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Abstract

Radiology report is an official record of radiol-
ogists’ interpretation of patients’ radiographs
and it’s a crucial component in the overall med-
ical diagnostic process. However, it can contain
various types of errors that can lead to inade-
quate treatment or delay in diagnosis. To ad-
dress this problem, we propose a deep learning
framework to detect errors in radiology reports.
Specifically, our method detects errors between
findings and conclusion of chest X-ray reports
based on a supervised learning framework. To
compensate for the lack of data availability of
radiology reports with errors, we develop an
error generator to systematically create artifi-
cial errors in existing reports. In addition, we
introduce a Medical Knowledge-enhancing Pre-
training to further utilize the knowledge of ab-
breviations and key phrases frequently used
in the medical domain. We believe that this
is the first work to propose a deep learning
framework for detecting errors in radiology re-
ports based on a rich contextual and medical
understanding. Validation on our radiologist-
synthesized dataset, based on MIMIC-CXR,
shows 0.80 and 0.95 of the area under precision-
recall curve (AUPRC) and the area under the
ROC curve (AUROC) respectively, indicating
that our framework can effectively detect errors
in the real-world radiology reports.

1 Introduction

Radiology report is a document containing offi-
cial interpretation of patients’ radiographs which
is used as an important communication tool be-
tween radiologists and referring physicians (Wallis
and McCoubrie, 2011). The major components of
the report include basic demographic information
(e.g. patient’s name, identifying number), findings
which explains the image findings along with per-
tinent clinical information, and conclusion (also
called impression) which is a list of summary state-
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ments of radiographic study conclusion and rec-
ommendations for further evaluation and patient
management (Wilcox, 2006). Medical treatment de-
cisions are often based on the findings and conclu-
sions of the radiology report (Sistrom and Langlotz,
2005). This explains how the radiologic contribu-
tion to inappropriate or delayed diagnosis overall
is likely to be substantial (Bruno et al., 2015).

Radiology report errors can be categorized and
defined in different ways, mostly based on their
causes. Kim and Mansfield classified the errors in
12 types which include errors caused by underread-
ing, location of the lesion, and faulty reasoning.
Pinto et al. claim that radiology report errors can
be classified based on 4 main reasons why radiolo-
gists are sued which include observer errors, errors
in interpretation, and failure to suggest proper rec-
ommendations. Sangwaiya et al. has analyzed
errors on location and size discrepancy of lesions
in radiology reports. Combining these works, we
conclude that the errors that contribute most to in-
appropriate or delayed diagnosis are radiologists
failing to identify and interpret abnormalities, and
discrepancies in size or location of the lesions re-
ported.

Although there have been sufficient discussions
in previous studies on methods to reduce errors
in radiology reports, research on algorithms to di-
rectly detect such errors has been conducted at a
very basic level. Lee et al. proposed a software
that detects the laterality error for the side or sites
between the radiology report and its examination
name. Minn et al. proposed an algorithm to detect
gender and laterality mismatch in report and its
metadata. Zech et al. proposed a LSTM (Hochre-
iter and Schmidhuber, 1997) based neural model
to detect inappropriate insertions, deletions, and
substitutions of words in radiology reports. As
such, existing studies on error detection in radiol-
ogy reports were conducted only on local parts such
as gender, laterality, and a single word, and most
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of these were done by simple matching without
considering deep contextual meanings. Unfortu-
nately, in real life, radiologists’ error occur due to
more complicated reasons that cannot be covered
by these approaches. Considering how radiologists
record their interpretation and communicate with
referring physicians, capturing and understanding
the contextual meaning of each section in the report
is an important part for practical error detectors that
can be used in real life.

In the field of NLP, many pre-trained language
models (PLMs) are showing remarkable achieve-
ment in various tasks of natural language under-
standing since the advent of ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2018). Recently,
several studies on PLM that utilize world knowl-
edge for language understanding have appeared,
showing outstanding results not only in the general
domain but also in domain-specific tasks (Zhang
et al., 2019; Sun et al., 2019, 2020, 2021; Wang
et al., 2020). Specifically, PLMs specialized in the
medical domain such as ClinicalBERT (Alsentzer
et al., 2019) and BioMegatron (Shin et al., 2020)
have shown notable performance in the medical
NLP tasks.

Despite the remarkable achievement in the field
of NLP, the main barrier to apply these technolo-
gies, is the absence of radiology reports with errors
to perform PLM supervised learning. Two reasons
are identified behind the lack of accessible data.
First, identifying errors in radiology reports can
only be done by well-trained radiologists which is
time-consuming and requires costly manual work.
Second, in fact, radiology report errors do not oc-
cur as often enough for them to be collected and
used to train deep learning models. It is estimated
that in a daily practice, the rate of radiology report
errors that are substantial to result in inappropri-
ate or delayed diagnosis is less than 4% (Berlin,
2007). Also, when considering the different types
of errors, classifying and collecting enough data
for each type of error is an unrealistic approach.

Here, we introduce two novel approaches to iden-
tify errors in radiology reports based on the under-
standing of the nature of radiology reports while
overcoming the challenge created by inadequate ra-
diology report error data: 1) To compensate for the
lack of data availability of radiology reports with
errors, we introduce an artificial error generator.
The error generator synthesizes errors that mimic
radiologists behaviors that potentially cause errors

in daily practice. It can generate different types
of errors by employing appropriate and relevant
medical knowledge. 2) In order to incorporate med-
ical knowledge for detecting complex errors, we
introduce a Medical Knowledge-enhancing Pre-
training task, which is inspired by ERNIE1.0(Sun
et al., 2019), to our BERT based error detector. This
additional pre-training task allows the detector to
directly learn medical abbreviations and frequent
phrases in radiology report.

To validate our proposed approach, experiments
are performed on MIMIC-CXR (Johnson et al.,
2019) with part of it including intentionally gen-
erated error by a board-certified radiologists. Fur-
thermore, through additional experiments, the pro-
posed model was able to identify errors in original
MIMIC-CXR which was verified by human evalu-
ation. The experiment results show that the error
detector can detect errors in real-world data while it
is trained on artificial errors generated by the error
generator. Additionally, external validation, experi-
ments on domain adaptation, and several ablation
studies well prove the generalizability of the error
detector and the performance of the knowledge-
enhancing pre-training task.

In summary, our main contributions are as fol-
lows:

1. We propose RRED (Radiology Report Error
Detector) which is a deep learning framework
that can detect radiology report errors based
on rich understanding of context and medical
knowledge.

2. We propose an error generator that system-
atically generates realistic errors in the radiol-
ogy reports by integrating medical knowledge.

2 Method

Figure 1 illustrates the suggested complete frame-
work. The following sections describe the Error
Generator and the Error Detector independently.

2.1 Error Generator
While there can be many types of errors in radiol-
ogy reports, this study aims to detect errors occur-
ring when writing the conclusion section based on
the findings section. In order for the error generator
to synthesize realistic radiology report errors, we
have categorized the errors into two types based
on previous works on categorization of errors in
radiology reports. For clarity, Appendix C, Table 9
provides examples of each type of error.
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Figure 1: The overall framework of RRED.

2.1.1 Interpretive Error
Interpretive error is any error that changes the in-
terpretation of the findings section in one way or
another. This type of error can be subdivided into
3 classes based on their causes.

Faulty reasoning Errors in which findings were
identified but attributed to the wrong cause. This oc-
curs due to lack of knowledge or experience of the
interpreter or due to lack of information provided
in the findings section. For instance, when the con-
clusion section identifies cardiomegaly while the
findings section only identifies pneumothorax, this
is clearly an error.

Absence of abnormalities Errors in which ab-
normalities described in the findings sections are
missed in the conclusion section.

Presence of incorrect findings Errors in which
abnormalities are described in the conclusion sec-
tion while the finding section clearly states that
there are no findings.

2.1.2 Factual Error
Factual error is any error in which the interpretation
and identification of abnormalities are correct while
there are discrepancies in the description of the
lesion itself. This can be subdivided into 2 classes:

Discrepancy in location of the lesion Errors in
which the direction of the lesion location is mis-
taken (e.g. left ! right, lower ! upper).

Discrepancy in numerical measurement of the
lesion This type of error includes errors in which
the measured unit is incorrectly recorded in the
conclusion section (e.g. cm ! mm, mm ! m) or

when decimal points are misplaced or missed (e.g.
12.20 ! 1.220, 8.25 ! 82.5).

When factual errors occur, surgeries and biopsies
can be operated on the wrong side of the body
which can potentially harm the patient physically.

The error generator generates realistic errors
from existing radiology reports which can create
synthesized datasets that can be used to train the
error detector. The synthesized data is required to
be realistic enough to train a robust error detector
that can detect errors in real life radiology practice.
The following sections will describe the details of
the error generator.

2.1.3 Error Generator Overview
The error generator consists of two steps: 1) La-
beling each report using CheXpert labeler (Irvin
et al., 2019) 2) Applying errors based on the tree
structure which is based on the CheXpert classes
mentioned in the following subsection.

2.1.4 CheXpert Labeler and its tree structure
CheXpert labeler predicts the probability of 14 dif-
ferent classes shown in Figure 2. The error gen-
erator first uses this to label each of the radiology
reports provided. Two board certified radiologists
expanded the labels of CheXpert to group similar
labels which creates a tree structure. These similar
labels can be interchangeable depending on the in-
terpretation of the radiologist, therefore, cannot be
considered incorrect when a different label is used
within the similar label group. Figure 2 indicates
the similar groups in different colors (other than
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Figure 2: Diagram that illustrates the tree structure of the CheXpert labeler’s labels. The labels highlighted in blue
and yellow are two different similar label groups, in which the labels can be interchangeable within their own group.

white). In other words, labels within the blue re-
gion are interchangeable and the labels within the
yellow region are also interchangeable.

2.1.5 Applying errors
Each type of error is applied using the labels la-
beled by the CheXpert labeler. To avoid any un-
certainties, the entire set of labels CheXpert can
label is indicated by U. Also, any report that has
a label “No Finding” is noted by NF. In order to
generate realistic errors, generating faulty reason-
ing error, absence of abnormalities, or factual error
in reports in NF should be avoided. When there
are no findings in the provided report, there is no
medical significance in misidentifying the cause,
removing findings, or creating errors in measure-
ment or location of a lesion.

Faulty reasoning error is applied by randomly
swapping the conclusion of the report with other
reports’ conclusion which has a different label
from the original label. Since the CheXpert la-
beler is a multi-label labeler, the generator pre-
cisely and randomly selects a conclusion from the
set {U � NF � {original labels}}. Absence of
abnormalities is applied by randomly swapping
the conclusion of the report with reports in NF.
Presence of incorrect findings can only be ap-
plied when the given radiology report is in NF. It
is applied by randomly swapping the conclusion of
the reports in {U � NF}.

Discrepancy in location of the lesion is applied
by detecting the keywords that indicate the location
of the lesion. The keywords are the following:
left, right, upper, lower, high, low, big, and small.
When the keywords are identified, they are replaced
by their counter-keywords which are: right, left,
lower, upper, low, high, small, and big, respectively.
Discrepancy in numerical measurement of the
lesion is applied by first detecting any numerical
measurement of a lesion (with its unit). Then, by a
50-50 chance, either the unit or the numerical value

is changed.

2.2 Error Detector

The Error Detector uses a BERT-base architecture,
which showed remarkable achievement in natural
language understanding, to detect errors based on
syntactic and semantic understanding of the radi-
ology report. The parameters are initialized to the
ClinicalBERT parameters which showed better per-
formance in the medical domain.

2.2.1 Medical Knowledge-enhancing
Pre-training Task

Radiology reports frequently contain medical ab-
breviations and phrases with specific meanings and
we want the model to be able to capture richer
local and global contexts for these. So, we intro-
duce a Medical Knoweldge-enhancing Pre-training
task (MKP), inspired by the Knowledge Integrated
Masked Language Modeling task of ERNIE1.0, to
obtain an integrated representation of such medical
knowledge.

Specifically, we selected abbreviations and
phrases from a radiology report to directly mask
the corresponding tokens and predict the whole
masked tokens. Abbreviations were identified
using a medical abbreviation dictionary from
imantsm and Aristotelis, and phrases were identi-
fied using a phrase dictionary created by keyBERT
(Grootendorst, 2020) on MIMIC-CXR. For each
report, one of the abbreviations or phrases detected
in the dictionaries was randomly selected and all
corresponding tokens were masked. For other to-
kens, probabilistic masking strategy was applied in
the same way as BERT’s masked-language mod-
eling (MLM). To assist the model to capture the
meaning of abbreviations and phrases effectively,
border tokens of the abbreviation and phrase tokens
were not masked.

44



2.2.2 Training Process
Pre-training MKP is performed on the MIMIC-
CXR dataset which includes 91,544 chest X-ray re-
ports. Because ClinicalBERT, which shows a suffi-
cient level of understanding of medical domain text,
is used as the initial weight, heavy pre-training for
large-scale corpus is not performed. The maximum
sequence length, batch size and training epochs
were set to 512, 32 and 50 respectively. We per-
formed experiments with models pre-trained for
100 and 150 epochs, but there were no significant
differences observed in error detection task perfor-
mance between these models.

Fine-tuning The training objective of the error
detector is to perform a binary classification be-
tween original reports and corrupted reports. The
training set, namely machine-synthesized dataset,
consists of original reports and corrupted reports
generated by the error generator. The error detector
takes the concatenation of the findings and conclu-
sion sections of the radiology report with a separa-
tor token as an input. The input representation is
created by adding different segment embedding to
distinguish them from each other. Also, positional
embedding is added in the same way as BERT. Tak-
ing into account the general length of each section
in a radiology report, the maximum lengths of find-
ings and conclusion are 338 tokens and 172 tokens,
respectively.

3 Experiments

In this section, we describe the datasets, implemen-
tation details, and experiment results of the error
detection task on several datasets.

3.1 Datasets

3.1.1 MIMIC-CXR
MIMIC-CXR is a publicly available dataset consist-
ing of chest X-rays and corresponding radiology
reports, collected from patients between 2011 and
2016 at the Beth Israel Deaconess Medical Cen-
ter Emergency Department. We used the train-test
split disclosed in THE MEDIQA 2021 shared task
(Abacha et al., 2021), which consists of 91,544
train sets and 2,000 test sets sampled by simple cri-
terion such as acceptable length. Out of the 91,544
training examples, errors were generated on 88,388
examples (96.55% of the training set) where the
percentage of interpretation error and factual error
were 85.06% and 14.94%, respectively. For the
test set, errors were generated on 1,933 examples

(96.65% of the test set) where the percentage of the
interpretation error was 79.51% and the percentage
of the factual error was 20.49%.

3.1.2 Open-I
Open-I (Demner-Fushman et al., 2016) is another
publicly available chest X-ray and radiology report
dataset. It is collected from the Indiana Network
for Patient Care, consisting of 2,928 reports. We
used this dataset as an external dataset to check the
generalizability of the model, meaning that both
pre-training and fine-tuning is only performed on
MIMIC-CXR, and the Open-I is tested in a com-
pletely unseen state. Using the error generator,
errors were generated on 2,813 examples (96.07%
of the dataset) where the percentage of the inter-
pretation error and factual error were 89.69% and
10.31%, respectively.

3.1.3 Radiologist-synthesized dataset
To verify that the error detector trained on the
dataset generated by the error generator can work
on the real-world error generated by the radiolo-
gist, we prepared a dataset in which two board-
certified radiologists manually injected errors into
the MIMIC-CXR test set of THE MEDIQA 2021
split. Errors were injected into the conclusion sec-
tion of 111 randomly selected reports out of a total
of 2,000 reports, and 7 types of errors were gener-
ated to comprehensively verify the various types of
errors that could actually occur.

The following types were considered as interpre-
tive errors: Written as a wrong cause that is easy
to confuse due to lack of knowledge or experience
(Type 1-A, 18%), written as a completely nonsensi-
cal disease (Type 1-B, 18%), written in the absence
of abnormalities (Type 1-C, 18%), written in the
presence of incorrect findings (Type 1-D, 18%).
The following types were considered as factual er-
rors: Discrepancy in location of the lesion (Type
2-A, 19%), discrepancy in the numerical measure-
ment of the lesion (Type 2-B, 4%). Additionally,
free-form errors that do not fall into any of the six
categories (Type 3, 5%).

3.2 Experimental Setups

After generating corrupted MIMIC-CXR using
the error generator, we fine-tune the detector
model on machine-synthesized data. This machine-
synthesized data has 141,420 reports for the train-
ing set and 35,356 reports for the validation set. We
tune the initial learning rate 2 {1e-6, 5e-6, 1e-5,
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5e-5, 2e-4, 2e-3}, batch size 2 {16, 32}, number of
epochs 2 {1, 3, 5, 10, 20}. Adam optimizer is used
and other hyperparameters are fixed to their de-
fault values. The optimal setting is determined by
AUPRC on MIMIC-CXR and the decision thresh-
old for binary classification is set to a value repre-
senting precision 0.99 on the training set.

3.3 Experimental Results on datasets with
Synthesized Error

The performance of our proposed framework for
each dataset is shown in Table 1. Test results
on MIMIC-CXR and Open-I, which are machine-
synthesized datasets using our error generator,
showed very high scores in all metrics including
the area under precision recall curve (AUPRC) and
the area under the ROC curve (AUROC). Show-
ing these results even without training on Open-I,
which is collected from a completely different hos-
pital, means that the proposed framework has high
generalizability to unseen data. A domain adapta-
tion strategy can be attempted to further improve
performance on the external dataset, and the exper-
imental results are provided in Appendix B.

Experimental results on the radiologist-
synthesized dataset also showed a significant level
of performance. This means that the proposed
framework that learns from errors generated by the
error generator is highly applicable to real-world
data. According to the experimental results, it is
expected that the proposed model can detect 63%
of all reports with errors with 87% of precision in
the actual field. As shown in the precision-recall
curve in Appendix A, Figure 3 and Figure 4,
precision and recall can be set to an appropriate
level by adjusting the decision threshold. Recall by
each type of error with different precision criterion
is also provided in Appendix A, Table 7.

3.4 Human Evaluation of RRED

To evaluate the practical ability of the proposed
framework detecting actual errors in real world
dataset, the trained model was inferred to the entire
original MIMIC-CXR and the results are evaluated.
As a result of inference, it is predicted that errors
exist in 408 reports, which is 0.44% of the 93,544
reports. For 100 randomly selected cases, a board-
certified radiologist was asked to answer ‘Yes’/’No’
to the following questions:

1. Question 1: There is an error between the
findings and the conclusion.

2. Question 2: Among those where the answer
to Question 1 is ‘Yes’, factual error that is not
appropriate for findings, exists in conclusion.
(e.g., discrepancies in laterality, numbers and
the existence of unreported facts.)

3. Question 3: Among those where the answer
to Question 1 is ‘Yes’, interpretive error that
is not appropriate for findings, exists in con-
clusion. (e.g., faulty reasoning, missing im-
portant interpretation.)

The percentages of ‘Yes’ for the three questions
are shown in Table 2. It can be seen that the ac-
tual error rate is 81% for the 100 selected cases,
which is fairly consistent with the evaluation result
on radiology-synthesized data showing about 87%
of precision. In addition, it is observed that about
73% of the detected errors are factual errors, about
65% are interpretive errors and 31% are both. The
detected examples of report with errors in MIMIC-
CXR is shown in Table 3. Through this human
evaluation result, we can expect that the proposed
framework can be effectively applied in real radiol-
ogy practice to detect factual errors and interpretive
errors.

3.5 Effect of Medical Knowledge-enhancing
Pre-training

Three experiments are performed to verify the ef-
fectiveness of the proposed Medical Knowledge-
enhancing Pre-training (MKP) in various aspects.
Table 4 shows the mean performance improvement
by MKP for each dataset. The improvement for
the machine-synthesized datasets (MIMIC-CXR,
Open-I, and Open-I*) seem to be marginal as they
are already scoring close to 1.0, but they show
a consistent improvement for most metrics. For
radiologist-synthesized dataset, the performance
gains are more noticeable. Table 5 shows that the
level of recall for types 1-A and 1-D, which are
interpretive errors, increased. These observations
suggest that MKP gives the model a higher level of
understanding of medical context and knowledge,
allowing the model to detect more complex types
of errors.

Table 6 is the ablation result showing the perfor-
mance change when each component is excluded
from MKP. We can see that the masking strategy
on medical abbreviations and phases is highly use-
ful. When compared to the result of MLM only, it
pushes the AUPRC score from 0.773 to 0.798 on

46



AUPRC AUROC Precision(ppv) Recall(sensitivity) Specificity Accuracy
MIMIC-CXR 0.998 (0.00) 0.998 (0.00) 0.992 (0.00) 0.964 (0.00) 0.993 (0.00) 0.979 (0.00)

Open-I 0.993 (0.00) 0.994 (0.00) 0.986 (0.00) 0.935 (0.01) 0.988 (0.00) 0.963 (0.00)
Radi-synth* 0.798 (0.03) 0.950 (0.02) 0.870 (0.05) 0.633 (0.03) 0.994 (0.00) 0.974 (0.00)

Table 1: Performance on MIMIC-CXR, Open-I and our Radiologist-synthesized dataset(*). These are the mean
performance and its standard deviation from 10 random bootstrap experiments. Since there are no other studies to
compare the performance, we only showed the performance of the proposed model without the baseline.

Percentage of ‘Yes’
Question 1 81.00
Question 2 72.84
Question 3 65.43

Question 2 & 3 31.00

Table 2: Quality of RRED assessed by a board-certified
radiologist evaluator.

radiology-synthesized dataset. In particular, when
the phrase masking is excluded, the performance is
significantly reduced(AUPRC 0.798→0.769) show-
ing that knowledge integration for phrases can pro-
vide significant understanding ability. Finally, the
MLM on radiology report also seems to have an
important effect on improving the overall under-
standing of the report itself.

4 Discussion

Through the evaluation of RRED, we mainly focus
on precision rather than recall. This is because this
study aims to develop a practical and reliable error
detector that can be used in daily practice with a
low false alarm rate. We believe that minor errors
are worth missing if the alarm can provide a strong
guarantee of actual errors to the radiologists.

Despite the fact that the experimental results
show notable effectiveness of our approach, there
are some limitations. First, the types of errors that
have been implemented and experimented with,
do not represent the entire scope of radiology re-
port errors. While interpretive and factual errors
are critical in the process of diagnosis, expanding
the type of errors would be beneficial to reflect
real-life errors in radiology practice. Second, the
error generator relies on simple random swapping
to generate interpretive errors. Although the exper-
imental results show how this method is effective
in large dataset like MIMIC-CXR, it is evident that
this does not fully reflect the true nature of the real-
life interpretive error. If the error generator can
improve its’ ability to imitate the behavior of radi-
ologists, the error detector is expected to capture

complex interpretive errors more precisely.

5 Conclusion

In this paper, we present RRED, a Radiology
Report Error Detector based on a rich understand-
ing of context and medical knowledge with super-
vised deep learning framework. We also propose a
error generator for generating synthetic report data
with errors to train the detector model. Through
various types of evaluations, we showed that our
framework can be effectively applied to real world
data to detect errors that could cause inappropriate
or delayed diagnosis. We also showed the signifi-
cant effects of the MKP which is a proposed pre-
training task to integrate medical knowledge into
pre-training language model.

To the best of our knowledge, this is the first
work proposing PLM based error detection model
for radiology reports. In future works, we plan to
develop RRED2.0 with improved error generator
and detector: 1) We will investigate more system-
atic approaches to generate a broader range of er-
rors in radiology reports, in an effort to expand and
improve the usability of the radiology report error
detector. 2) We will expand this work to develop
a vision-language error detector that can detect er-
rors also in the findings section which is intended
to record findings when reading radiographs.

We expect this work to become a practical fool-
proof system that can reduce critical errors in radi-
ology reports to improve the quality of radiology
reporting process and further, the entire diagnosis
process.
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Error Type Findings Conclusion

Factual The cardiomediastinal and hilar contours are
stable. There has been interval increase in the
right pleural effusion with a rounded contour
concerning for loculation. There is no left
pleural effusion. There is no pneumothorax.
There is no focal consolidation concerning for
pneumonia. Pulmonary vasculature is within
normal limits.

Enlarged left pleural effusion,
now possibly loculated.

Interpretive A portable frontal chest radiograph shows the
large left lower lobe mass seen on recent CT
chest. New opacity adjacent to the aortic knob
could represent pneumonia or fluid tracking
up into the fissure. There is no appreciable
pleural effusion or pneumothorax. The visual-
ized upper abdomen is unremarkable.

Possible small left upper lobe
pneumonia or pleural effusion
extending into the major fissure.
Large left lung mass, less likely
malignant.

Both Elevation of the left hemidiaphragm is new
since prior exams, with minimal adjacent
relaxation atelectasis of the left lower lobe.
The cardiomediastinal contours are within nor-
mal limits. The bilateral hila are unremarkable.
The lungs are clear without focal consolidation.
There is no evidence of pulmonary vascular
congestion. There is no pneumothorax or pleu-
ral effusion.

New right hemidiaphragmatic
elevation. Consider evaluation
right hemidiaphragm function.
Otherwise, no acute cardiopul-
monary process.

Table 3: Examples of actual errors detected in MIMIC-CXR by RRED. We can see that the error actually exists in
the highlighted area for each error type. In the example of factual error, the location is described differently. In the
example of interpretive error, the mass of the left lung is overestimated as less malignant. In the last example, there
is not only a discrepancy of location, but also the important information of the findings is over-summarized.

AUPRC AUROC Precision(ppv) Recall(sensitivity) Specificity Accuracy

MIMIC-CXR 0.001 (<.001) 0.001 (<.001) 0.003 (<.001) 0.018 (<.001) 0.003 (<.001) 0.010 (<.001)

Open-I 0.001 (.065) 0.002 (<.001) -0.001 (.410) 0.011 (<.001) -0.001 (.300) 0.005 (<.001)

Open-I* 0.001 (.016) 0.000 (.071) 0.003 (<.001) -0.007 (<.001) 0.002 (<.001) -0.002 (<.001)

Radi-synth 0.057 (<.001) 0.006 (<.001) 0.061 (<.001) 0.047 (.005) 0.003 (<.001) 0.005 (<.001)

Table 4: Mean performance improvement by Medical Knowledge-enhancing Pre-training for each dataset and
p-values of paired t-test. Open-I* indicates the performance of RRED tested after domain adaptation on the Open-I.

1-A 1-B 1-C 1-D 2-A 2-B 3 Total
w/o MKP 0.20 0.55 0.65 0.50 0.81 0.20 0.00 0.50
w/ MKP 0.50 0.55 0.70 0.75 0.81 0.60 0.2 0.64

Table 5: Comparison of recall for each type of error between models with and without MKP.
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AUPRC AUROC Precision(ppv) Recall(sensitivity) Specificity Accuracy

Full MKP 0.798 (0.03) 0.950 (0.01) 0.870 (0.05) 0.633 (0.03) 0.994 (0.00) 0.974 (0.00)

� Abbreviation 0.792 (0.03) 0.951 (0.01) 0.873 (0.04) 0.609 (0.03) 0.995 (0.00) 0.972 (0.00)

� Phrase 0.769 (0.04) 0.951 (0.01) 0.863 (0.05) 0.632 (0.03) 0.994 (0.00) 0.973 (0.00)

� Abbreviation & Phrase * 0.773 (0.04) 0.945 (0.02) 0.841 (0.05) 0.618 (0.03) 0.993 (0.00) 0.971 (0.00)

No Pre-training 0.741 (0.03) 0.944 (0.01) 0.810 (0.06) 0.586 (0.03) 0.992 (0.00) 0.968 (0.00)

Table 6: Ablation results of Medical Knowledge-enhancing Pre-training (MKP). These are the mean performance and
its standard deviation from 10 random bootstrap experiments on Radiologist-synthesized Dataset. � Abbreviation
& Phrase * indicates the case where only MLM is considered.
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A Appendix

Figure 3 and Figure 4 shows the Precision-Recall
curve and ROC curve on Radiologist-synthesized
dataset, respectively.

Figure 3: Precision-Recall curve on Radiologist-
synthesized dataset

Figure 4: ROC curve on Radiologist-synthesized dataset

Table 7 shows that, even with an precision of 1.0,
about 31% of errors can be detected, which means
that a certain amount of errors can be detected even
with a false-alarm rate close to zero in the real
world. When precision is set to 0.96, the recall
for factual error (type 2) rises remarkably. Also,
the recall of interpretive error (type 1) is increased
when it is set to 0.8 to 0.9. The recommended
precision settings for a false alarm rate is around
0.96, and for a better detection of interpretive errors
is around 0.8 to 0.9.

B Appendix

Table 8 shows the experimental results regarding
the effectiveness of the domain adaptation strat-
egy that can ideally improve the performance on
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Precision(ppv) 1-A 1-B 1-C 1-D 2-A 2-B 3 Total
1 0.1 0.35 0.5 0.35 0.38 0.2 0 0.31

0.96 0.1 0.35 0.55 0.4 0.71 0.6 0 0.41
0.9 0.35 0.5 0.65 0.6 0.81 0.6 0 0.56
0.8 0.55 0.6 0.7 0.8 0.86 0.6 0.2 0.68

Table 7: Recall by error type with different precision criterion

AUPRC AUROC Precision(ppv) Recall(sensitivity) Specificity Accuracy

Domain Adaptation X 0.993 (0.00) 0.994 (0.00) 0.986 (0.00) 0.935 (0.01) 0.988 (0.00) 0.963 (0.00)

Domain Adaptation O 0.997 (0.00) 0.998 (0.00) 0.994 (0.00) 0.944 (0.00) 0.995 (0.00) 0.970 (0.00)

Difference
(P Value of paired t-test) 0.004 (<.001) 0.004 (<.001) 0.008 (<.001) 0.009 (<.001) 0.007 (<.001) 0.008 (<.001)

Table 8: Performance increase by domain adaptation on Open-I dataset

external dataset. For domain adaptation, 1 epoch
training is performed on 500 reports of Open-I after
fine-tuning on MIMIC-CXR. Even with this light
training, a statistically significant level of consis-
tent performance improvement is observed for all
metrics. Therefore, when applying the proposed
framework to the real life scenarios, performance
improvement can be expected if domain adaptation
is performed with synthetic data generated by the
error generator.

C Appendix

Table 9 provides some examples of errors generated
by the error generator using MIMIC-CXR.
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