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Abstract

Attention describes cognitive processes that
are important to many human phenomena in-
cluding reading. The term is also used to de-
scribe the way in which transformer neural
networks perform natural language processing.
While attention appears to be very different
under these two contexts, this paper presents
an analysis of the correlations between trans-
former attention and overt human attention
during reading tasks. An extensive analysis
of human eye tracking datasets showed that
the dwell times of human eye movements were
strongly correlated with the attention patterns
occurring in the early layers of pre-trained
transformers such as BERT. Additionally, the
strength of a correlation was not related to
the number of parameters within a transformer.
This suggests that something about the trans-
formers’ architecture determined how closely
the two measures were correlated.

1 Introduction

Attention is a process that is associated with both
reading in humans and with Natural Language Pro-
cessing (NLP) by state-of-the-art Deep Neural Net-
works (DNN) (Bahdanau et al., 2015). In both
cases, it is the words within a sentence that are
attended to during processing. In DNNs, attention
results from mechanisms built into the network.
Specifically, in the current state-of-the-art method
Transformers (Vaswani et al., 2017), this attention
process is the result of the dot product of two vec-
tors that represent individual words in the text. For
humans, attention processes are more complex as
they can be broken into overt and covert attention
(Posner, 1980). Overt attention is characterized by
observable physical movements of which eye gaze
is a well known example that is relevant to read-
ing (Rayner, 2009). Covert attention, on the other
hand, is characterized by mental shifts in focus and,
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therefore, not directly observable. For this study
we have focused on the overt attention measure of
eye gaze, with words at the center of an eye fixa-
tion being the words that we assume were being
attended.

While attention in human reading processes and
transformers appear to be completely different, this
paper will present an analysis showing the rela-
tionship between the two'. Specifically, attention
in well-known transformers such as BERT (De-
vlin et al., 2019), and its derivatives are closely
related to humans’ eye fixations during reading.
We observed strong to moderate strength correla-
tions between the dwell times of eyes over words
and the self-attention in transformers such as BERT.
We have explored some reasons for these different
correlation levels and speculated on others.

This analysis is part of an ongoing research line
where we attempt to overcome attention limits in
transformers. When using transformers, both mem-
ory and computational requirements grow quadrat-
ically as the sequence length increases because
every token attends to all other tokens. In previous
work, we have used the attention mechanisms of
pre-trained transformers as attention filters that can
reduce a sequence length for a sentiment analysis
task by 99% while still maintaining 70% accuracy
(Tan et al., 2021). Our motivation for this paper
was to explore the possibility of using models of
eye gaze as an alternative filter. Strong correlations
between the attentions produced by transformers
and the overt attention of humans would suggest
that models of eye movements could potentially be
used in computationally inexpensive methods for
approximating transformer attention. Alternatively
we could use eye movements to train transformer

attention towards overt attention patterns?.

'Code and Full Results available at https://github.
com/Strong-AI-Lab/Eye-Tracking—Analysis
2See appendix for a preliminary attempt.
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1.1 Transformers

Transformers (Vaswani et al., 2017) have domi-
nated the leader boards for NLP tasks since their
introduction to the deep learning community. Addi-
tionally, transformers have had an impact on com-
puter vision (Dosovitskiy et al., 2021), including
generative networks (Jiang et al., 2021). The gen-
eral superior performance of transformers at these
tasks is due to its attention mechanism:
Attention(Q, K, V) = softmax (QK > A%
N4D

(1)
where the word vectors representations of the text
sequence Q are compared to those from sequence
K. This is used to determine the amount of informa-
tion word representations from the former should
incorporate from the latter. If the query and key se-
quence are the same, as in a transformers encoder,
it is called self-attention. The results of the atten-
tion process are then multiplied by sequence V to
get the final outputs from the attention layer. V
contains different representations for the words in
K.

The more relevant a word in K is to those in Q,
the more attention Q words allocate to that word.
Research has examined the Q x K part of the at-
tention mechanism to understand how transformers
process information. Vaswani et al. (2017) showed
that transformers could use words in Q to learn
anaphora resolution by appropriately attending the
word "its" in K.

The introduction of transformers was quickly
followed by a proliferation of pre-trained models
using the transformers architecture. Arguably, the
most famous of these models is BERT, a.k.a. the
Bidirectional Encoder Representations from Trans-
formers model (Devlin et al., 2019). BERT was
designed to encode information from whole pas-
sages of text into a single vector representation. Its
bidirectional structure means that each word token
is placed in the context of the entire sequence in-
stead of just the tokens appearing before it. This
structure provided an increase in performance on
the GLUE benchmarks (Wang et al., 2019b) over
mono-directional models such as the original GPT
(Radford et al., 2018).

To ensure that the model learned to attend to the
sequence as the whole, BERT was trained using
Masked Language Modeling (MLM), a task in-
spired by the Cloze procedure (Taylor, 1953) from
human reading comprehension studies. In MLM,
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random words from a sequence are hidden during
input. The model then has to predict what word
was hidden based on the context of surrounding
words. BERT was also trained to perform Next
Sentence Prediction (NSP) during MLM, forcing
words from one sentence to attend to words in other
sentences. BERT achieved state-of-the-art perfor-
mance in multiple NLP benchmarks following this
training regime, which led to its widespread adop-
tion.

BERT’s impact on the field can be seen in the
number of subsequent models that are its direct
descendants. Examples include models such as
RoBERTa (Liu et al., 2019), which uses BERT’s
architecture but was trained via different methods.
Other models, such as ALBERT (Lan et al., 2020),
were created to condense BERT for faster perfor-
mance with minimal accuracy loss. Even mod-
els such as XLNet (Yang et al., 2019) extended
BERT’s architecture to include recurrence mecha-
nisms introduced in other models (Dai et al., 2019).
In turn, some of these descendant models have
been used to create other models. For example,
BIGBIRD (Zaheer et al., 2020) was built using
RoBERTa as its base.

1.2 Combining Transformers and Eye Gaze

There is a growing field of research that combines
pre-trained transformers with eye-tracking data.
Researchers have used outputs from BERT as fea-
tures for machine learning models to predict eye
fixations. In some instances, these outputs are com-
bined with other features (Choudhary et al., 2021);
in other instances, BERT itself is fine-tuned to pre-
dict eye fixations. For example Hollenstein et al.
(2021a) have shown that BERT can be effective at
predicting eye movements for texts written in mul-
tiple languages, including English, Dutch, German,
and Russian.

Given the strong relationship between eye gaze
and attention, it is unsurprising that there have been
attempts to compare eye gaze to attention generated
in transformers. Sood et al. (2020a) compared eye
movements in reading comprehension task to three
different neural networks, including XI.Net. After
fine-tuning XL Net, they compared attention from
the last encoder layer to eye gaze and reported a
non-significant correlation. However, their compar-
ison only reported the correlation for the final atten-
tion layer of the network, while other studies com-
paring transformer attention to human metrics have



indicated that the strength of an association can
differ by layer (Toneva and Wehbe, 2019). There-
fore, the present study calculated correlations with
eye movements from all layers of the transformers.
With that said, our results focused on the first layer
as it generally produced the strongest correlations
to eye gaze data.

Following the work of Sood et al. (2020a), the
present study is a large-scale analysis of the rela-
tionship between attention in pre-trained transform-
ers and human attention derived from eye gaze. We
compared the self-attention values of 31 variants
from 11 different transformers, including BERT, its
descendants, and a few other state-of-the-art trans-
formers (Table 1). No fine-tuning was performed;
models were the same as those reported in their
respective papers. Using the BERT-based models
with their original parameter weights allowed us to
investigate the effect that training regime had on
how closely the attention was related to overt eye-
based attention. Using non-BERT models allowed
us to examine what effect model architecture had
on this relationship. Finally, the different datasets
enabled an exploration into how the human partic-
ipants’ task also affects this relationship. Results
showed significant correlations between attention
in the first layer of the transformers and total dwell
time. These correlations were unrelated to the size
of the model.

2 Related Work

There have been attempts to combine DNNs with
eye data to perform various tasks. Some basic tasks
include predicting how an eye will move across
presented stimuli, whether text-based (Sood et al.,
2020b) or images in general (Ghariba et al., 2020;
Li and Yu, 2016; Harel et al., 2006; Huang et al.,
2015; Tavakoli et al., 2017). These predictions can
be used to create saliency maps that show what
areas of a visual display are attractive to the eye.
In turn, saliency maps can be used to either un-
derstand biological visual processes or be incorpo-
rated as meta-data into machine learning models.
The later endeavor has led to some improvements
in task performance. In a recent example, Sood
et al. (2020b) achieved state-of-the-art results in a
text compression task by creating a Text Saliency
Model (TSM) using a BiLSTM network that out-
puts embeddings into transformer self-attention lay-
ers. The TSM was pre-trained on synthetic data
simulated by the E-Z reader model (Reichle et al.,
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1998) and fine-tuned on human eye-tracking data.
The model’s output was used to neuromodulate
(Vecoven et al., 2020) a task-specific model via
multiplicative attention.

Eye gaze data itself can be used to inspire new
ways for neural networks to perform NLP tasks
(Zheng et al., 2019). For example, it is well known
that the human eye does not fixate on every word
during reading (Duggan and Payne, 2011). Nev-
ertheless, humans, until recently, performed well
above machines in many NLP tasks (Fitzsimmons
et al., 2014; He et al., 2021). These observations
imply that the word skipping process is not detri-
mental to reading tasks. Some researchers have
exploited this process by explicitly training their
models to ignore words (Yu et al., 2017; Seo et al.,
2018; Hahn and Keller, 2016). For example, Yu
et al. (2017) trained LSTM models to predict the
number of words to skip while performing senti-
ment analysis and found that the model could skip
several words at a time and still be as accurate, if
not more accurate, than the non-skipping models.
Additionally, Hahn and Keller (2018) showed that
the skipping processes could be modelled using
actual eye movements and achieve the same result.
These word skipping models exploit overt attention
only, and it would be interesting to know what hap-
pens if skipping was modelled on covert attention
instead.

Other research exploring the relationship be-
tween DNNs and human data has examined how
closely the metrics used to measure eye movement
are related to metrics used for machine language
models. Studies of this type require identifying
comparable processes between the two different
systems and a suitable dataset. For example, Hao
et al. (2020) compared model perplexity to psy-
cholinguistic features.

There have even been comparisons of DNN at-
tention to what humans attend to during reading
tasks. Sen et al. (2020) compared the attention of
humans during a sentiment analysis task to RNN
models. Crowdsourced workers were asked to rate
sentiments of YELP reviews and then highlight
the important words for their decision-making pro-
cess. They found correlations between the RNN
outputs and human behavior. The strength of these
correlations diminished as the length of the text
increased.

Closely related to our study is the work of Sood
et al. (2020a) who attempted to compare eye gaze



to the attention mechanisms of three different neu-
ral network architectures. One of the models was
the BERT-based transformer, XLNet (Yang et al.,
2019). The other two networks were bespoke CNN
and LSTM models. All models were trained on the
MovieQA dataset (Tapaswi et al., 2016), and atten-
tion values were taken from the later levels of the
networks. Several questions for the original dataset
were selected for human testing, where the par-
ticipants’ eye gazes were tracked while they read
and answered the questions. Sood et al. (2020a)
observed that the attention scores from both the
CNN and LSTM networks had strong negative cor-
relations with the eye data. However, there was
no significant correlation between eye gaze and
XLNet.

Finally, there has been recent work using trans-
former representations to predict brain activity. For
example, Toneva and Wehbe (2019) used layer rep-
resentations of different transformers, including
BERT and Transformer-XL, to predict activation
in areas of the brain. They found that the mid-
dle layers best predict the activation as the con-
text (sequence length) grew. Toneva and Wehbe
(2019) tentatively suggested that this means there
is a relationship between the layer and the type
of processing occurring. To their surprise, they
also found that modifying lower levels of BERT
to produce uniform attention improved prediction
performance.

Schrimpf et al. (2021) performed a similar anal-
ysis using many of the models included in the
present study. They found that the output of some
transformers could be used to predict their partic-
ipants brain behavior to almost perfect accuracy.
Prediction performance differed by model size and
training regime, with GPT-2 performing best (Rad-
ford et al., 2019). Surprisingly, Schrimpf et al.
(2021) found that untrained models also produced
above chance prediction, leading them to suggest
that the architecture of transformers captures im-
portant features of language before training occurs.

3 Analysis of Self-Attention Against Eye
Gaze

All analyses used HuggingFace’s (Wolf et al., 2020)
version of the transformer and associated tokenizer.
The models’ weights were identical to those down-
loaded from HuggingFace; no fine-tuning was con-
ducted. All analyses report Spearman correlations
(Coefficient, 2008) to avoid data normality issues
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and provide a direct comparison to previously re-
ported work.

3.1 Datasets

Six different datasets were used in our study. In
all cases, eye-tracking data were captured from
participants performing reading tasks in English.

The GECO Corpus (Cop et al., 2017) contains
data from 19 Dutch bilingual and 14 English read-
ers who read "The Mysterious Affair at Styles" by
Agatha Christie across four sessions. Comprehen-
sion tests occurred between sessions. The bilingual
participants completed two sessions in English and
two in Dutch. We selected all English sessions for
our analysis, regardless of the participant’s bilin-
gual status.

The PROVO Corpus (Luke and Christianson,
2018) contains 55 passages (average of 2.5 sen-
tences). Passages were taken from online news
articles, magazines, and works of fiction. Partici-
pants were 84 native English speakers instructed to
read for comprehension.

The ZuCo Corpus (Hollenstein et al., 2018) is a
combined reading, eye-tracking, and EEG dataset.
Data was captured from 12 native English speakers
who could read at their own pace with sentences
presented one at a time. The participants completed
three different tasks. Task 1 was a sentiment anal-
ysis task. Task 2 was a standard reading compre-
hension task where questions were presented after
reading the text. Task 3 was also a reading com-
prehension task; however, the question appeared
onscreen while the participant was reading.

We also used data from Sood et al. (2020a).
They collected data from 32 passages taken from
the MovieQA (Tapaswi et al., 2016) dataset. In
Study 1, 18 participants answered questions from
16 passages under varying conditions such as multi-
choice, free answer with text present, and free an-
swer from memory. In Study 2, 4 participants an-
swered multi-choice questions from the remaining
16 passages.

Additionally, we used data from Frank et al.
(2013) where 48 participants read 205 sentences
from unpublished novels for comprehension. The
dataset contains eye movements from both native
and non-native English speakers. Participants oc-
casionally answered yes/no questions following a
sentence.

The final dataset comes from Mishra et al. (2016)
who conducted a sarcasm detection task. The



Table 1: List of models used in this paper

Model

Pre-trained models in Huggingface repository

ALBERT (Lan et al., 2020)

BART (Lewis et al., 2020)
BERT (Devlin et al., 2019)

BIGBIRD (Zaheer et al., 2020)
DeBERTa (He et al., 2021)

DistilBERT (Sanh et al., 2019)

albert-base-v1, albert-base-v2, albert-large-v2, albert-xlarge-v2, albert-xxlarge-
v2

facebook-bart-base, facebook-bart-large

bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-
base-multilingual-cased

google-bigbird-roberta-base, google-bigbird-roberta-large
microsoft-deberta-base, microsoft-deberta-large, microsoft-deberta-xlarge,
microsoft-deberta-v2-xlarge, microsoft-deberta-v2-xxlarge
distilbert-base-uncased, distilbert-base-cased, distilbert-base-multilingual-cased

Muppet (Aghajanyan et al., 2021)
RoBERTa (Liu et al., 2019)
SqueezeBERT (Iandola et al., 2020)
XLM (Conneau et al., 2020)
XLNet (Yang et al., 2019)

facebook-muppet-roberta-base, facebook-muppet-roberta-large
roberta-base, roberta-large

squeezebert-squeezebert-uncased

xlm-roberta-base, xIm-roberta-large

xInet-base-cased, xInet-large-cased

dataset was taken from a wide variety of sources, all
short passages containing a maximum of 40 words.
Participants were non-native English speakers who
were highly proficient in English.

3.2 Models

Table 1 lists the 31 variants from the 11 differ-
ent bidirectional transformers models that we used.
Our analysis method required all tokens to attend to
all other tokens in a sequence. Therefore, unidirec-
tional models such as GPT-2 (Radford et al., 2019)
were excluded as they prevent tokens early in a se-
quence from attending tokens later in that sequence.
We grouped the models into three types: 1) Basic
models have the same architecture as BERT. 2)
Compact models are those designed to be smaller
versions of basic models. 3) Alternative models
are those that greatly differ from the basic models.

3.2.1 Basic Models

BERT (Devlin et al., 2019): On release, BERT
was state-of-the-art. It was trained using MLM, in
which 15% of tokens were masked. Training also
incorporated NSP by forcing the model to predict
whether two sentences were contiguous or not. Our
analysis includes a multilingual BERT and both the
cased and uncased versions of English BERT.

RoBERTa (Liu et al., 2019): RoBERTa has an
architecture identical to BERT but was trained for
longer, with larger batch sizes and more data. The
MLM examples were dynamically generated dur-
ing a batch, unlike BERT which used the same
mask patterns every time a sample was used. The
NSP task was dropped as it did not affect perfor-
mance.

We have also included the MUPPET version of
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RoBERTa (Aghajanyan et al., 2021), trained using
multitask learning with tasks from four domains:
classification, commonsense reasoning, reading
comprehension, and summarization. Finally, we
have included XLM-RoBERTa (Conneau et al.,
2020), a multilingual version of RoOBERTa.

3.2.2 Compact Models

ALBERT (Lan et al., 2020): A Lite BERT is a
BERT-based model that uses two tricks to reduce
the number of parameters and time taken required
to train the model. 1) Factorized embedding pa-
rameterization - decomposing the large vocabu-
lary embedding matrix into two small matrices; 2)
Cross-layer sharing - parameters for all layers are
shared.

DistilBERT (Sanh et al., 2019): This model used
a Teacher — Student method for the distillation
of knowledge (Bucilud et al., 2006; Hinton et al.,
2015). Sanh et al. (2019) started with a full model
and kept every second layer to create the student.
The student was then trained on original training
data. This procedure resulted in an almost as pow-
erful model but half the size.

SqueezeBERT (Iandola et al., 2020): Squeeze-
BERT is Bert but with grouped convolutional lay-
ers instead of feed-forward layers. The model was
trained using the same methods as ALBERT.

3.2.3 Alternative Attention Mechanisms

DeBERTa (He et al., 2021): DeBERTa differs from
others on this list in that it decouples attention by
word semantics from attention by word location.
Version 2 of the model used a form of adversar-
ial training to improve model generalization and
surpassed human performance on Super GLUE



benchmarks. We have used the ROBERTa based
versions in this analysis.

One problem with transformers is the quadratic
memory, and computational growth as sequence
length increases because every token attends to all
other tokens. Some have dealt with this problem
by modifying the attention patterns to approximate
this full attention pattern without requiring all of
the attention comparisons. BIGBIRD (Zaheer et al.,
2020) is an example that uses this attention approx-
imation. The model uses a combination of global,
sparse, and random attention. Again, we have used
the RoBERTa based version of the model.

3.2.4 Alternative Architectures

XLNet (Yang et al., 2019): This model is a BERT
extension using random permutations of word or-
der during training. The model also incorporates
the recurrence mechanism used in Transformer-XL
(Dai et al., 2019).

BART (Lewis et al., 2020): BART is an encoder-
decoder model that is to recover data from cor-
rupted text input. BART has approximately 10%
more parameters than comparable BERT models
and no final feed-forward layer. Pre-training was
based on corrupting the inputs using token masking,
token deletion, token infilling, sentence permuta-
tion, and document rotation.

3.3 Analysis Method

The transformer data were created by converting
the original texts into sentences and then tokeniz-
ing those sentences to create sequences. The next
step was inputting tokenized sequences into the
transformer and extracting the attention matrices
produced for each attention head. In terms of Equa-
tion 1, we took the output of the softmax function
before it was multiplied by V as that provided a
normalized value indicating what proportion of at-
tention each token payed to all others.

The attention value for each token was calcu-
lated by averaging across attention heads and ma-
trix rows. This calculation produced a single vector
representing the amount of attention allocated to
each token by all others in the sentence. Our pro-
cedure differs from Sood et al. (2020a) who used
the maximum attention from each word instead of
the mean. Some preliminary analyses suggested
that the mean attention values provided more stable
results across datasets. The results using the maxi-
mum values are available on our GitHub repository
for comparison purposes. If a word was tokenized
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into sub-words, those sub-words were also aver-
aged to produce a single value. The special tokens
[CLS] and [SEP] were used for the attention calcu-
lations but dropped from the final word-level atten-
tion vector. Finally, attention was normalized by
sentence by calculating the proportion of attention
allocated to each word.

Dwell time was used for the overt human atten-
tion data. Dwell time is a measurement of the total
time that a participant’s eye fixated on a word. This
choice was necessary for consistency between anal-
yses as it was the only measure to appear in all
datasets. Dwell time data was extracted for each
word in a sentence, with one sentence being pro-
duced for each participant in the original data. The
dwell time data were also normalized by sentence
by calculating the dwell time proportion for each
word. The data from individual participants were
then averaged to create one normalized sentence
for each sentence in the text.

Data from the transformers and human partici-
pants were then matched so that each word in the
text had a sentence normalized attention score from
the transformers and the average participant. After
matching, all the words from a text were pooled
and used to calculate the Spearman correlation val-
ues. One-word sentences were removed as both
scores were always 1.0, which inflated the correla-
tion scores.

3.4 Results and Discussion

There were significant positive correlations be-
tween the total dwell time and the attention from
all layers of the different models. This finding was
an apparent departure from the results of Sood et al.
(2020a) who reported a non-significant correlation
of -.16 between the last layer of XL.Net and their
dataset. For comparison, we obtained a .428 cor-
relation for their Study 1 data and .327 for their
Study 2 data from XLNet’s last layer. Although
they did not directly specify the normalization they
used, we suspect that the difference in results is due
to us using sentence-level normalization and Sood
et al. (2020a) using paragraph normalization. For
comparison, we ran the same procedure using para-
graph normalization and obtained non-significant
correlations just as they did. In general, many of
the correlations obtained using sentence normal-
ization become much weaker when using the para-
graph normalization. This finding corresponds well
with the Sen et al. (2020) finding that attention for
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Figure 1: The relative position of the layer with the highest correlation. 0 is the first layer, 1 is the last layer. There
are multiple dots for each model because each dot represents the highest correlation from a different dataset.
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Figure 2: The correlations between the first layer attention patterns and eye gaze data from all models. The box

plots represent the spread of correlation values across datasets.

non-transformer neural networks became less cor-
related with eye movements as the length of the
text increased. All analyses presented here refer to
sentence-level correlations. Paragraph-level analy-
ses can be found in our GitHub repository.

Our first analysis investigated which attention
layer was most closely correlated with the eye gaze
data. Figure 1 shows the relative position of the
layer with the highest correlation by model. In
many cases, the highest correlation was produced
by the earlier layers of each model, in 66.2% of
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cases this was the first layer (position 0). Notable
exceptions to this rule are the multilingual versions
of BERT and RoBERTa (i.e., XLM) and many com-
pact models. Although further studies are needed,
the finding that multilingual variants of models do
not behave like monolingual variants is in line with
some previously reported studies (Conneau et al.,
2020; Hollenstein et al., 2021b; Vuli¢ et al., 2020),
where some studies report multilingual benefits and
while others do not.

Further investigations found that when the first



Table 2: First layer correlations By dataset. Strongest correlations have been bolded.

Model GECO Mishra Provo SoodS1 SoodS2 ZuCoS1 ZuCoS2 ZuCoS3 Franketal
albert-v1 0.744 0.754 0497 0.450 0.326 0.501 0.580 0.325 0.652
albert-v2 0.748 0.739 0492 0.460 0.329 0.503 0.585 0.326 0.637
bart 0.729  0.758 0.526 0.451 0.323 0.511 0.550 0.313 0.638
bert-cased 0.802 0.783 0.668 0.584 0.410 0.643 0.679 0.328 0.744
bert-multilingual-cased 0.753  0.727 0.525 0.459 0.338 0.489 0.622 0.324 0.603
bert-uncased 0.816  0.791 0.710 0.626 0.434 0.693 0.722 0.324 0.746
birdbird-roberta 0.775 0.774  0.600 0.511 0.363 0.582 0.565 0.319 0.693
deberta-v1 0.731  0.735 0.511 0.432 0.310 0.502 0.533 0.289 0.549
deberta-v2 0.824 0.770 0.708 0.601 0.423 0.688 0.712 0.306 0.660
distilbert-cased 0.786 0.772  0.623 0.523 0.378 0.629 0.632 0.341 0.670
distilbert-multilingual-cased 0.742  0.740  0.513 0.452 0.337 0.487 0.620 0.333 0.602
distilbert-uncased 0.796 0.780 0.649 0.576 0.396 0.649 0.678 0.319 0.725
roberta 0.709  0.755 0.523 0.453 0.329 0.504 0.537 0.291 0.632
roberta-muppet 0712 0.763  0.527 0.460 0.329 0.501 0.542 0.297 0.665
squeezebert 0.730 0.769  0.505 0.458 0.320 0.499 0.549 0.348 0.650
xlm 0.690 0.715 0.391 0.358 0.271 0.379 0.476 0.313 0.532
xInet 0.678 0.736 0436 0.369 0.287 0.408 0.470 0.297 0.584

layer did not produce the highest correlation, the
first-layer correlation value was on average, 0.055
lower than the best correlation value. In 75% of
cases, this difference was less than 0.082. There-
fore, the first layer value appears to be a good rep-
resentation of the correlation between the model
and the eye gaze data. An extreme example of
this were the ALBERT variants, which, likely due
to weight sharing during training, have virtually
identical correlations from attention values from
each of its levels (Figure 3). Due to its general best
performance, the first layer results have been used
at the best performance for all models. Analyses
using the actual best performance can be observed
in our GitHub repository, although those results are
highly similar to those reported here.

Our next analysis compared performance across
models based on the first layer correlations. Figure
2 shows that, in general, the size of the model does
not determine the correlation between the human
eye and transformer attention. Evidence for this
can be seen in minor differences between various-
sized variants of the same model. For example,
the cased and uncased versions of BERT-base and
BERT-large are very similar, despite the large vari-
ant containing 340 million parameters compared
to the base variants’ 110 million. Similar obser-
vations can be observed across the other models,
especially DeBERTa, where the largest variants
have 1.5 billion parameters, and the smaller ones
contain less than 1/3 of that number. This observa-
tion was confirmed with a non-significant sign test
(p = .090) that compared each variant to the next
smallest variant in its model type. Due to this simi-
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larity, results in Table 2 reports a single value per
model type that is an average for each size variant.
Table 3 shows the highest correlation by dataset. In
most cases, this model was either BERT-uncased
or DeBERTa-V2.

While the number of parameters is not what de-
termines the correlations, comparing across models
in Figure 2 suggests that training is essential for
determining those relationships. For example, the
BERT models have identical architectures to vari-
ous RoBERTa models, yet Table 2 shows that the
BERT correlations were consistently higher than
the RoBERTa based models. The other clear ex-
amples of training effects can be seen in the dif-
ferences between DeBERTa V1 and V2, where V2
models use the Scale-invariant-Fine-Tuning (SiFT)
algorithm introduced in the original paper. Interest-
ingly, the addition of the SiFT algorithm allowed
DeBERTa V2 to surpass human performance on
the SuperGLUE benchmarks (Wang et al., 2019a),
and Table 3 shows that this model was often the
second-highest correlated model. While it would
be great to find a direct relationship between how
human-like a model’s performance is and how cor-
related its attention patterns are to eye movements,
that is not the case. Excluding the compact models,
the BERT descendants outperform it on many of
the benchmarks, yet only DeBERTA comes close
to having stronger correlations to human eye move-
ments. In most cases, attention patterns less corre-
lated with overt human attention produced better
overall performance on NLP tasks.

Tables 2 and 3 show the rankings by correlation
are similar between datasets, with BERT-uncased



Table 3: The three models with strongest correlation to eye-tracking data for each dataset. The uncased version of
BERT produced the strongest correlation in 7 out of 9 cases.

GECO Mishra Provo Sood S1 Sood S2

ZuCo S1 ZuCo S2 ZuCo S3 Frank-et-al

1 deberta-v2
bert-uncased

bert-uncased
deberta-v2
bert-cased

bert-uncased
deberta-v2
distilbert-uncased  bert-cased

bert-uncased
bert-cased
bert-cased

producing the highest correlation in all but two
cases. In one of the exceptions, the GECO dataset,
BERT-uncased, was ranked second. In the other ex-
ception, ZuCO Task 3, the ranking was much lower.
In general, the correlations from ZuCo Task 3 differ
greatly from the other datasets. The correlations
are lower for all models, and the model rankings
are very different, with two of the compact models,
SqueezeBERT and DistillBERT, ranking highest,
and BERT-uncased, ninth. Task 3’s participants
were the same as Tasks 1 and 2. Those first two
tasks produced results closer to the other datasets,
meaning Task 3’s lower correlations were likely
due to the task itself.

Interestingly, in Task 3, the participants were
presented with the question on the screen, allowing
them to direct their eye gaze to find the informa-
tion they required. This contrasts with most of
the other datasets where the questions about the
data were presented after reading. The only excep-
tions to this were some tasks by Sood et al. (2020a)
where the question appeared on screen in Study 2
and in 2/3s of the tests in Study 1. Furthermore,
the correlations from Sood et al. (2020a) Studies
2 and 1 were also the second and third lowest of
the datasets, respectively (Table 2). While further
study is needed, the lower correlations from SOOD
et al. and ZuCo Task 3 may indicate that while
transformer attention patterns produce strong cor-
relations when reading typically, the relationship
drops when the reader actively searches for infor-
mation.

Our final analysis looked at correlations across
levels of BERT (Figure 3). The results of Toneva
and Wehbe (2019) suggest that the middle layers
of BERT provided the best features for predict-
ing brain activity in humans. They speculated that
these relationships could mean that the middle lay-
ers of BERT could be related to the kinds of pro-
cessing that occurs in those brain levels. Our re-
sults show that the attention patterns from BERT’s
first layer were closely related to eye gaze data.
Again, while speculative, our results combined
with Toneva and Wehbe (2019) would suggest that
for BERT at least, the lower levels correspond best

bert-uncased
deberta-v2
bert-cased

&3

bert-uncased bert-uncased
deberta-v2 deberta-v2
distilbert-uncased  bert-cased

squeezebert bert-uncased
distilbert-cased bert-cased
distilbert-multilingual ~ distilbert-uncased
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Figure 3: The average correlations across layers for
bert-base-cased and albert-base-v1.

to text information entering the eyes. In contrast,
the middle layers correspond to specific processing.
With that said, not all transformers produced the
strongest correlations from their first layer. For
example, as mentioned above, Figure 3 shows the
data from ALBERT-V1 where the correlations from
all levels were relatively the same.

4 Conclusion

This paper analyzed the correlations between atten-
tion in pre-trained transformers and human atten-
tion derived from eye gaze. We found correlations
between the two that were generally stronger in
the earlier layers of the model and, in most cases,
strongest in the first layer. These correlations were
unaffected by the model’s size, as different sized
variants of models produced similar correlations.
The training the models received did appear to
matter, although the present study cannot deter-
mine the full extent of that relationship. We found
that correlations were weaker from eye-tracking
studies where the participants could actively guide
their reading towards seeking the information they
needed than when presented with questions after
reading. While we found a relationship between
overt human attention and attention in some pre-
trained transformers, additional research would be
required before models of eye gaze could be used
to replace attention in transformers.
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A Investigating the Effect of Injecting
Eye Gaze Bias During Training

As a preliminary experiment, we investigated the
effect of injecting human eye gaze bias during train-
ing on test accuracy. We used the BERT model (De-
vlin et al., 2019) and the sarcasm-detection dataset
published in Mishra et al. (2016) as a case study.

A.1 Method

The Mishra et al. (2016) dataset was originally
proposed to predict non-native English speakers’
understanding of sarcasm by using eye-tracking in-
formation. The dataset contains information on the
fixation duration of each word for each participant.
We injected the eye-gazing bias during training by
optimising the following loss function:

L =H(y,9) + aH(p,p) 2

where H (y, 1) is the cross-entropy loss of the
binary classification task of sarcasm detection, and
H (p, p) computes the divergence of the first-layer
attention values from the distribution of the nor-
malised fixation duration values given a sentence.
The hyperparameter o controls the weight of the
second term in the loss function.

Our experiments only used the fixation dura-
tion values from Participant 6 because they had
the highest overall accuracy for sarcasm detection
(90.29%). All the hyperparameters were tuned on a
validation set extracted from the training set before
being applied to the entire training set.

A.2 Results

The results are plotted in Figure 4. As expected, the
models fine-tuned from pre-trained BERT models
had significantly better test accuracy on both the
small and large training sets than models trained
from scratch on the Mishra et al. (2016) dataset.
A t-test confirmed that when the models were
trained on the large training set without pre-
training, an eye gaze bias injection during train-
ing hurt the performance (p < .05). With pre-
training, both models in Figure 4(b) performed
better than the best participant in the Mishra et al.
(2016) dataset. The bias injection still lowered
the mean accuracy, although the difference was
no longer statistically significant. When the small
training set was used to train the models, we found
no significant difference after the bias injection.
Comparing our results to Sood et al. (2020b)
suggests that training a model to predict eye gaze
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Figure 4: Comparison of the BERT models trained
with eye gaze bias against the models trained without
in terms of test accuracy. Models in plots (a) and (b)
were trained on 693 examples, and the results were ob-
tained after 20 runs. Models in plots (c) and (d) were
trained on only 70 examples, and the experiments were
repeated 50 times. The same test set (300 examples)
was used for all the experiments.

improves text compression performance, whereas
using eye gaze data to regulate sarcasm detection
decreased performance. It is unknown whether the
difference in results is due to our task choice or to
our method of using human data.



