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Abstract

In this paper, we present a unified model that
works for both multilingual and crosslingual
prediction of reading times of words in various
languages. The secret behind the success of
this model is in the preprocessing step where
all words are transformed to their universal
language representation via the International
Phonetic Alphabet (IPA). To the best of our
knowledge, this is the first study to favorably
exploit this phonological property of language
for the two tasks. Various feature types were
extracted covering basic frequencies, n-grams,
information theoretic, and psycholinguistically-
motivated predictors for model training. A
finetuned Random Forest model obtained best
performance for both tasks with 3.8031 and
3.9065 MAE scores for mean first fixation du-
ration (FFDAvg) and mean total reading time
(TRTAvg) respectively'.

1 Introduction

Eye movement data has been one of the most used
and most important resource that has pushed var-
ious interdisciplinary fields such as development
studies, literacy, computer vision, and natural lan-
guage processing research into greater heights. In
a technical point of view, correctly determining
theoretically grounded and cognitively plausible
predictors of eye movement will allow opportuni-
ties to make computational systems leveraging on
these properties to be more human-like (Sood et al.,
2020).

Common human reading prediction works make
use of the standard Latin alphabet as it is in-
ternationally used. However, investigating eye
movement and reading patterns in other non-
Anglocentric writing systems such as Chinese and
Bengali is as equally as important (Share, 2008;
Liversedge et al., 2016). Fortunately, there is a
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growing number of previous works exploring mul-
tilinguality in eye tracking prediction both in data
collection and novel prediction approaches. The
study of Liversedge et al. (2016) was the first to
explore potential crosslinguality of Chinese, En-
glish and Finnish which differ in aspects of visual
density, spacing, and orthography to name a few.
The results of the study favorably support possi-
ble universality of representation in reading. In
the same vein, Hollenstein et al. (2021) was the
first to try use of large finetuned multilingual lan-
guage models like BERT (Devlin et al., 2019) and
XLM (Conneau and Lample, 2019) in a crosslin-
gual setting to predict eye tracking features across
English, Dutch, German, and Russian. Data-wise,
the published works of Siegelman et al. (2022) for
MECO, Pynte and Kennedy (2006) for the Dundee
corpus, and Cop et al. (2017) for GECO have made
significant impact in the field where they covered
curation and collection of eye-tracking corpus for
other languages in addition to English.

2 Task Definition and Data

The CMCL 2022 Shared Task (Hollenstein et al.,
2022)? describes two challenges: predicting eye-
tracking features in a multilingual and crosslin-
gual setup. The eye movement dataset for this
Shared Task contains sentences written in six lan-
guages: Mandarin Chinese (Pan et al., 2021), Hindi
(Husain et al., 2015), Russian (Laurinavichyute
et al., 2019), English (Luke and Christianson, 2018;
Hollenstein et al., 2018, 2020), Dutch (Cop et al.,
2017), and German (Jager et al., 2021). The mean
first fixation duration (FFDAvg) and mean total
reading time (TRTAvg) as well as their correspond-
ing standard deviations (FFDStd and TRTStd) are
the four main eye-tracking features that need to
be predicted by the participants through proposed
computational means. For the multilingual task,

https://cmclorg.github.io/shared_task


https://github.com/imperialite/cmcl2022-unified-eye-tracking-ipa
https://github.com/imperialite/cmcl2022-unified-eye-tracking-ipa
https://cmclorg.github.io/shared_task

the training, validation, and testing datasets con-
form to the identified six languages. While for the
crosslingual task, a surprise language (Danish) is
provided as the test dataset.

3 Eye-Tracking Prediction in Universal
Language Space

The proposed solution in this work is inspired by
both classical and recent previous works in speech
recognition systems (Schultz and Waibel, 1998,
2001; Dalmia et al., 2019) with multilingual and
crosslingual capabilities through the transformation
of words or similar sounding units in one global
shared space using the International Phonetic Al-
phabet (IPA). This functionality allows models to
generalize and adapt parameters to new languages
while maintaining a stable vocabulary size for char-
acter representation. By definition, the IPA con-
tains 107 characters for consonants and vowels, 31
for diacritics for modifying said consonants and
vowels, and 17 signs to emphasize suprasegmental
properties of phonemes such as stress and intona-
tion (Association et al., 1999).

Figure 1 describes the unified methodology used
for tackling both the multilinguality and crosslin-
guality challenge of the Shared Task. The back-
bone of this proposed solution lies with the pho-
netic transcription preprocessing step to convert the
raw terms from the data written in Mandarin Chi-
nese, Hindi, Russian, English, Dutch, and German
to their IPA form. We used Epitran by Mortensen
et al. (2018) for this process. The surprise language
for the crosslingual task, Danish, is not currently
supported by Epitran. We instead resorted to use
Automatic Phonetic Transcriber?, a paid transcrip-
tion service that caters the Danish language. The
transcription cost of the Danish test data is €15.

3.1 Feature Extraction

After obtaining the phonetic transcriptions, a
total of fourteen features based on various types
were extracted spanning general frequencies,
n-grams, based on information theory, and based
on motivations from psycholinguistics.

Frequency and Length Features. The simplest
features are frequency and length-based predictors.
Studies have shown that the length of words
correlate with fixation duration as long words
would obviously take time to read (Rayner, 1977;
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Hollenstein and Beinborn, 2021). For this study,
we extracted the (a) word length (word_len),
(b) IPA length (ipa_len), (c) IPA vowels count
per term (ipa_count), and (d) normalized IPA
vowel count per term over length (ipa_norm).

N-Gram Features.  Language model-based
features is a classic in eye-tracking prediction
research as they capture word probabilities
through frequency. We extracted raw count of
unique n-grams per word (bigram_count,
trigram_count), raw count of total n-grams
per term (bigram_sum, trigram_sum),
and normalized counts over word length
(bigram_norm, trigram_norm) for charac-
ter bigrams and trigrams in IPA form guided by
the general formula for n-gram modelling below:

C(wz:JlVHwn)
CWZ:JIVH)

Psycholinguistially-Motivated Features. Fea-
tures with theoretical grounding are more prac-
tical to use when invetigating phenomena in hu-
man reading. In line with this, we extracted two
psycholinguistically-motivated features: image-
ability and concreteness. When reading, humans
tend to visualize words and scenarios as they are
formed in context. This measure of ease of how
words or phrases can easily be visualized in the
min from a verbal material is quantified as image-
ability (Lynch, 1964; Richardson, 1976). On the
other hand, concreteness is a measure of lexical
organization where words are easily perceived by
the senses. In the example of Schwanenflugel et al.
(1988), words such as chair or computer are bet-
ter understood than abstract words like freedom.
Words with high concreteness scores are better re-
called from the mental lexicon than abstract words
as they have better representation in the imaginal
system (Altarriba et al., 1999). We use these two
features as we posit that the visualization and re-
trieval process of imageability and concreteness
respectively can contribute to the reading time in
milliseconds.

For this task, we used the crosslingual word
embedding-based approximation for all the seven
languages present in the dataset from the the work
of Ljubesi¢ et al. (2018).

ey

P(wy, | wZ:]lv+1) =

Information Theoretic Features. Features in-
spired by information theory such as the concept
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Figure 1: The proposed unified approach to multilingual and crosslingual human reading pattern prediction in

universal language space via IPA.

of surprisal have thoroughly used in human read-
ing pattern prediction (Hale, 2001; Levy, 2008;
Demberg and Keller, 2008, 2009; Goodkind and
Bicknell, 2018). Surprisal describes that process-
ing time of a word to be read is proportional to
its negative log based on a probability given by
context as shown below:

surprisal(w;) = —logy P(w; | wi...wi—1) (2)

Thus, if a word is more likely to occur in its con-
text, it is read more quickly (Shannon, 1948). For
this task, since words are converted to a universal
language space, the correct terminology in this case
is bits per phoneme or phonotactic complexity as
coined by Pimentel et al. (2020).

While surprisal quantifies the word’s predictabil-
ity or processing cost during reading, we also ob-
tain the entropy H of each word x from the corpus.
The entropy quantifies the expected value of in-
formation from an event as shown in the formula
below:

H0) = =3 (3 logy (1) )

i=1

where count; is the count of character n; and
each word N consists of n characters. With this
measure, a higher entropy score entails higher un-
certainty for a word, thus, leading to increased
reading time at the millisecond level.

3.2 Model Training Setup

We used four machine learning algorithms via
WEKA (Witten and Frank, 2002) for modelling the
features with FFDAvg and TRTAvg: linear regres-
sion (LinReg), multilayer perceptron (MLP), ran-
dom forest (RF), and k-Nearest Neighbors (KNN).

We only used the finetuned RF model for the predic-
tion of FFDAvg and TRTAvg. Meanwhile, FFDStd
and TRTStd are obtained by using the top models
of all the four algorithms, re-running them to get
FFDAvg and TRTAvg, and calculating the standard
deviation. For TRTAvg, we added the predicted
FFDAvg from the best model as an additional fea-
ture as we posit that the first fixation duration is a
contributor to the overall reading time.

4 Results

Table 1 describes the main results of the exper-
iments for predicting FFDAvg and TRTAvg us-
ing multiple finetuned supervised techniques evalu-
ated through mean absolute error (MAE) and root
mean squared error (RMSE). As mentioned pre-
viously, since the methodology used in this study
cuts across multilingual and crosslingual tasks, the
results reported in this applied are applicable to
both. From the Table, the RF models outperformed
the other three models in predicting FFDAVg and
TRTAvg using 100% and 75% random selected fea-
tures respectively and across 100 iterations. The RF
model’s effectivity can be attributed to its structure
of multiple decision trees which normalize overfit-
ting (Ho, 1995). Following RF in performance is
kNN using Euclidean distance observing the same
pattern as RF with different hyperparameter values
such as 5 and 20 for the nearest neighbor for pre-
dicting FFDAvg and TRTAvg. On the other hand,
both LinReg and MLP have no improvements re-
gardless of hyperparameter values. For LinReg,
using an M5 feature selection only provides ex-
tremely minor improvement in performances for
FFDAvg and TRTAvg prediction. For MLP, using



Model FFDAvg TRTAvg

MAE RMSE MAE RMSE
LinReg (k=10, M5)*{} 5.2361 6.7267 4.3419 7.0546
LinReg (k=10, greedy) 5.2361 6.7267 4.3420 7.0545
LinReg (k=10, none) 52363 6.7274 43429 7.0594
MLP (k=10, Ir=0.005, m=0.2)*} 49898 6.4169 4.1744 6.2140
MLP (k=10, 1r=0.5, m=0.2) 6.7916  8.3791 4.8475 7.0840
MLP (k=10, 1r=0.005, m=0.002) 5.0018 6.4299 4.1862 6.2177
MLP (k=10, Ir=0.5, m=0.002) 6.4447 8.0110 4.9528 6.9668
MLP (k=10, Ir=0.0005, m=0.0002) 5.5024 7.0474 4.2956 6.3823
RF (k=10, iters = 100)* 3.8031 5.2750 3.9600 5.8446
RF (k=10, iters = 100, 50% feats) 38045 5.2766 3.9094 5.8015
RF (k=10, iters = 100, 75% featsf)  3.8056 5.2762 3.9065 5.8006
kNN (k=10, nn=5, dist=euc)* 43335 59651 4.2953 6.3741
kNN (k=10, nn=10, dist=euc) 44263 6.0133 4.2053 6.2436
kNN (k=10, nn=20, dist=euc)t 45646 6.1284 4.1793  6.2432

Table 1: Results of predicting mean first fixation duration (FFDAvg) and mean total reading time (TRTAvg) using
hyperparameter-tuned traditional supervised models over cross-fold validation of £=10. The tuned Random Forest
(RF) model achieved the best performance which was used for both tasks of multilingual and crosslingual prediction.
Top performing models from the four algorithm class were used for predicting the held-out test data to get the
standard deviation of FFDAvg (*) and TRTAvg (7).

FFDAvg TRTAvg
bigram_norm  -0.1751 | FFDAvg 0.8068
trigram_norm  -0.1393 | bigram_count 0.2219
word_len -0.1334 | trigram_count 0.2156
bigram_sum -0.1304 | phonetic_comp -0.2107
trigram_sum  -0.1101 | ipa_ent 0.1925
imageability 0.1101 | ipa_len 0.1921
concreteness 0.1044 | trigram_norm -0.1886

Table 2: Top 7 predictors for FFDAvg and TRTAvg with
the highest absolute correlation coefficients.

default values in WEKA for momentum and learn-
ing rate obtained the best performance similarly for
for FFDAvg and TRTAvg prediction.

4.1 Feature Importance

Viewing the results in a correlation analysis per-
spective, Table 2 shows the top 50% of the pre-
dictors, total 7, which are significantly correlated
with FFDAvg and TRTAvg respectively. Only one
predictor is common for both values, the normal-
ized trigrams in IPA space which is fairly high in
FFDAvg along with normalized bigrams than in
TRTAvg. This may hint that normalized n-gram
features may be plausible features of eye move-
ment only for first passes over the word and not
with the total accumulated time of fixations. Like-
wise, the psycholinguistically-motivated features,
imageability and concreteness, were only seen in
the FFDAvg section as well proving their poten-
tial plausibility for the same observation. All the

length-based features such as word, IPA, bigram,
and trigram-based counts were considered as top
predictors for FFDAvg and TRTAvg. This unsur-
prisingly supports the results from the classical
work of Rayner (1977) on correlation of lengths
with fixations. Lastly, the strong correlation of
first fixation duration with the total reading time
with a score of = 0.8068 proves the theoretical
grounding of the proposed methodology as stated
in Figure 1 albeit in post-hoc.

5 Conclusion

Precise eye movement datasets in multiple lan-
guages are considered one of the most important
contributions that benefit various interdisciplinary
fields such as psycholinguistics, developmental
studies, behavioral studies, computer vision, and
natural language processing. In this paper, we
present a novel method of transforming multilin-
gual eye-tracking data (English, Mandarin, Hindi,
Russian, German, Dutch, and Danish) to their IPA
equivalent, enforcing a single vocabulary space
which allows competitive results for both multilin-
gual and crosslingual tasks in a regression analysis
setup. Future directions of this paper can explore
more cognitively and theoretically plausible fea-
tures that can be extracted as well as deeper inter-
pretation studies of the predictive models trained.
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