, we found that the
multi-span answers often appear with two charac-
teristics:

First, multi-span answers can be caused by users
lacking related domain knowledge and asking am-
biguous questions. In such cases, questions might
need multiple conditions to specify the circum-
stance. For example, in Figure 1, the user asked
a brief question about ‘drugs for acne redness’.
Since different drugs are needed according to the
severity of symptoms:(‘A single appearance’ and
‘the acne is much and continuous into pieces’), the
question is answered separately. It is misleading
to give all answer spans without distinguishing the
conditions. Moreover, answers of different condi-
tions might be contradictory in some samples. For
example, a user asked about the battery capacity of
the iPhone. Since the battery capacity of the iPhone
is different according to models, the multi-span an-
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Question: What are the anti-inflammatory drugs for face
acne redness?

Context: Acne redness is generally the acute stage of acne.
A single appearancex ! indicates that the symptoms are not

serious and can be treated with anti-acne drugs containing

antibiotics®. External antibiotics treat acne by inhibiting
or killing Propionibacterium acnes, reducing the content
of free fatty acids, inhibiting the production of inflamma-
tory chemokines and cytokines. Clindamycin phosphate gel *

and mupirocin ointment® can be used for treatment. Both
are used once or twice a day. Gently apply a layer of film
on the area to be treated, and continue to use it for 3-4
weeks to evaluate the effect. During the illness, you need
to pay attention to avoid squeezing the acne by hand. Es-
pecially when acne grows in the dangerous triangle area,
it is strictly forbidden to squeeze to avoid ascending bacte-
rial infection and cause cavernous sinus thrombophlebitis.
You can use topical iodophor solution® for treatment if

the acne is much and continuous into pieces®. A large area
of redness indicates that the fungal infection is more seri-
ous and iodophor can kill fungus quickly. It is necessary to
keep the local skin clean and hygienic. Wash your hands fre-
quently, and fungicidal liquid soap is recommended.

Text spans:

condition: 1, 2; coarse: 3; fine: 4, 5, 6;
Relations:

condition-answer: 1-3, 2-6; coarse-fine: 3-4, 3-5

Structured Answer:
) e oG T Clindamycin phosphate gel
A single appearance taini Gibioti
confamngiantinoues mupirocin ointment

the acne is much and

. . . topical iodophor solution
continuous into pieces

Figure 1: An example of labels in CMQA. Text spans:
condition (red), coarse (blue) and fine (green). Rela-
tions: condition-answer and coarse-fine. The example
is translated from Chinese.

swers will contradict each other without specifying
the condition.

Second, multiple answers in a sample might be-
long to different granularities, and there are often
hierarchical relations among them. For example,
in Figure 1, the answer span ‘fopical anti-acne
drugs containing antibiotics’ is a type of drug,
while ‘Clindamycin phosphate gel’ and ‘mupirocin
ointment’ are two specific drug names of this type.
If we only give all these answer spans in parallel,
the user cannot get the granularity and hierarchi-
cal information of these drug names. In this case,
we need to provide the answer granularity and the
hierarchical relations for accuracy.

The analysis results in Table 4 show that about
half of the multi-span samples in our data are con-
ditional, and half of them are multi-granularity.
The high proportion of these samples demon-
strates that the summarized two characteristics
might be widespread in some real-world QA sce-

narios. Though some recent span-extraction QA
datasets include multi-span samples (Dua et al.,
2019; Dasigi et al., 2019; Zhu et al., 2020), they
only contain unconditional and parallel answers,
which cannot be used to tackle this problem. To
bridge the gap, we propose a new task: conditional
question answering with hierarchical multi-span
answers, where both the hierarchical relations and
the conditions need to be extracted.

In this paper, we introduce Conditional
Multiple-span Chinese Question Answering
dataset (CMQA) to track the new proposed task.
Specifically, we pick out samples need to be
answered with multiple text spans and use a new
label strategy to annotate them. We labeled both
answers and conditions if the sample is conditional.
Moreover, the answer spans are labeled with
different granularity: coarse and fine. fine means
the answer is a specific thing, such as a specific
time, person, to name a few. coarse means the
answer span is a general term for a class of
things, such as foods containing certain nutrients
and people with certain characteristics. The
hierarchical relations among answers of different
granularities are also provided. As shown in Figure
1, labeled text spans in CMQA consist of three
types: condition, coarse and fine (highlighted in
the context). Labeled relations consist of two types:
condition-answer and coarse-fine. A structured
answer can be easily derived from these labels,
which is clear and accurate. Furthermore, such
labels are very helpful to reduce the burden of
users if they want to read the full context.

The final release of CMQA consists of 7,861
multi-span QA pairs and 113,089 labels, where
50.4% of samples are conditional, and 56.6% are
multi-granularity. In addition, we establish models
as the baseline of CMQA. Traditional single-span
QA models which search for the most likely token
as the start/end of the answer are unsuitable for
extracting multi-span answers, thus, the span ex-
traction is cast as a sequence tagging problem (Se-
gal et al., 2020). And we use competitive relation
extraction methods drawn from related literature
(Wu and He, 2019; Zhong and Chen, 2021) for pre-
dicting relations. Experimental results show that
it is very difficult to extract all spans correctly in
a sample. The error analysis shows that the main
challenge is to judge whether a span of the correct
entity type is an answer. Moreover, though the rela-
tion model can achieve high performance on some
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traditional relation extraction datasets, the perfor-
mance on our task is extremely poor, which makes
giving structured answers like the case in Figure
1 difficult. The poor model performance demon-
strates that the new proposed task is challenging
for the community to solve.

Our contributions can be summarized as follows:

* We propose a challenge when solving ques-
tions from real-world users: conditional ques-
tion answering with hierarchical multi-span
answers.

* We introduce a new annotated Chinese ques-
tion answering dataset: CMQA, which con-
sists of questions that need to be answered
with conditions and hierarchically answer
spans.

* We establish models drawn from related litera-
ture as the baselines of CMQA. Experimental
results show that the new proposed task is
challenging.

2 Related Work

Most existing span-extraction QA datasets only
contain single-span samples, which might be re-
strictive in some real-world QA scenarios. An im-
portant reason for this gap is the question collection
methods when building the datasets. Question col-
lection methods of QA datasets can generally be
classified into two categories: creating questions
by annotators and collecting questions from real-
world users.

2.1 QA datasets with questions created by
annotators.

Most span-extraction QA datasets consist of ques-
tions created by annotators. Some span-extraction
QA datasets’ questions are written by annotators
who have first read the context containing the an-
swer. For example, SQuAD (Rajpurkar et al.,
2016) tasks crowdworkers with asking up to 5 ques-
tions about each paragraph and highlighting the cor-
responding answers in the paragraph. HotpotQA
(Yang et al., 2018) tasks crowdworkers with asking
a question about two given paragraphs from dif-
ferent Wikipedia pages and providing the answers.
Tasking annotators with questioning and answering
at the same time is suboptimal, which might cause
questioners to ask questions based on a text span in
the context. The asked questions are often simple
reformulations of sentences in the context.

Field Ratio
healthcare 77.6%
education 13.5%

government affair | 4.0%
food 1.4%
digital product 0.3%
planting 0.2%

others 2.1%

Table 1: The fields of questions in the QA community.

To avoid this problem and create more natu-
ral and challenging questions, NewsQA (Trischler
et al., 2017) only provides news article’s headlines
and its summary points to questioners. The full
context is unseeable. Similarly, QuAC (Choi et al.,
2018) also prevents the questioner from seeing the
full context. Though effort has been made, there are
inevitably differences between the human-created
questions and the questions asked by users in real-
world scenarios. The concerns are as follows: First,
the user’s question is often not based on a certain
context in real-world QA scenarios. Second, crowd-
workers might already know the form of the answer
(single text span), which hints that they should ask
questions with a single text span answer. Last, the
problems created are often high quality, while a
real-world question might sometimes be ambigu-
ous.

2.2 QA datasets with questions collected from
real-world users.

Besides manually created questions, some QA
datasets use questions collected from queries from
search engines. The answer form of these datasets
is usually free text instead of text spans. For
example, MS Marco (Nguyen et al., 2016) con-
tains queries sampled from the Bing search en-
gine. DuReader (He et al., 2018), which contains
queries from Baidu search logs, chooses the free-
text answer form, both use the free-text answer
form and BLEU (Papineni et al., 2002) score as the
evaluation metric.

Though there are datasets with questions from
search engines that use text span as the answer
form, the span length is usually longer than phrase
level. Moreover, a screening mechanism is often
used to filter questions. For example, WIKIQA
(Yang et al., 2015) uses a single sentence as the an-
swer form, and questions that cannot be answered
with a single sentence are abandoned during the
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construction. Natural Questions (Kwiatkowski
et al., 2019) filter out questions cannot be answered
with an entity or explanation. Moreover, Natu-
ral Questions provide long answers (paragraphs,
tables, list items, or whole lists) besides short an-
swers. A question might have a long answer but
no short answer. These datasets show that a sin-
gle span, especially a phrase-level text span, is not
enough to answer real-world questions.

3 Dataset Construction

In this section, we describe the data construction
process of CMQA.

3.1 Data Source

Samples in CMQA are collected from an author-
itative Chinese QA community, where experts in
related fields provide answers to questions from
users. The community covers a lot of fields, as
shown in Table 1, in which the healthcare field has
received the most questions from users.

Since the provided answers often contain much
secondary information such as descriptions and
supplements, such as the example in Figure 1, the
length of some answers is rather long (64.7% are
longer than 100 words). The long answer texts are
inconvenient to users who want to browse quickly
and get information. Thus, we want to provide a
concise answer (short text span) besides the full
text. However, due to the existence of multi-span
samples and the two characteristics summarized
in Section 1, many questions are not suitable to
be answered with a single text span. Thus, we
let the annotators pick out samples that cannot be
answered with a single text span to tackle the prob-
lem. We get 8,864 filtered samples from 25,000
samples and build our dataset based on these sam-
ples. Note that we have discard samples that may
reveal the personal information of the questioner
or containing offensive content during this phase.

3.2 Annotation Scheme

The annotation process is realized by three experts
and three full-time annotators. As shown in Figure
2, the annotation scheme consists of 4 steps. Ex-
perts first formulate the annotation guidelines after
pilot annotation. Then we train the annotators until
all annotators think they can work independently.
Then, we conduct an inter-annotator agreement

We has obtained the liecense of using the data from the
community, which will be published with the final release.

Step 1: Step 2: Step 3: Step 4:
formulate |—>» train —> conduct start
principles annotators TAA study annotation

Figure 2: Pipeline of the annotation scheme.

(IAA) study to examine the annotation quality. We
decide whether to continue the training phase ac-
cording to the IAA score. In the last phase, we
assign different parts of the samples to annotators
for annotation.

Annotation Principles The main principles of
annotation are summarized as follows:

* The text span should be as concise as possible.

* There is a multi-level hierarchical relationship,
only the last level is marked

* The sample can be abandoned in the following
situations:

— If the context cannot answer the ques-
tion.

— All answers are adjacent and can be re-
garded as one.

— Most of the words in the context are part
of the answer. It is better to give the
entire context as a long answer in this
case. (Because the number of the answer
spans of each sample is variable, we did
not give a specific context length as the
threshold to filter out samples. Experts
give examples that should be abandoned,
and the annotators make their judgments
based on these examples.)

— The question is a combination of multi-
ple sub-questions.

Moreover, when the experts conduct pilot anno-
tation, we find the mismatch in condition occurs
mostly due to inclusion/exclusion some boundary
words. Since these boundaries are difficult to deter-
mine sometimes, we decide to expand the boundary
of the condition to its nearest stop words based on
the annotation. In the final release, the average
length of condition increased from 10.4 to 13.4
after expansion.

Annotation Principles with examples are shown in Ap-

pendix, and the full text of the annotation principles will be
publish with the dataset.
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Dataset Language #QA Conditional Hierarchical Question Answer Answer Answer
source amount  length  granularity
QUOREF (Dasigi et al., 2019) | English 2K - - crowdsourcing 2.5 1.6 word/phrase
DROP (Dua et al., 2019) English 5K - - crowdsourcing 2.5 2.0 word/phrase
MASH-QA (Zhu et al., 2020) English 29K - - real-world users 4.2 19.3 sentence
CMQA Chinese 8K v v real-world users 7.5 4.5 word/phrase

Table 2: Comparison of CMQA with other QA datasets containing multi-span samples. Questions in QUOREF and
DROP are collected by Mechanical Turk while questions in MASH-QA and CMQA are collected from real-world
users. Answer amount refers to the average number of answer span per sample, and answer length refers to the
average length per answer span. Note that only multi-span samples are compared.

Label type TIAA score
condition 95.1
coarse 86.1
fine 90.0
condition-answer 98.3
coarse-fine 97.6
all 92.7

Table 3: Inter-annotator agreement scores. all refers to
calculating the micro F1-score of all label types.

TAA Study We task annotators with annotating
the same samples to take an inter-annotator agree-
ment (IAA) study. We use the F1-score to compute
an agreement score between two annotators. Fol-
lowing Gurulingappa et al. (2012); Legrand et al.
(2020), we treat one annotator’s annotation as the
reference and the other’s as the prediction. The
final agreement score of three annotators is the av-
erage of the pair-wise agreement scores, formally
as: Sype = % (Sab + Sac + Ske). We first evaluate
the TAA score of different label types separately
and then use micro F1-score as the metric to evalu-
ate the IAA score of all labels. The inter-annotator
agreement study result of 150 samples is shown in
Table 3.

After training and inter-annotator agreement
study, we assign different parts of the samples to
the annotators for annotation. At last, we get 7,861
samples, in which each sample contains an average
of 14.4 labels (8.8 text spans and 5.6 relations). To

We choose F1-score instead of other conventional metrics
such as the kappa coefficient (Cohen, 1960) because there
is no one-to-one correspondence between annotations from
different annotators in multiple-span scenarios. Some Named
Entity Recognition (NER) datasets (Balasuriya et al., 2009;
Srirangam et al., 2019) use kappa coefficient by examining
tags of all tokens. However, since most tokens in the context
are not parts of the answers in the Question Answering task,
such a strategy will lead to a very high agreement score that
fails to reflect the annotation quality.

Span type .
condition pcansIZ’ fine Proportion
v v v 22.66%
v v 0.47%
v v 27.30%
v v 33.93%
v 1.40%
v 14.24%
50.43% 58.46% 98.13%

Table 4: The division of CMQA according to text span
types.

maximize the reusability of the dataset, we provide
a pre-defined split of the dataset into training, de-
velopment, and test sets in the final release, which
consist of 5,861, 1000, and 1000 samples, respec-
tively.

4 Data Analysis

In this section, we analyze the label and question
properties of the new dataset. Table 2 shows the
comparison of CMQA with other QA datasets con-
taining multi-span samples.

4.1 Label Properties

There are five label types in CMQA: condition,
coarse, fine, condition-answer and coarse-fine.
Since the only principle of picking out data to con-
struct the dataset is that the question cannot be
answered with a single text span, a sample in our
dataset does not necessarily contain all five label
types. We investigate the properties of different
label types.

Text Span Properties Table 4 shows the divi-
sion of CMQA according to the included text span
types. As shown in Table 4, 50.4% of the sam-
ples in CMQA are conditional, and 56.6% are
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Label type Amount Length
condition 1.3 134
coarse 1.6 6.1
fine 5.9 4.1
condition-answer 2.8 /
coarse-fine 2.8 /

Table 5: The average amount of labels and the average
text span length per sample.

multi-granularity, which shows the necessity and
effectiveness of our labeling strategy. Contexts
of CMQA have an average of 182.3 words, with
18.8% annotated as conditions and 11.3% anno-
tated as answers. The average amount and length
of text spans are shown in Table 5.

Relation Properties Samples containing condi-
tion also contain related conditional answer spans,
which means condition-answer is also included.
However, containing condition doesn’t mean all an-
swers in the sample are conditional. There are sam-
ples where part of answers are conditional while
the others are not, which accounts for 24.8% of
condition-containing samples. There might be hier-
archical relations between answer spans of different
granularity. There are 12,458 coarse answers in
CMQA, and 63.1% of them are connected to fine
answers. A coarse answer can connect to several
fine answers. The average amount of relations per
sample is shown in Table 5.

4.2 Question Properties

Questions in CMQA are collected from users in
the QA community. We heuristically identified
question types for these questions. Specifically,
we first manually observe the questions and sum-
marize some frequently occurring question words.
Then we assign question types based on whether
these words are included in the question. We visu-
alize the distribution of question types in Figure 3.
As shown in Figure 3, the majority of questions in
CMQA are about detailed information about spe-
cific facts, such as expense, duration, and food.

5 Experiments

This section establishes models using methods
drawn from related literature as the baseline of
CMOQA and analyzes the experiment results.

which(singular}
1.8%
others

which(plural) 7.3%

11.4% which
14.0%
what to eat
how many 37.3%
1.4% h
how much 0% what
4.9% 16.3% 62.5%
how long
7.1%
what to drink
what to use

10.2%
1.3%

Figure 3: Question types in CMQA. The ring chart
on the outer side shows the breakdown of the question
types on the inner side, and the blank part indicates
the question that does not belong to the summarized
question types.

5.1 Models

We decompose the problem into two sub-tasks:

* Extracting text spans from context C' as con-
ditions and answers according to question ().

* Predicting if a relation (condition-answer or
coarse-fine) exists between two text spans.

Thus, our approach consists of a span model and a
relation model. The span model first takes the con-
text and questions as input and predicts conditions
and answers. Then the relation model processes ev-
ery pair of predicted text spans and judges if there
is a relation between them. We find that sharing
the contextual representations between the span
and relation models will cause a performance de-
cline. We hypothesize that using the same contex-
tual representation to capture both span boundary
information and span dependency information is
suboptimal.

Span Model Traditional single-span extraction
models, which search for the most likely token as
the start/end of the answer, are unsuitable for the
multiple-span extraction task. Thus, similar to Se-
gal et al. (2020), we cast the task as a sequence
tagging problem, which is demonstrated effective
on multi-span samples in DROP and QUOREF.
We experiment with the well-known BIO tagging
(Huang et al., 2015). Concretely, we first concat
the context and the question into one sequence and
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use a pretrained language model to obtain contex-
tualized representations hi for each input token ;.
The representation A is then fed into a feedfor-
ward network to predict the probability distribution
of the tag type. Two different modes are used to
get the prediction: 1) Separate Mode uses differ-
ent models to predict text spans of different types.
These models share the same model structures but
are trained independently. 2) Merged Mode uses
one model to predict all text spans and using mul-
tiple begin tags (Bccmditiona Bcoarse and Bfine) to
distinguish span types.

Relation Model Because the type of relationship
depends on the span type, we only need to predict if
there is a dependency between a pair of text spans:
5q and sp. We build the relation model following
previous work (Wu and He, 2019; Zhong and Chen,
2021), which gets competitive results in several
relation extraction benchmarks, such as ACE04
and SciERC (Luan et al., 2018). Concretely, we
first obtain contextualized representations h; for
each input token x;. Then we concatenate the to-
ken representations of the start positions of two
text spans and obtain the span-pair representation:
h(sa,sb) = [hstm‘t(a); hstart(b)]’ where start(a) and
start(b) are the indices of start tokens of s, and sy,
Finally, the span-pair representation Ay, .,y Will
be fed into a feed forward network to make the
binary classification. Moreover, we further investi-
gate using span boundaries to enhance the relation
model (span assist), where additional markers are
used to highlight all conditions and answer spans
in a sample. Concretely, we insert special mark-
ers (such as ‘<fine>" and ‘</fine>") at the span
boundaries in the input layer, and the embeddings
of these markers are trainable vectors.

5.2 Evaluation Metrics and Experimental
Details

We adopt two evaluation metrics: Exactly Match
(EM) and F1-score. EM: Prediction of a sample
is considered as correct the prediction is equal to
the annotation, formally as annop.e = annoy.f.
F1 score: The exact steps of calculating F1 scores
are the same as that in the IAA study, shown in
Algorithm 1 in the Appendix.

In all experiments, we use bert-base-chinese as
the encoder to get contextual representations. The

https://catalog.ldc.upenn.edu/LDC2005T09
https://github.com/google-research/bert

Label type/ Separate Merged

Model EM F1 EM F1
condition 423 71.8 473 72.6
coarse 32.8 65.0 33.1 65.1
fine 445 843 427 83.6
all 193 794 20.5 79.0

Table 6: Model performance on span extraction. all
refers to evaluate all span types together. We use the
micro F1-score to calculate F1-score of all. Note that
we only evaluate samples that contain the related span
type in EM metric (all samples are evaluated in all).

Model/ condition coarse  fine
Label type acc acc acc
Separate 89.2 93.6 989
Merged 88.3 92.8 99.1

Table 7: Model performance on judging if a certain span
type is included in the sample.

implementation is based on Hugging-Face’s Trans-
formers library (Wolf et al., 2019). We report the
averaged test set results of 3 runs for all the ex-
periments. The relation models are trained with
ground-truth span labels.

5.3 [Experimental Results and Analysis

Span Extraction As shown in the experimen-
tal results summarized in Table 6, the separate and
merged models get similar performance on the span
extracting task. We can see from the table that
model performance in EM is really poor, while the
performance in F1 is much higher. An important
reason is that there exist many simple spans be-
sides those difficult to extract in one sample. For
example, there might be answers connected in a
one-word interval (e.g., ‘ginger, pepper, garlic ...’).

We analyze samples on the development set and
find that 47.1% of fine-grained answers and 8.6%
of coarse-grained answers are connected to others.
In this case, the model will easily extract the others
if one is recognized as the answer. However, to
maintain the authenticity of the dataset, we did not
eliminate or adapt these simple labels. The poor
EM score in Table 6 shows that extracting all text
span in one sample correctly is rather difficult. We
further analyze model performance on judging if
a certain span type is included in a sample. The
results in Table 7 show the model can achieve very
high performance (around 90% accuracy) on this
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Question: How long does it take to recover
after a needle stick?

Context: ... After topical application of chlorte-
tracycline eye drops, erythromycin eye ointment
and hot compress, you will usually recover after
3-4 days from mild local red nodules. If the pus
is formed locally, it usually breaks in 2-3 days,
and it will recover in 5-6 days ...

Answer: 3-4 days, 5 to 6 days
Prediction: 3-4 days, 2-3 days, 5 to 6 days

Table 8: An example the merged model’s wrong predic-
tions on the development set.

Model/Label type  corase fine
Separate 81.8%  T7.2%
Merged 76.0%  80.6%

Table 9: Percentage of samples with distinction error in
wrong-predicted samples from the development set.

test.

The multi-span extraction QA task is similar to
NER in the output form. However, in NER, the
model extracts all spans of the target entity type.
But in the QA task, spans of the correct entity type
might be either an answer or not, which should be
judged based on the question and context. Thus
the model cannot simply predict the answer type
and extract all spans of this type as answers, which
is one of the main characteristics of QA tasks and
challenging for models to solve. Take the case in
Table 8 for example, the model’s prediction is ‘3-4
days, 2-3 days, 5 to 6 days’. However, ‘2-3 days’
is not an answer to this question. We hypothesize
that the model has learned that the answer type is
‘period’ but fails to understand the context and pick
out the correct spans.

We denote such error as distinction error, which
means all the predicted spans are in the correct
type, but not all of them can be seen as an answer,
or some correct spans in the context are ignored.
We manually counted the distinction error amount
from 200 randomly sampled wrong-predicted sam-
ples. Results in Tabel 9 show that distinction error
occurs in a large proportion of wrong-predicted
samples, which demonstrates the characteristic and
main challenge of the span extraction task.

Label type/ | condition-answer  coarse-fine

Model EM F1 EM F1
Normal® 3.9 47.9 162 546
Span-assist® | 6.5 51.1 22.1 572
Normal 0.4 21.6 7.3 349
Span-assist® | 1.8 24.0 13.0 36.5

Table 10: Results of relation models. #: results of using
the ground-truth span labels. {>: results of using the
prediction of the merged span model.

Relation Extraction We report experimental re-
sults of two settings for the relation extraction task:
using the ground-truth label as the input and using
the prediction of the span model as the input. The
results are shown in Table 10.

Due to the limited relation type in CMQA, the re-
lation extraction task seems to be simpler than tradi-
tional relation extraction tasks containing multiple
relation types (Augenstein et al., 2017; Luan et al.,
2018; Gabor et al., 2018). Surprisingly, results in
Table 10 show that the competitive method on these
tasks performs poorly on CMQA. We hypothesis
that one reason is that the text span and relation
amount per sample in CMQA are higher than many
traditional relation extraction datasets, which of-
ten focus on intra-sentence relations. And another
reason is that the span type plays a very marginal
role in relation extraction in CMQA. In contrast,
the entity type is an important feature for judging
relationships in most traditional relation extraction
tasks (Zhong and Chen, 2021). These differences
indicate new approaches needed to be developed
to solve relation extraction in CMQA. Results in
Table 10 show that introducing the boundary infor-
mation of other spans can improve model perfor-
mance. However, the improved model performance
is still far from satisfying, which makes providing
structured answers as Figure 1 very difficult.

6 Conclusion

In this paper, we propose a new challenge: condi-
tional question answering with hierarchical multi-
span answers, which might be widespread in multi-
span QA in real-world scenarios. Moreover, we
introduce CMQA, which contains conditional and
hierarchical samples to study the new proposed
task. Data analysis and experimental results show
the main characteristics and challenges of CMQA,
and the poor model performance demonstrates that
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the proposed task is challenging for the community
to solve. We believe CMQA can serve as a bench-
mark to study the new proposed task and help build
more reliable and sophisticated QA systems.
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A Appendix

A.1 Training Annotators

The annotation process is realized by three full-
time annotators. All annotators have at least a high
school degree and more than one year of full-time
annotation working experience. We let the anno-
tators annotate different parts of data according to
the guidelines. All annotators and experts are in an
online communication group. We encourage anno-
tators to ask experts questions about samples they
are not very sure of. We guarantee that experts will
answer annotators’ questions immediately in this
phase. It takes about three days until all annotators
think they can work independently. Each annotator
has annotated over 100 samples in this phase. Note
that this part of data is only used for training and
will not be included in the final release.

A.2 Label Amount

We visualize the amount of each label type in Fig-
ure 4, where the first subgraph shows the total label
amount of the dataset, and the rest of the subgraphs
show that of each sample.

A.3 The exact steps of calculating F1 scores
for IAA study and Experiment
Evaluation

Algorithm 1 describes the exact steps in the eval-
uation procedure of IAA study and experiments.
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Figure 4: The amount of labels in CMQA. c-a refers to
condition-answer and c-f refers to coarse-fine.

Algorithm 1 Evaluation Algorithm

Input: Anno,cy: the reference annotation; Annopre: the

perdiction annotation;

Output: F'1 — score;

1:

AR Y

function CAL_F1(Anno,es, Annopre)
recallymor < 0
recallgen < 0
Precistonmor <— 0
Precisionden <— 0
for annoyey, annopre € zip(Annores, Annopre)
do
for a € annoycy do
if a € annopre then
recallymor < recallymor + 1
end if
end for
for a € annop. do
if a € annoycy then
PrecisioNmol <— Precisionmor + 1
end if
end for
recallgen < recallgen + len(annor).
PTrecisiongen <— Precisiongen + len(annos)
end for
recall < recallmor /recallgen
precision <— precisionmol/precisionden
F1 < 2xrecall xprecision/(recall + precision)
return F'1

Anno— {annoy, annoa, ...,annoy,} refers to the
annotation for n samples.

A.4 Annotation Principles with Examples

The main principles of annotation with examples
are as follows:
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The text span should be as concise as possible.
The annotator should exclude non-essential
phrases. (e.g., question: "What to eat for mus-
cle growth?’ context: ... You can eat some
beef ...’; The answer to this question should be
"beef’ instead of 'some beef’.)

If there is a multi-level hierarchical relation-
ship, only the last level is annotated. (e.g.,
context: "You can eat some vitamin-rich foods,
such as fruits ... Apples are rich in vitamin C
...”; The coarse answer to this question should
be 'fruits’ instead of 'vitamin-rich foods.’, and
the fine answer should be "Apples’.)

The sample can be abandoned in the following
situations:

— If the context cannot answer the ques-
tion.

Although there are multiple answer
spans in the context, these answers are
adjacent and can be regarded as one.
(e.g., 'ginger, pepper, garlic ...’)

Most of the words in the context are part
of the answer. It is better to give the
entire context as a long answer in this
case. (Because the number of the answer
spans of each sample is variable, we did
not give a specific context length as the
threshold to filter out samples. Experts
give examples of abandoned samples and
let the annotators make their judgments
based on these examples.)

The question is a combination of mul-
tiple sub-questions. (e.g., What are the
most suitable height and weight for long-
distance running?’) We split such ques-
tions into multiple sub-questions in our
system.



