
Proceedings of the 29th International Conference on Computational Linguistics, pages 1379–1390
October 12–17, 2022.

1379

Answering Numerical Reasoning Questions in Table-Text Hybrid Contents
with Graph-based Encoder and Tree-based Decoder

Fangyu Lei1,2, Shizhu He1,2, Xiang Li1,2, Jun Zhao1,2, Kang Liu1,2,3

1National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China
2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

3 Beijing Academy of Artificial Intelligence, Beijing, 100084, China
{leifangyu2022, lixiang2022}@ia.ac.cn
{shizhu.he, jzhao, kliu}@nlpr.ia.ac.cn

Abstract
In the real-world question answering scenar-
ios, hybrid form combining both tabular and
textual contents has attracted more and more
attention, among which numerical reasoning
problem is one of the most typical and challeng-
ing problems. Existing methods usually adopt
encoder-decoder framework to represent hy-
brid contents and generate answers. However,
it can not capture the rich relationship among
numerical value, table schema, and text infor-
mation on the encoder side. The decoder uses
a simple predefined operator classifier which
is not flexible enough to handle numerical rea-
soning processes with diverse expressions. To
address these problems, this paper proposes a
Relational Graph enhanced Hybrid table-text
Numerical reasoning model with Tree decoder
(RegHNT). It models the numerical question
answering over table-text hybrid contents as
an expression tree generation task. Moreover,
we propose a novel relational graph model-
ing method, which models alignment between
questions, tables, and paragraphs. We vali-
dated our model on the publicly available table-
text hybrid QA benchmark (TAT-QA). The pro-
posed RegHNT significantly outperform the
baseline model and achieve state-of-the-art re-
sults1 (2022-05-05).

1 Introduction

Question Answering (QA) is an important task
of natural language processing (NLP), which is
often used to assess the intelligence of an agent.
QA systems use various types of knowledge to
answer natural language questions. Earlier ap-
proaches independently utilized structured data
such as tables (Pasupat and Liang, 2015; Yu et al.,
2018), knowledge bases (Yih et al., 2016; Talmor
and Berant, 2018) or unstructured data such as
plain texts (Rajpurkar et al., 2016). In fact, real-
world QA systems often need to fuse different data

1We openly released the source code and data at https:
//github.com/lfy79001/RegHNT

resources with diverse types in answering com-
plex questions. Therefore, in recent years, the hy-
brid form of question answering over tables and
texts (TextTableQA) has attracted more and more
attention (Chen et al., 2020a,b, 2021).

There are two major question types for Text-
TableQA. The first is the fact reasoning ques-
tion, whose answer is usually a span from the ta-
ble or linked paragraphs, such as the contents in
Wikipedia (Chen et al., 2020a,b). The second is
the numerical reasoning question, which usually
aims to use the contents of tables and texts for nu-
merical calculation (Zhu et al., 2021; Chen et al.,
2021). Most previous work focuses on the first
type, while the numerical reasoning questions have
been seldom addressed. The existing datasets such
as WikiTableQuestions (Pasupat and Liang, 2015)
and DROP (Dua et al., 2019) also contain numeri-
cal reasoning questions, but solving them requires
only one type of data source. Therefore, this paper
mainly focuses on answering numerical reasoning
questions, especially for those complex questions
across texts and tables.

To explore the application of numerical reason-
ing questions in hybrid contents. Zhu et al. (2021)
proposed a hybrid text-table dataset TAT-QA, dedi-
cated to fusing the tabular and textual contents to
answer numerical reasoning questions. As shown
in Figure 1, for the question “What is the ratio of
compensation expense related...?”, one needs to get
the numerical value, i.e. “0.41”, “278.29” from the
table, and “109.7” from the text. Then we need to
generate the corresponding numerical expression
“109.7 / (0.41 × 278.29)”. To solve such a numer-
ical question, we need to identify the describing
texts near the table and understand the contents of
the table and the paragraphs.

Previous method (Zhu et al., 2021) regarded this
problem as a sequence tagging task. They prede-
fine aggregation operators and use a slot filling
method to predict simple derivation. An auxiliary

https://github.com/lfy79001/RegHNT
https://github.com/lfy79001/RegHNT

1380

Restricted Stock Grants—During 2019 and 2018, the Company granted

0.321 and 0.410 shares, respectively, of restricted stock to certain employee and director

participants under its share-based compensation plans. Restricted stock grants generally

vest over a period of 1 to 4 years. The Company recorded $72.5,

$109.7 and $63.0 of compensation

expense related to outstanding shares of restricted stock held by employees and directors

during 2019, 2018 and

2017, respectively.

……

At December 31, 2019, there was

$77.9 of total unrecognized compensation expense related to nonvested awards

granted to both employees and directors under the Company’s share-based

compensation plans.

Number

of shares

Weighted-average

grant date fair

value

Nonvested at December 31, 2017 0.859 $ 187.01

Granted 0.410 278.29

Vested -0.492 204.24

Forfeited -0.038 191.51

Nonvested at December 31, 2018 0.739 $ 225.93

Granted 0.321 318.75

Vested -0.290 209.05

Forfeited -0.061 225.23

Nonvested at December 31, 2019 0.709 $ 275.00

Question

Type
Question Answer

Answer

From
Derivation

Arithmetic
What is the ratio of compensation expense related to

outstanding shares of restricted stock during 2018 to the total

price of restricted stock shares granted between 2017 and 2018?
0.96

Table

Text

109.7 /

(0.41 * 278.29)

Arithmetic
What is the percentage change in the total price of

nonvested shares from December 31, 2018, to 2019?
16.78 Table

((0.709 * 275.00) -

(0.739 * 225.93))

/ (0.739 * 225.93)

Figure 1: An example of TAT-QA. The solid boxes are tables, and the dotted boxes are the corresponding paragraphs.
The bottom table shows two complex questions that cannot be solved by the previous method. The same color
marks the source of the answer, while the blue dashed arrow points to the source of the answer. For the table, blue
cells are Tcolumn, yellow cells are Trow and gold cells are Ttime.

number order classifier is used for operators sen-
sitive to the operation orders. Moreover, for the
complex numerical computation problems in Fig-
ure 1, the model cannot predict the answer because
of the absence of predefined operators. Thus, pre-
vious models based on predefined operators have
a deficiency of low generalizability and flexibility.
In addition, another problem of the method is to
model tables and the texts solely and could not ag-
gregate information from different data types. As
a result, incorrect answers are usually generated
because of the incomprehensive information from
a single type of data.

To solve these problems, we propose a novel
method to model such table-text hybrid data for
the TextTableQA task, especially for the numerical
reasoning question type. Specifically, we build
a heterogeneous graph to capture the relationship
between different data types. And different node
types and relation types (intra-relation and inter-
relation) are defined, as detailed in Appendix A.
We expect the QA model to capture the correlation
between the tables and the texts and aggregate them
effectively. The model could focus on the whole
contents rather than a single data type. Then a
tree-based decoder is built. And we expect it could
make good use of the different data structures from
different data types and select appropriate nodes in
the heterogeneous graph. After that, an expression
tree and a prefix expression are generated. So the
model can generate arbitrary forms of derivation

without the need for predefined slots. It eliminates
error propagation in the operator prediction module
and improves the flexibility and generalizability of
numerical reasoning.

Experimental results on the public benchmark
TAT-QA demonstrate that our proposed model
RegHNT improves EM values by 20.2% and F1

values by 20.0% over the baseline. Our main con-
tributions are summarized as follows:

• We design a novel graph construction method
to model the information from table-text hy-
brid data, which effectively captures the cor-
relation between tables and texts.

• We propose a tree structure decoder to solve
the numerical reasoning problems. Based on
our method, an expression tree and a prefix
expression are generated. Our approach can
cover arbitrary numerical derivation forms
and improve the model’s flexibility and gener-
alizability. To our knowledge, this is the first
tree-based model for TextTableQA.

• We think our graph-tree framework can be
used as a strong baseline for the TextTable
numerical reasoning task. Empirical results
on the TAT-QA dataset demonstrate that the
proposed model is effective, which achieves
the state-of-the-art performances2.

2Leaderboard of TAT-QA: https://nextplusplus.
github.io/TAT-QA

https://nextplusplus.github.io/TAT-QA
https://nextplusplus.github.io/TAT-QA

1381

2 Problem Definition

We represent a natural language question as Q =
(q1, q2, ..., q|Q|) with length |Q|. Each question
is associated with a table T and a paragraph
P = (s1, s2, ..., s|P |) with the number of sen-
tences |P |. The table T consists of several cells
T = {c1, c2, ...} and each table cell ci can be fur-
ther divided into K words (ci1, ci2, ..., ciK). Simi-
larly, each paragraph sentence si contains several
words (si1, si2, ..., siL) with the sentence length L.
Our goal is to generate the ground truth answer
through numerical calculation (see Figure 1).

Arithmetic Type

Answer 16.78

Expression [(0.709*275.00)-(0.739*225.93)]/(0.739*225.93)

Polish

Notation
/ - * 0.709 275.00 * 0.739 225.93 * 0.739 225.93

Tree

/

-

×

0.709 275.00

×

0.739 225.93

×

0.739 225.93

Figure 2: The expressions of arithmetic questions. We
predict an mathematical expression consisting of nu-
meric nodes and operators to get the answer.

The examples of expressions can be seen in Fig-
ure 2. For arithmetic questions which need nu-
merical calculation, inspired by math word prob-
lem solving (Liu et al., 2019a; Wang et al., 2019a;
Zhang et al., 2020), we generate the final mathe-
matical expression Ep, which is the polish notation
transformed from the original math expression. Ep

can always be represented as a solution expression
tree Te because the preorder traversal result of the
tree is the polish notation.

3 Method

In this section, we present in detail the mod-
ules of Relational Graph enhanced Hybird table-
text Numerical reasoning model with Tree de-
coder (RegHNT) (see Figure 3). First, a text-table
hybrid data modeling approach is proposed. After
constructing the graph, we utilize a classic encoder-
decoder architecture for predicting answers. It con-
sists of a graph input module, a graph enhanced
hidden module, and a tree-based decoder module.
Both the graph input module and the graph en-
hanced hidden module are parts of the encoder,

aiming to map the input heterogeneous graph G
into node embeddings Z ∈ R|V |×d, where d is the
graph hidden size. The tree-based decoder module
is responsible for transforming Z into the target
Te.

3.1 Graph Construction
The entire input heterogeneous graph G = (V,R)
consists of all types of nodes, that is V = Q ∪ T ∪
P with the number of nodes |V | = |Q| + |T | +∑

si∈P |si|, where |T | and |si| are the number of
table cells and paragraph sentences respectively.
For relations, R = RI ∪ RC . RI denotes intra-
relation and RC denotes inter-relation. Details of
the node types and relation types are described in
the Appendix A. Finally, we model the question,
table and text as a graph.

3.2 Graph Input Module
The graph input module aims to initialize em-
beddings for both nodes and edges. For edges,
the edge features are directly initialized from
a parameter matrix. For nodes, we can ob-
tain their representations from a pre-trained lan-
guage model (PLM) such as RoBERTa (Liu
et al., 2019b). We flatten all question words, ta-
ble cells and paragraph words into a sequence
[CLS]q1q2...q|Q|[SEP]t1t2...t|T |[SEP]s10s11...
s|P |0s|P |1...[SEP]. si0 is the special sentence to-
ken of the sentence si. Since each word e of the se-
quence is tokenized into sub-words, we use Multi-
granularity type aware pooling to get the node
representation x. Details in the Appendix B.

3.3 Relational Graph Enhanced Module
This module aggregates information about the
nodes and edges of the heterogeneous graph. It
is a stack of L relational graph attention net-
work (RGAT) layers. In each layer l, the RGAT (re-
lational graph attention transformers) (Wang et al.,
2020) models the graph G and computes the output
representation Z by:

e
(h)
ij =

xiW
(h)
q (xjW

(h)
k + rKij)

(T)√
dz/H

α
(h)
ij = softmax

{
e
(h)
ij

}
z
(h)
i =

∑
vj∈Ni

α
(h)
ij (xjW

(h)
v + rVij)

(1)

where matrices Wq,Wk,Wv are trainable parame-
ters in self-attention, and Ni is the receptive field

1382

Table

Paragraph

Question

Relational

Graph

Attention

Message

Passing

Arithmetic

Extraction

P
L

M

M
u

lti-g
ra

n
u

la
rity

 ty
p

e a
w

a
re p

o
o

lin
g

FFN
Operator Classifier

Scale Classifier

Heterogeneous

Graph

Numerical

answer

Text

answer

Predicted

Scale

Graph Construction Input Module Graph Enhanced Module Tree Decoder

Question Node

Table Node

Paragraph Node

Gold Node

Intra Relation

Inter Relation

……

Figure 3: The overall model architecture. The dashed box is the tree-based decoder. Depending on the type of
question, two separate trees are constructed to generate the answer.

of node vi. The output matrices of the final layer L
are the desired outputs of the encoder: Z = ZL.

3.4 Tree-based Decoder Module

Inspired by the goal-driven tree struc-
ture (GTS) (Xie and Sun, 2019) for solving
math word problem, we propose a novel tree-based
decoder to construct the calculation expressions
for solving text-table numerical reasoning problem.
As such, the specialized tree decoder generates an
equation following the pre-order traversal ordering.
The model takes in question Q, table T , paragraph
P and generates a expression tree Te. Let Vnum

denote numeric values in T and P . Generally,
Vcon denotes constant values Vcon = {1,AVG},
AVG means to average the sum of the previous
numbers. Vop denotes mathematical operators
V op = {+,−,×,÷}.

The tree generation process is designed as a pre-
order tree traversal (root-left-right). For node y in
target Te, y ∈ V num ∪ V con ∪ V op. We set Vnum

and Vcon to be the leaf nodes and Vop serve as the
internal nodes and must have two child nodes.

The tree structured decoder uses the final graph
layer representations zi as input and generates the
target expression in t time steps. At each time step
t, let st denote the decoding hidden state, ct denotes
the hybrid context state, gt denotes the generated
expressions tree state.

The decoder is a bi-directional GRU (Cho et al.,
2014), which updates its states at time step t+ 1 as

follows:

st+1 = BiGRU([ct : gt : E(yt)], st)

where E(yt) is the embedding of token yt:

E(yt) =


Mop(yt) if yt ∈ V op

Mcon(yt) if yt ∈ V con

hiloc(yt,T,P) if yt ∈ V num

(2)

Mop and Mcon are two trainable embeddings for
operators and constants, respectively. For a nu-
meric value in V num, its token embedding takes
the corresponding hidden state hiloc(yt,T,P), where
loc(yt, T, P) is the index position of y in table T
or paragraph P (Hong et al., 2021).

Inspired by math word problem solving (Wu
et al., 2021), the generated expression tree state gt
is calculated as follows:

gt+1 = σ(Wg[gt : gg,p : gt,l : gt,r]) (3)

where σ is a sigmoid function and Wg is a weight
matrix. For each generated node, gg,p, gg,l, gg,r
represent the expression tree state of the parent
node, left child node, and right child node of the
current node, respectively.

The hybrid context state ct is computed via at-
tention mechanism as follows:

αti = softmax(tanhWhzi +Ws[st : rt]))

ct =
m∑
i=1

αtizi
(4)

1383

where Wh, Ws are weight matrices. αti is the
attention distribution on the node representations
zi.

Lastly, the decoder can generate a word from a
given vocabulary Vop ∪ Vcon. It can also generate
a number symbol from Vnum, which is copied a
number from the table T or paragraph P . The final
distribution is the combination of the generated
probability and copy probability:

pc = σ(Wz[st : ct : rt])

Pc(yt) =
∑
yt=xi

αti

Pg(yt) = softmax(f([st : ct : rt]))

P(yt|y<t,X) = pcPc(yt) + (1− pc)Pg(yt)

(5)

Here, f(·) is a perception layer. pc is the probability
that the current word is a number copied from the
table or paragraphs.

3.5 Operator and Scale Prediction

In addition, there are two separate tasks in the de-
coding section: operator prediction and scale
prediction. For arithmetic questions, a right pre-
diction of a numerical answer should include the
right number and the correct scale. The scale in
the dataset may be None, Thousand, Million, Bil-
lion, and Percent generally. We focus on arithmetic
questions for operator prediction, but there are still
non-arithmetic questions (span extraction question)
in the dataset. So we classify whether the question
is arithmetic or not before decoding. For the ex-
traction questions, as shown in Figure 3, we also
model them as trees, as described in Appendix C.

To predict the right aggregation operator and
scale, two multi-class classifiers are developed. In
particular, we take the vector ⟨CLS⟩ to compute
the probability:

pop = softmax(FFN([⟨CLS⟩;hQ;hT ;hP]))
pscale = softmax(FFN([⟨CLS⟩]))

(6)

where hQ,hT and hP are the representations of the
question, the table and the paragraphs , respectively,
which are obtained by applying an average pooling
over the representations of their corresponding to-
kens. “;” denotes concatenation, and FFN denotes
a two-layer feed-forward network with the GELU
activation.

3.6 Training
To optimize RegHNT, the overall loss is the sum
of the loss of the above tasks:

L = Ltree + Lop + Lscale

Ltree = −
T∑
t=1

logP(yt|y<t,Q,T,P)

Lop = NLL(log(Pop),Gop)

Lscale = NLL(log(Pscale),Gscale)

(7)

Ltree is the loss function of training the tree-
decoder, and we use the cross-entropy loss. Lop

and Lscale are the loss functions for operator pre-
diction and scale prediction, respectively, where
NLL(·) is the negative log-likelihood loss. Gop

comes from the supporting evidence, which is ex-
tracted from the annotated answer and derivation.
Gscale uses the annotated scale of the answer. We
add up the three loss functions as the total loss
function.

4 Experiments

4.1 Dataset and Evaluation Metrics
TAT-QA (Zhu et al., 2021) is a large-scale, hybrid
QA dataset which contains numerical reasoning
and span extraction questions. And the contents
of TAT-QA include both tabular and textual data
from real financial reports. It contains a total of
2,757 hybrid contexts and 16,552 corresponding
question-answer pairs. The detailed statistics are
shown in Appendix D. The original dataset con-
tains four types of questions: Span, Multi-Span,
Count, Arithmetic. But in our setup, there are two
types of questions: Span Extraction and Arithmetic.
And our work mainly focuses on answering the
Arithmetic questions.

For evaluation, we adopt the Exact Match (EM)
and numeracy-focused F1 score (Dua et al., 2019)
to measure the performance of different QA models.
All of which are computed using the official evalu-
ation script3. We submit our model to the organizer
of the challenge for evaluation. The evaluation de-
tail can be found on the original paper (Zhu et al.,
2021).

4.2 Implementation Details
Implementations. Our model is implemented with
PyTorch (Paszke et al., 2019), and the graphs are

3https://github.com/NExTplusplus/
tat-qa

https://github.com/NExTplusplus/tat-qa
https://github.com/NExTplusplus/tat-qa

1384

constructed with the library DGL (Wang et al.,
2019b). In the graph input module, we use pre-
trained language models (PLMs) RoBERTa (Liu
et al., 2019b) to obtain the initial representations.
During evaluation, we adopt beam search decoding
with beam size 3.
Hyper-parameters. In the encoder, the number
of GNN layers L is 8, and the number of heads in
multi-head attention is 8. For PLMs, we use learn-
ing rate 1e-5 and weight decay rate 0.01. For other
model modules, we use a larger learning rate 1e-4,
and a weight decay rate 5e-5. In the decoder, The
recurrent dropout rate (Gal and Ghahramani, 2016)
is 0.2 for GRU. The number of heads in multi-head
attention is 8 and the dropout rate of features is set
to 0.1 in both the encoder and decoder. Through-
out the experiments, we use AdamW (Loshchilov
and Hutter, 2018) optimizer with a linear warmup
scheduler. The warmup ratio of the total training
steps is 0.06. The batch size is 48, and the training
epoch is 100. The training process may take around
2 days using a single NVIDIA GeForce RTX 3090.
Baselines. We compare with the standard
TAGOP (Zhu et al., 2021), which first applies se-
quence tagging to extract relevant cells from the
table and text spans from the paragraphs. We also
compare with other advanced models, which can
be found on the TAT-QA challenge leaderboard4.
There are no linked papers to the submissions as
yet. We compare our model’s performance on the
test split with all of them.

4.3 Main Results

Method Dev Test

EM F1 EM F1

Human - - 84.1 90.8

TAGOP 55.2 62.7 50.1 58.0

LETTER - - 56.1 64.3

KIQA - - 58.2 67.4

GSReasoner - - 67.4 75.5

RegHNT 73.6 81.3 70.3 78.0

Table 1: The performance of different models on dev
and test set of TAT-QA. The best results are marked in
bold.

The main results on the test set are provided in
Table 1. Our model achieves the state-of-the-art re-
sults in the publicly available TAT-QA benchmark

4https://nextplusplus.github.io/TAT-QA

Table Text Table-text

EM/F1 EM/F1 EM/F1

TAGOP

Span 56.5/57.8 56.5/57.8 68.2/71.7
Spans 66.3/77.0 19.0/59.1 63.2/76.9

Counting 63.6/63.6 -/- 62.1/62.1
Arithmetic 41.1/41.1 27.3/27.3 46.5/46.5

RegHNT

Span 68.5/70.0 58.7/83.0 77.0/84.7
Spans 79.5/86.2 23.8/65.3 81.1/90.1

Counting 36.3/36.3 -/- 82.7/82.7
Arithmetic 72.7/72.7 27.3/27.3 77.7/77.7

Table 2: Detailed experimental results of TAGOP and
RegHNT w.r.t. answer types and sources on the test set.

and achieves 20% higher on both EM and F1 com-
pared with the original baseline (TAGOP), which
shows that our model can answer more questions
with higher accuracy.

The detailed results on the test set are provided
in Table 2. For almost all types of questions, the ac-
curacy of RegHNT prediction has been improved.
Thanks to the tree decoder for arithmetic ques-
tions, the model’s accuracy on this type of ques-
tions has been greatly improved, with an overall
improvement of almost 30%. For span extraction
questions (Span, Spans, Counting), we observe a
improvement in the performance of the model as
well. From the perspective of answer sources, com-
pared with the original baseline (TAGOP), we focus
on "table-text" type questions, both "arithmetic"
and "span extraction" type show a performance
improvement of about 20%. It demonstrates that
our approach works very well in solving table-text
hybrid questions.

This paper focuses on the numerical reasoning
questions. To verify our model more precisely, we
divided the questions into three categories based
on the complexity of the derivation, as shown in
Table 3. Simple arithmetic has only one operator.
Complex arithmetic has multiple operators, usually
used to calculate the average and the rate of change.
Undefined arithmetic is arithmetic for which no
template is defined in TAGOP. The results show
that our model significantly improves both simple
and complex arithmetic. In particular, our model
can solve undefined arithmetic of TAGOP, which
offers flexibility and generalizability.

https://nextplusplus.github.io/TAT-QA

1385

Arithmetic type % TAGOP RegHNT

Simple arithmetic 41.8 45.0 79.3

Complex arithmetic 42.8 60.5 85.3

Undefined arithmetic 15.4 0.0 61.8

Table 3: Exact match value for different types of arith-
metic questions.

Technique EM F1

RegHNT 73.6 81.3
w/o Intra-relations 72.8 80.4
w/o Inter-relations 72.3 79.8
w/o All relations 71.6 78.7
w/o Multi-granularity type aware pooling 73.0 80.7
w/o Tree-decoder (Span extraction) 72.8 80.6
w/o Tree-decoder (All questions) 60.3 69.5

Table 4: Ablation study of different modules.

4.4 Ablation Studies

Effect of Tree Decoder. Although our work fo-
cuses on arithmetic questions, to unify the whole
model into a graph-tree framework, we transform
the span extraction type question into a tree gener-
ation problem as well, as mentioned in Section 3.5.
We conducted two experiments using the sequence
tagging method in TAGOP (Zhu et al., 2021) in-
stead of generating expression trees. As shown in
the last two rows of Table 4, one is to use sequence
tagging for all questions, and the other is to use se-
quence tagging only for span extraction questions.
When we change the decoder only for extraction
questions, the F1 drops only 0.7%, but when we
change the decoder for all questions, the F1 drops
about 11.8%. It shows that the tree decoder is not
only tremendously helpful in solving arithmetic
questions but also provides a slight improvement
in solving span extraction questions.
Effect of Graph Encoder. As shown in the first
four rows of Table 4, we show the effectiveness
of the proposed graph encoder. Removing the
intra-relations reduces the F1 value by 0.9% and
reduces the EM value by 0.8%. Removing the
inter-relations reduces F1 value by 1.5% and re-
duces the EM value by 1.3%. When we remove all
relations (remove graph enhanced module), the F1

decreases by 2.6%, and the EM value decreases by
2.0%. From the results, it can be clearly confirmed
that the graph we built plays an essential role in
modeling table-text hybrid data, and it captures the
semantic association through the message passing
between different data types.
Effect of Subword Pooling Layer. In the graph in-

put module, we used a multi-granularity type aware
pooling method. The type classification criteria
for word granularity are text and number, and for
node granularity are question, table, and paragraph.
As shown in the fifth row “w/o Multi-granularity
type aware pooling” of Table 4, we eliminate this
mechanism and unify the pooling approach for all
types and granularities. Experimental results of F1

dropped by 0.6%, which shows the effectiveness
of this type-aware module.

4.5 Scale and Operater Study

Scale Study. Scale prediction is a unique challenge
over TAT-QA and very pervasive in the context of
finance. After obtaining the scale, the numerical or
string prediction is multiplied or concatenated with
the corresponding scale as the final prediction to
compare with the ground-truth answer, respectively.
We compare RegHNT with the baseline model for
scale prediction results. The experimental results
are shown in Table 5. Our model has significantly
improved performance on both the dev and test
datasets. To explore the impact of the scale on re-
sults, we use the gold scale to predict the answer.
As shown in the third row of Table 6, model accu-
racy will slightly increase to 84.2% when we use
the gold scale, which shows that it is necessary to
improve the prediction of scale.
Operator Study. For TAT-QA dataset, there are
four original answer types: Span, Multi-Span,
Count, Arithmetic. As Figure 3 shows, we have
adapted it into two categories, where the details
of the expression tree for the span extraction ques-
tions are in the Appendix C. To investigate whether
this category setting causes error propagation, we
use the gold operator to predict the answer, and the
results are shown in Table 6. When we use the gold
operator, the EM and F1 of the model is improved
by only 0.1. It suggests, to some extent, that we
divide the data into two categories and use tree
decoders to generate the answers separately. This
approach has no significant impact on performance.

Model Dev Test

TAGOP 93.5 92.2

RegHNT 95.3 93.4

Table 5: Scale prediction results of our model and base-
line.

1386

Model EM F1

RegHNT 73.6 81.4
RegHNT + Gold operator 73.7 81.5
RegHNT + Gold scale 76.5 84.2
RegHNT + Gold operator + Gold scale 76.7 84.3

Table 6: The performance of using gold operators and
gold scales.

4.6 Case Studies

RegHNT TAGOP

What is the percentage change in total net sales of

International and Foodservice from fiscal year 2018

to 2019?

/ - + 793.4 934.2 + 843.5

1054.8 + 843.5 1054.8
/ 793.4 843.5

[(793.4 + 934.2) - (843.5 +

1054.8)] / (843.5+1054.8)
793.4 / 843.5

What was the average employee termination cost per

employee in 2018?

/ 53.0 1027 / 53.0 55.5

53.0 / 1027 53.0 / 55.5

2019 2018

International

Foodservice

Figure 4: Two examples of generated expressions by
RegHNT and TAGOP(Zhu et al., 2021).

As Figure 4 shows, there are two questions and
the prediction results of the models. For the ques-
tion “What is the percentage change in total net
sales...?”, the previous method could not gener-
ate complex arithmetic. In contrast, our model
can generate the correct prefix expressions, which
demonstrates the characteristics and advantages of
our tree decoder. For the question “What was the
average employee termination...?", the correct ex-
pression is derived from table and text (“53.0” from
table and “1027” from paragraph). The results in
Figure 4 show that the model often fails to answer
correctly when a question requires the use of both
tables and text. It focuses only on tables, choose
“53.0” and “55.5”. This error type is very common
in the previous methods. It shows that our graph
encoder can better model the association between
tables and texts.

5 Related Work

Table-text hybrid QA is a new task that consists of
two main types of work.

Fact Reasoning TextTableQA. Chen et al.
(2020b) propose the first table-text hybrid QA
dataset. It is the fact reasoning type dataset whose
answer is usually a span from the table or linked
paragraphs of Wikipedia. The authors supposed
HYBRIDER (Chen et al., 2020b), a pipeline
approach that divides the prediction process
into two phases called linking and reasoning.
MITQA (Kumar et al., 2021) achieves SOTA EM
result on HybridQA, which is a novel training
strategy that works with multiple instances and
multiple answers based on weak supervision.
DEHG (Feng et al., 2022) propose a document-
entity heterogeneous graph network and achieve
SOTA F1 score on HybridQA. OTT-QA (Chen
et al., 2020a) is a difficult open-domain setting
TextTableQA task, which needs retrieval and
reading to get the answers. CARP (Zhong et al.,
2022) utilizes hybrid chain to model the explicit
intermediate reasoning process across table and
text for question answering, which achieves
SOTA results, but still far from expectations.
GeoTSQA (Li et al., 2021) is a multiple choice QA
dataset based on geography domain.

Numerical Reasoning TextTableQA. TAT-
QA (Zhu et al., 2021) and FinQA (Chen et al.,
2021) are the numerical reasoning hybrid dataset
which comes from the financial field. Both
TAT-HQA (Li et al., 2022) and TAT-DQA (Zhu
et al., 2022) are enhanced datasets of TAT-QA,
which study TextTableQA in counterfactual con-
dition and multimodal condition, respectively.
MULTIHIERTT (Zhao et al., 2022) is a challenging
dataset, which contains multiple hierarchical tables
and longer unstructured text. Unlike HybridQA,
which was fact reasoning type questions, TAT-QA
focuses explicitly on finance and needs numerical
reasoning for question answering over tabular num-
bers and associated text. They proposed TAGOP

model and regarded this problem as a sequence
tagging task. It predefined aggregation operators
and used a slot filling method to predict simple
derivation, lacking generalizability and flexibility.
Our model is the first method to generate arithmetic
expressions directly for table-text hybrid numerical
reasoning QA.

1387

6 Conclusion

This paper proposes a novel method to solve table-
text hybrid numerical reasoning problems and
achieve good performance. We present a unified
framework for addressing the table schema and
relative paragraphs. By adopting relation-aware
self-attention, the proposed method jointly learns
question, table and paragraph representations based
on their alignment. At the same time, we offer a
tree-based numerical reasoning decoding frame-
work for hybrid data, the first to use this type of
method for this task. Our model can serve as a
strong baseline for this task. However, our model
has not yet been experimented on encyclopedic
type questions (Chen et al., 2020b), and we will
explore a table-text hybrid QA framework that in-
tegrates dealing with factual and numerical reason-
ing types of questions. For numerical reasoning
type questions, we will do further research on TAT-
HQA (Li et al., 2022) and TAT-DQA (Zhu et al.,
2022).

Acknowledgements

This work is supported by the Natural Key
R&D Program of China (No.2022QY0701), the
National Natural Science Foundation of China
(No.61922085, No.61976211) and the Strategic
Priority Research Program of Chinese Academy
of Sciences (Grant No. XDA27020200). This re-
search work was supported by the independent re-
search project of National Laboratory of Pattern
Recognition (No. Z-2018013), the Youth Innova-
tion Promotion Association CAS, Yunnan Provin-
cial Major Science and Technology Special Plan
Projects (No.202202AD080004) and CCF-DiDi
GAIA Collaborative Research Funds for Young
Scholars.

References
Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,

Su Zhu, and Kai Yu. 2021. Lgesql: Line graph en-
hanced text-to-sql model with mixed local and non-
local relations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2541–2555.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger,
William Yang Wang, and William W Cohen. 2020a.
Open question answering over tables and text. In In-
ternational Conference on Learning Representations.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020b. Hy-
bridqa: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026–1036.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan R Routledge,
et al. 2021. Finqa: A dataset of numerical reasoning
over financial data. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3697–3711.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378.

Yue Feng, Zhen Han, Mingming Sun, and Ping Li.
2022. Multi-hop open-domain question answering
over structured and unstructured knowledge. In Find-
ings of the Association for Computational Linguistics:
NAACL 2022, pages 151–156, Seattle, United States.
Association for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. Advances in neural information
processing systems, 29.

Yining Hong, Qing Li, Daniel Ciao, Siyuan Huang, and
Song-Chun Zhu. 2021. Learning by fixing: Solv-
ing math word problems with weak supervision. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 4959–4967.

Vishwajeet Kumar, Saneem Chemmengath, Yash Gupta,
Jaydeep Sen, Samarth Bharadwaj, and Soumen
Chakrabarti. 2021. Multi-instance training for ques-
tion answering across table and linked text. arXiv
preprint arXiv:2112.07337.

Moxin Li, Fuli Feng, Hanwang Zhang, Xiangnan He,
Fengbin Zhu, and Tat-Seng Chua. 2022. Learning
to imagine: Integrating counterfactual thinking in
neural discrete reasoning. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 57–69.

Xiao Li, Yawei Sun, and Gong Cheng. 2021. Tsqa: tab-
ular scenario based question answering. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13297–13305.

https://doi.org/10.18653/v1/2022.findings-naacl.12
https://doi.org/10.18653/v1/2022.findings-naacl.12

1388

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019a. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the 2019
conference on empirical methods in natural language
processing and the 9th international joint conference
on natural language processing (EMNLP-IJCNLP),
pages 2370–2379.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019a. Template-based math word problem solvers
with recursive neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7144–7151.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. 2019b. Deep graph library: A graph-
centric, highly-performant package for graph neural
networks. arXiv preprint arXiv:1909.01315.

Qinzhuo Wu, Qi Zhang, and Zhongyu Wei. 2021. An
edge-enhanced hierarchical graph-to-tree network for
math word problem solving. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2021,
pages 1473–1482.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In IJCAI, pages 5299–5305.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928–
3937.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6588–6600, Dublin, Ireland. Association for
Computational Linguistics.

Wanjun Zhong, Junjie Huang, Qian Liu, Ming Zhou,
Jiahai Wang, Jian Yin, and Nan Duan. 2022. Reason-
ing over hybrid chain for table-and-text open domain
question answering. In Proceedings of the Thirty-
First International Joint Conference on Artificial In-
telligence, IJCAI-22, pages 4531–4537. International
Joint Conferences on Artificial Intelligence Organi-
zation. Main Track.

Fengbin Zhu, Wenqiang Lei, Fuli Feng, Chao Wang,
Haozhou Zhang, and Tat-Seng Chua. 2022. Towards
complex document understanding by discrete reason-
ing. arXiv preprint arXiv:2207.11871.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3277–3287.

https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.24963/ijcai.2022/629
https://doi.org/10.24963/ijcai.2022/629
https://doi.org/10.24963/ijcai.2022/629

1389

A Relation Detail

Before defining relation types, we’d better intro-
duce the node types more finely. There are three
types of nodes, but they can be divided in more
detail. Table T has complex structural information.
We set three types according to the location of the
cell, namely Trow, Tcolumn and Tcell. Some row
headers and column headers are time (e.g. 2019).
We set these special cell as Ttime. Row headers
and column headers are composed of text, while
numerical cells are numbers. For the question Q,
there is only one node type Qword. For the para-
graph P , there are two node types, Pword repre-
sents the common sentence words, Psentence rep-
resents the special sentence token.
Now there are seven types of nodes, and we estab-
lish edges between them, which is mainly divided
into intra-relation RI and inter-relation RC. The
relations are based on the table schema and word
matching between resources, and details are de-
scribed in Table 7.

B Multi-granularity type aware pooling

Since each word e of the sequence is tokenized into
sub-words, we need to aggregate them in order to
obtain the node representation. We set two gran-
ularities (word, node) and three types (question,
table, paragraph) aware pooling method.

• Word level: For number word (e.g. 109.7)
and text word (e.g. compensation), we use
two independent subword attentive pooling
module depending on word type to get the
type-aware word level representation w.

w =
∑
i

softmaxi
[
tanh(eiWs)v

T
s

]
ei

• Node Level: For a node, especially a table
cell node, which usually consists of multiple
words. According to the node source types,
we aggregate the word level granularity repre-
sentation with three different pooling layers
and three different BiLSTM to get the node
representation x.

x =
∑
i

softmaxi
[
tanh(wiWn)v

T
n

]
wi

Where vs, Ws, vn, Wn are trainable parame-
ters. The attentive pooling layer is inspired by
LGESQL (Cao et al., 2021).

C Details of the span extraction question

We also predict an expression tree for span extrac-
tion questions to get the answer. The example is
shown in Figure 5. Unlike mathematical problems,
the leaf node in the span extraction tree represents
node ID, while the leaf node in the arithmetic tree
represents the numeric number or constant. As for
the operator, the operators in the arithmetic tree are
“+, -, ×, ÷”. But for the span extraction tree, we
define three operators, “+, ×, C”. “+” represents the
splicing of two discontinuous spans, corresponding
to the multi-span in the original dataset. “×” means
taking the operator’s left and right sides as the start-
ing and ending nodes and selecting all nodes in the
middle of the two nodes as a span. “C” is the same
as “+”, but it counts the number of spans instead of
slicing them.

Span Extraction Type

Answer

integration and transformation-related expenses

severance and retention compensation expenses

transaction-related expense

Expression 7 + 10 + 44 * 47

Polish

Notation
+ + 7 10 * 44 47

Tree

/

-

×

0.709 275.00

×

0.739 225.93

×

0.739 225.93

Figure 5: Expressions for span extraction questions.
We also predict an expression tree to get the answer.
"44×47” means to select all words between nodes ID 44
and nodes ID 47, “+” means that the span on both sides
is the answer.

D Details of the TAT-QA

The specific data analysis of the dataset is shown
in Table 8 and Table 9.

1390

Intra-Relation

Source x Source y Relation Description

Trow Tcell CONTAIN x is row head of y.

Tcolumn Tcell CONTAIN x is column head of y.

Ttime Tcell CONTAIN x is row/column head of y, x is time.

Psentence Pword CONTAIN x is the sentence token which contain y.

Qword Qword DISTANCE+1 y is the next word of x.

Pword Pword DISTANCE+1 y is the next word of x.

Tcell Tcell SAME ROW x and y are in the same row.

Tcell Tcell SAME COLUMN x and y are in the same column.

Inter-Relation

QWord Trow
PARTIALMATCH x is part of y, but the entire question does not contain y.
EXACTMATCH x is part of y, and y is a span of the entire question.

Psentence Qword CONTAIN x is the sentence token which contain y.

Psentence Trow CONTAIN x is the sentence token which contain y.

Pword Trow
PARTIALMATCH x is part of y, but the entire sentence does not contain y.
EXACTMATCH x is part of y, and y is a span of the entire question.

Pword Qword SAME x and y are the same words.

Table 7: The checklist of all relations in our RegHNT. All the above relations are asymmetric. We show only one
direction, and the opposite direction can be easily inferred.

Table Text Table-text Total

Span 1,801 3,496 1,842 7,139
Spans 777 258 1,037 2,072
Counting 106 5 266 377
Arithmetic 4,747 143 2,074 6,964
Total 7,431 3,902 5,219 16,552

Table 8: Question distribution regarding different an-
swer types and sources in TAT-QA.

Statistic Train Dev Test

of hybrid contexts 2,201 278 278
of questions 13,215 1,668 1,669
Avg. rows / table 9.4 9.7 9.3
Avg. cols / table 4.0 3.9 4.0
Avg. paragraphs / table 4.8 4.9 4.6
Avg. paragraph len [words] 43.6 44.8 42.6
Avg. question len [words] 12.5 12.4 12.4
Avg. answer len [words] 4.1 4.1 4.3

Table 9: Basic statistics of each split in TAT-QA.

