CLPT: A Universal Annotation Scheme and Toolkit for Clinical Language
Processing

Saranya Krishnamoorthy Yanyi Jiang William Buchanan
Ayush Singh John E. Ortega
inQbator Al at eviCore Healthcare
Evernorth Health Services
firstname.lastnamel@evicore.com

Abstract

With the abundance of natural language pro-
cessing (NLP) frameworks and toolkits being
used in the clinical arena, a new challenge
has arisen — how do technologists collaborate
across several projects in an easy way? Pri-
vate sector companies are usually not willing
to share their work due to intellectual property
rights and profit-bearing decisions. Therefore,
the annotation schemes and toolkits that they
use are rarely shared with the wider commu-
nity. We present the clinical language pipeline
toolkit (CLPT) and its corresponding annota-
tion scheme called the CLAO (Clinical Lan-
guage Annotation Object) with the aim of cre-
ating a way to share research results and other
efforts through a software solution. The CLAO
is a unified annotation scheme for clinical tech-
nology processing (CTP) projects that forms
part of the CLPT and is more reliable than
previous standards such as UIMA, BioC, and
cTakes for annotation searches, insertions, and
deletions. Additionally, it offers a standard-
ized object that can be exchanged through an
API that the authors release publicly for CTP
project inclusion.

1 Introduction

With the resurgence of deep learning and neural
networks, the interest in using a clinical language
framework for classifying clinical text in a digi-
tal manner has been heightened in recent years.
Several workshops and shared tasks (Harper et al.,
2021; Goeuriot et al., 2020; Rumshisky et al., 2020;
Wang et al., 2020) have focused on the state-of-
the-art approaches and the amount of private en-
terprises offering clinical solutions backed by ma-
chine learning technologies has increased drasti-
cally (Parida et al., 2022). Nonetheless, a recent
study (Digan et al., 2021) shows that systems like
UIMA (Ferrucci and Lally, 2004), CLAMP (Soysal
et al., 2018), and cTakes (Savova et al., 2010), de-
spite their age and typical technology stack (Java),

are still a standard for clinical language text classi-
fication and there are only a few publicly available
clinical language frameworks or standardized an-
notation schemes that provide easy ways to share
results and other pertinent information with orga-
nizations, private or public. We propose a modern
standardized framework that supports collaboration
on clinical language research. Here we present the
clinical language pipeline toolkit (CLPT), a frame-
work developed with Python designed with soft-
ware development principles. The CLPT enables
researchers and entities to share their project results
easily and supports research to be conducted in a
fast and reproducible way. The unified annotation
scheme for the CLPT is called the clinical language
annotation object (CLAO). The CLAO is more reli-
able for annotation searches, insertions, and dele-
tions than previous standards (e.g. UIMA(Ferrucci
and Lally, 2004), cTakes(Savova et al., 2010) and
BioC (Comeau et al., 2013)).! Additionally, the
CLAO can be easily shared and integrated due to its
standardization which makes it accessible through
an application programming interface (API).

To illustrate the aforementioned concepts which
will improve clinical technology processing (CTP)
collaboration, we introduce five novel ideas and
contributions in this article:

1. A freely available” annotation scheme (Clini-
cal Language Annotation Object, CLAO) for
CTP projects that can be interchanged be-
tween public and private sector organizations
through offline and online resources such as
APIs or file exchange.

2. A high-level Python framework (Clinical Lan-
guage Pipeline Toolkit, CLPT) designed pur-
posely in an ambiguous manner with the ob-

!The focus of this paper is to introduce the main concepts
of the CLPT and the CLAO. We plan to publish efficiency
results in a future iteration.

https://github.com/inQbator—eviCore/
clpt

Proceedings of the 4th Clinical Natural Language Processing Workshop, pages 1 - 9
July 14, 2022 ©2022 Association for Computational Linguistics

https://github.com/inQbator-eviCore/clpt
https://github.com/inQbator-eviCore/clpt

jective of accepting any input of multiple
modal types (i.e., speech, images, text, and
more).

3. A novel algorithm for processing the anno-
tation scheme that allows faster annotation
inserts, deletes, and searches than previous
frameworks.

4. An annotation scheme that can be converted
to a linked data format which supports graph
analytics on documents.

5. Out-of-the-box support for semantically com-
paring text in high-dimension spaces for state-
of-the-art language models.

In the following sections, we first go through
related work on annotation and natural language
processing (NLP) tools in Section 2. In Section 3.1,
we then describe in detail the CLAO scheme. Next,
in Section 3.2, we cover the four CLPT modules
for creating a typical CTP pipeline. Lastly, we
conclude with the availability and future work.

2 Related Work

Several clinical text processing toolkits and annota-
tions schemes have been introduced in the past but
none of them provide the same functionality and
efficiency as the CLAO and CLPT. Some widely
used NLP tools for clinical text processing include
the clinical text analysis and knowledge extrac-
tion system (cTAKES) (Savova et al., 2010), BioC
(Comeau et al., 2013), Brat Rapid Annotation Tool
(BRAT) (Stenetorp et al., 2012), General Architec-
ture for Text Engineering (GATE) (Cunningham
et al., 2002), Metamap (Aronson and Lang, 2010),
Metamap Lite (Demner-Fushman et al., 2017), clin-
ical language annotation, modeling, and processing
(CLAMP) (Soysal et al., 2018) and sciSpaCy (Neu-
mann et al., 2019).

BRAT (Stenetorp et al., 2012) is a web-based
annotation tool for defining entities and creating an-
notations. Annotations created by BRAT are stored
in a standoff format. Since BRAT XML output is
similar to CLPT output, it can be easily adapted to
CLAO by creating an adapted script, unlike outputs
from cTakes or UIMA which are CAS files that are
serialized using Java-style notation. Though the
CLPT implements a similar approach of storing the
annotation in a CLAO object, the CLAO’s anno-
tation scheme supports faster annotation insertion,

deletion, and searching by implementing B-tree for
indexing (see 3.1 for details).

cTAKES (Savova et al., 2010) is a clinical infor-
mation retrieval system that combines rule-based
methods and machine learning techniques for clini-
cal narrative processing. It has been shown to work
well on clinical notes alone but does not cover a
broader set of NLP tasks (Neumann et al., 2019).
The CLPT has been designed purposely ambiguous
in order to accept multi-modal input and perform
several NLP tasks.

GATE (Cunningham et al., 2002), CLAMP
(Soysal et al., 2018), and BioC (Comeau et al.,
2013) provide multiple tools which can be used
for language processing tasks, annotating corpora,
and performing evaluation. Yet, all three of them
are either based on Java or C++. Additionally,
GATE (Cunningham et al., 2002) and CLAMP
(Soysal et al., 2018) depend on a framework called
the unstructured information management archi-
tecture (UIMA) (Ferrucci and Lally, 2004). CLPT
makes similar offerings as the three aforementioned
frameworks but it uses Python which makes it eas-
ier to integrate with other modern deep-learning
NLP frameworks such as TensorFlow (Abadi et al.,
2016), MedSpacy (Eyre et al., (in press, n.d.) and
PyTorch (Paszke et al., 2019).

The National Library of Medicine® presented a
framework called Metamap (Aronson and Lang,
2010) for mapping biomedical text to unified med-
ical language system (UMLS) concepts. Others
(Soysal et al., 2018; Peng et al., 2020a) have found
Metamap difficult for building machine learning
models and hard to predict long entities due to its
dictionary lookup method (Peng et al., 2020a). Pre-
vious research (Zhang et al., 2021) argues that nei-
ther Metamap nor CLAMP incorporate deep learn-
ing models directly. We believe that the CLAO
and CLPT address several downfalls by creating
an easy-to-use annotation scheme along with the
targeted focus on deep learning.

We consider the work on sciSpaCy (Neumann
et al., 2019) similar to ours because it was devel-
oped in Python and takes into account recent clas-
sification techniques in deep learning. However, to
our knowledge, sciSpaCy (Neumann et al., 2019)
does not support some of the default features found
in the CLPT, such as a shareable annotation file
that can be serialized to disk and efficient entity
lookups as are offered in the CLAO.

*https://www.nlm.nih.gov

https://www.nlm.nih.gov

Gold standard

...................

Semantic and
Syntactic
Analysis

Engine

Raw Text,
Gold standard,
Config

Data Ingestion

Raw Text

..............

——

Evaluation

—&=

Figure 1: Clinical Language Pipeline Toolkit (CLPT) architecture

3 Methods

3.1 Clinical Language Annotation Object

In this section, we present two core CLAO innova-
tions that provide efficient annotation storage and
retrieval. The CLAO receives raw text as input
which is cleaned and broken down into minimal
units of analysis, expressed in this article as to-
kens. The CLAO has three main divisions for an
annotation: (1) its elements, (2) its attributes and
values, and (3) the relations linking the annotation
to others (often times for syntactic or semantic rep-
resentations).

The first step leading to the creation of a CLAO
(as seen in Figure 1) is the segmentation of textual
data into its minimal elements for annotation. Ele-
ments and values for the CLAO are extracted from
the segments using sentence (or segment) detection
and are stored and finally represented in a common
annotation structure represented by a XML-based
hybrid standoff format (Ide et al., 2017). We chose
to represent the CLAO with a generalized repre-
sentation in order to provide flexibility so that the
annotation scheme was not constrained to the use of
specific domains or tools. The version of the CLPT
presented here supports exporting the CLAO into a
JSON format, future iterations will provide a mech-
anism to allow users to export the CLAO into a
JSON-LD format (Cimiano et al., 2020). JSON-
LD is a novel contribution because, unlike other
frameworks, it allows queries on the CLAO to be
data-driven yet graph-based, similar to previous re-
search (Hellmann et al., 2013; Cimiano et al., 2020)
on efficiency. This promotes inter-operability and
collaboration through a standard. For convenience,
we have provided an example of a serialized CLAO
in Appendix A.1.

As another novelty of our annotation implemen-
tation, the CLAO supports addition, deletion, and

update operations along with the enhancement of
annotations through the use of what are known as
B-Trees for indexing (algorithms for processing
stored data that are high performing, Johnson and
Sasha (1993)). B-Tree indexing within the CLAO
is performed at an asymptotic speed of O(logn)
for operations on CLAO entities — providing for a
small storage footprint, easy scaling (without the
need for rehashing as in the case of typical hash
maps), and optimum segment loading.

The B-tree based algorithm, called a blist, used
for indexing a CLAO uses an algorithm written
by Daniel Stutzbach*. It combines a B-tree with
an array for searches. In order to qualify that a
blist would be the optimum algorithm for index-
ing a CLAO, we performed two main experiments
illustrated in Figures 2 and 3. Both experiments
compare the use of a default Python 3 list> data
structure and the blist from Daniel Stutzbach. Our
first experiment consisted in the creation of one-
hundred default Python 3 lists and one-hundred
blists both containing one million random floating
numbers between 0 and 1. The second experiment
consisted of random slicing which was done on
both data structures (the Python 3 list and the blist)

11674
11117
10.641

10.445
9.748 I 9.842

Runl Run2 Run3

list mblist

Figure 2: Creation Time Comparison (in Seconds)

*nttps://stutzbachenterprises.com/
blist

Shttps://docs.python.org/3/library/
stdtypes.htmlf#list

https://stutzbachenterprises.com/blist
https://stutzbachenterprises.com/blist
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

362.155 364.777 356.052

12346 11.248 11581

Figure 3: Slicing Time Comparison (in Seconds)

1000 times. The run time for both experiments
was recorded and we found that the blist outper-
formed the Python 3 list as it was approximately
30 times faster thus making it the optimal choice
for the CLPT at this time. In future work, we plan
on extending the blist algorithm to include an even
faster search.

3.2 Clinical Language Pipeline Toolkit

The CLPT is a CTP pipeline meant for exclusive
use with the CLAO. We created the CLPT as an
easy-to-use first pass for building a CLAO that can
then be processed by others. In this short article,
we only introduce novel themes along with findings
and further plan to extend our work to introduce a
larger pipeline backed by a CLAO. The architec-
ture of the CLPT can be considered similar to other
architectures like UIMA (Ferrucci and Lally, 2004)
and CLAMP (Soysal et al., 2018) in some ways.
Howeyver, it is our intent to allow further out-of-the-
box novel features such as annotations mixed with
embeddings. The CLPT, similar to its predecessors,
has these four pipelines modules: (1) ingestion, (2)
analysis engine, (3) classification, and (4) evalua-
tion as shown in Figure 1. Each module has the
option of saving any information to the CLAO as
needed, in a repository-like manner. The CLAO
is configured via a configuration file that enables
any of the four modules, including the analysis
and classification components, as explained in the
following sections.

3.2.1 Ingestion

The CLPT is designed to be multi-modal, able to ac-
cept any form of input such as text, speech, video
or images. At this point, we have experimented
with text only and left other modalities for future
work. The ingestion process is similar to other
pipelines in that an object is considered for and se-
rialized to the CLAO format. One main difference
between the CLPT and other toolkits is that the
CLPT was purposely created with high abstraction
and is able to model any type of data. Figure 4 pro-

vides an example of the ingestion process which,
similar to (Ferrucci and Lally, 2004), uses a docu-
ment reader (called Document Collector), to read
in data. Additionally, users have the option to pass
in a configuration file (. ym1 format) designed to
allow high-level control as to which modules to
use. Nonetheless, there is also a “default” pipeline
configuration which requires no intervention. The
ingestion module handles the initial creation of the
CLAO and passes the CLAO on for further process-
ing to the analysis engine.

3.2.2 Analysis Engine

Our deep learning contribution is based on adding
embeddings to the CLAO. Since embeddings are a
key difference between the CLPT and other toolk-
its, we cover them here in further detail. Our em-
beddings can be used as part of creating a model for
processing or loading a pre-trained model. Given
that the majority of modern work on clinical NLP
uses deep learning and/or embeddings, we felt it
necessary to promote their inclusion in the CLPT.
Our novel technique of storing embeddings by
use of the CLAO has not been performed in the
past. Additionally, we provide sub-word embed-
ding combined with hashing trick for efficiency
(Bojanowski et al., 2017) which are able to handle
out-of-vocabulary (OOV) words. Embeddings are
stored in CLAO objects efficiently, allowing com-
parison between tokens and spans of tokens. This
is done by assigning a vector to each token or spans
of tokens where the CLAO returns an average of all
of the embeddings within it. Furthermore, CLPT
offers a configuration mechanism for changing this
span embedding method of calculation. Allow-
ing for this flexibility can be considered a novel
approach as it allows users to easily test various
embedding types for experiments.

3.2.3 Classification

The classification module extracts knowledge from
the CLAO by retrieving information from the up-
stream CLPT component(s). In this module, ma-
chine learning and other techniques (e.g., heuris-
tics) are applied to further augment annotations for
classification tasks before evaluation. Some of the
major components to be released in the CLPT (See
Appendix Figure 6), for the classification module
are: (1) acronym expansion (similar to CARD (Wu
et al., 2017)); (2) mention detection split into two
phases, first a step to identify the mentions and then
a step to group them together; (3) fact extraction to

extract clinical concepts from the mentions which
help to better disambiguate clinical notes and pro-
vide fact-based evidence for classification; (4) re-
lationship extraction further expansion of mention
detection to allow linking entities and the creation
of a knowledge graph — to be presented as future
work.

3.2.4 Evaluation

The CLPT provides an evaluation module (shown
in Figure 7) as a separate module rather than the
addition of classification or other processing tech-
niques. The aim is to allow several forms of evalu-
ation while, at a minimum, providing the baseline
measurements such as precision, recall, F1-score,
and accuracy. The baseline evaluation can be ex-
tended to cover any other common metrics but at
this time we leave that for future work. The eval-
uation module takes two inputs: a CLAO and a
gold standard. The CLAO is what will allow us
to compare against the gold standard and both are
required.

4 Concluding remarks and future work

We have introduced a novel and efficient toolkit for
creating CTP pipelines with several new contribu-
tions. The thought has been to make a centralized
format for exchanging information amongst enti-
ties, albeit academic or private. This will allow en-
tities to compare and contrast results by comparing
CLAO:s that adhere to a standardized guideline. We
contribute this to the public community as a way
to use a more updated framework for modern CTP
techniques. It is our thought that the CLPT can
increase productivity and the exchange of informa-
tion. The current implementation of the CLPT and
the CLAO is in its infancy; the plan is to develop
more functionality such as multi-modal inputs, the
creation of a knowledge graph, and improved eval-
uation methods.

Additionally, we plan on extending the current
implementation which performs classification us-
ing public machine learning models and heuristics
by training models with the CLPT. Once those mod-
els have been trained, we also plan on adding the
capability for fine-tuning those models for several
clinical tasks able to handle diverse NLP problems
like seminal work (Peng et al., 2020b) has done.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Alan R Aronson and Francois-Michel Lang. 2010. An
overview of metamap: historical perspective and re-
cent advances. Journal of the American Medical
Informatics Association, 17(3):229-236.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Philipp Cimiano, Christian Chiarcos, John P McCrae,
and Jorge Gracia. 2020. Linguistic linked open
data cloud. In Linguistic Linked Data, pages 29—-41.
Springer.

Donald C Comeau, Rezarta Islamaj Dogan, Paolo Ci-
ccarese, Kevin Bretonnel Cohen, Martin Krallinger,
Florian Leitner, Zhiyong Lu, Yifan Peng, Fabio Ri-
naldi, Manabu Torii, et al. 2013. Bioc: a minimalist
approach to interoperability for biomedical text pro-
cessing. Database, 2013.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. Gate: an ar-
chitecture for development of robust hlt applications.
In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages
168-175.

Dina Demner-Fushman, Willie J Rogers, and Alan R
Aronson. 2017. Metamap lite: an evaluation of
a new java implementation of metamap. Journal
of the American Medical Informatics Association,
24(4):841-844.

William Digan, Aurélie Névéol, Antoine Neuraz,
Maxime Wack, David Baudoin, Anita Burgun, and
Bastien Rance. 2021. Can reproducibility be im-
proved in clinical natural language processing? a
study of 7 clinical nlp suites. Journal of the American
Medical Informatics Association, 28(3):504-515.

Hannah Eyre, Alec B Chapman, Kelly S Peterson, Jian-
lin Shi, Patrick R Alba, Makoto M Jones, Tamara L
Box, Scott L DuVall, and Olga V Patterson. (in press,
n.d.). Launching into clinical space with medspacy:
a new clinical text processing toolkit in python. In
AMIA Annual Symposium Proceedings 2021.

David Ferrucci and Adam Lally. 2004. Uima: an ar-
chitectural approach to unstructured information pro-
cessing in the corporate research environment. Natu-
ral Language Engineering, 10(3-4):327-348.

Lorraine Goeuriot, Hanna Suominen, Liadh Kelly, Anto-
nio Miranda-Escalada, Martin Krallinger, Zhengyang
Liu, Gabriella Pasi, Gabriela Gonzalez Saez, Marco

http://arxiv.org/abs/2106.07799
http://arxiv.org/abs/2106.07799

Viviani, and Chenchen Xu. 2020. Overview of the
clef ehealth evaluation lab 2020. In International
Conference of the Cross-Language Evaluation Forum
for European Languages, pages 255-271. Springer.

Corey Harper, Jessica Cox, Curt Kohler, Antony Scerri,
Ron Daniel Jr, and Paul Groth. 2021. Semeval-2021
task 8: Measeval—extracting counts and measure-
ments and their related contexts. In Proceedings of
the 15th International Workshop on Semantic Evalu-
ation (SemEval-2021), pages 306-316.

Sebastian Hellmann, Jens Lehmann, Soren Auer, and
Martin Briimmer. 2013. Integrating nlp using linked
data. In International semantic web conference,

pages 98—113. Springer.

Nancy Ide, Christian Chiarcos, Manfred Stede, and
Steve Cassidy. 2017. Designing annotation schemes:
From model to representation. In Handbook of lin-
guistic annotation, pages 73—111. Springer.

Theodore Johnson and Dennis Sasha. 1993. The perfor-
mance of current b-tree algorithms. ACM Transac-
tions on Database Systems (TODS), 18(1):51-101.

Mark Neumann, Daniel King, 1z Beltagy, and Waleed
Ammar. 2019. Scispacy: fast and robust models
for biomedical natural language processing. arXiv
preprint arXiv:1902.07669.

Prasanta Kumar Parida, Lingraj Dora, Monorama Swain,
Sanjay Agrawal, and Rutuparna Panda. 2022. Data
science methodologies in smart healthcare: a review.
Health and Technology, pages 1-16.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Jacqueline Peng, Mengge Zhao, James Havrilla, Cong
Liu, Chunhua Weng, Whitney Guthrie, Robert
Schultz, Kai Wang, and Yunyun Zhou. 2020a. Nat-
ural language processing (nlp) tools in extracting
biomedical concepts from research articles: a case
study on autism spectrum disorder. BMC Medical
Informatics and Decision Making, 20(11):1-9.

Yifan Peng, Qingyu Chen, and Zhiyong Lu. 2020b.
An empirical study of multi-task learning on
bert for biomedical text mining. arXiv preprint
arXiv:2005.02799.

Anna Rumshisky, Kirk Roberts, Steven Bethard, and
Tristan Naumann, editors. 2020. Proceedings of the
3rd Clinical Natural Language Processing Workshop.
Association for Computational Linguistics, Online.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system

(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507-513.

Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui Wu, Ser-
guei Pakhomov, Hongfang Liu, and Hua Xu. 2018.
Clamp-a toolkit for efficiently building customized
clinical natural language processing pipelines. Jour-
nal of the American Medical Informatics Association,

25(3):331-336.

Pontus Stenetorp, Sampo Pyysalo, Goran Topié,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. Brat: a web-based tool for nlp-assisted text
annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages

102-107.

Yanshan Wang, Sunyang Fu, Feichen Shen, Sam Henry,
Ozlem Uzuner, and Hongfang Liu. 2020. The 2019
n2c2/ohnlp track on clinical semantic textual similar-
ity: Overview. JMIR Med Inform, 8(11):e23375.

Yonghui Wu, Joshua C Denny, S Trent Rosenbloom,
Randolph A Miller, Dario A Giuse, Lulu Wang,
Carmelo Blanquicett, Ergin Soysal, Jun Xu, and Hua
Xu. 2017. A long journey to short abbreviations:
developing an open-source framework for clinical
abbreviation recognition and disambiguation (card).
Journal of the American Medical Informatics Associ-
ation, 24(el):e79—e86.

Yuhao Zhang, Yuhui Zhang, Peng Qi, Christopher D
Manning, and Curtis P Langlotz. 2021. Biomedical
and clinical english model packages for the stanza
python nlp library. Journal of the American Medical
Informatics Association, 28(9):1892—1899.

https://aclanthology.org/2020.clinicalnlp-1.0
https://aclanthology.org/2020.clinicalnlp-1.0
https://doi.org/10.2196/23375
https://doi.org/10.2196/23375
https://doi.org/10.2196/23375

A Appendix

Class DocumentCollector Class CLAO

raw_data: CLAOElement

input_dir:str fate
data_type: CLAODataType name: str
claos: List[CLAO] CLAO(raw_data)

from_file(cls, input_path): CLAO
from_xml_file(cls, input_path): CLAO
insert_annotation(element_class, value)

DocumentCollector(input_dir, CLAODataType)
ingest(input_dir, CLAODataType): --> list{CLAO]

serialize_all(insert_annotations(element_class, values)
remove_annotations(element_class)
get_all_annotations_for_element(element_class): ListfCLAOElement]
get_annotations(element_class, key): ListfCLAOElement]

Class TruthCollector _search_by_id(element_class, key): List{CLAOElement]
outcome_file:str _search_by_val(element_class, key): ListfCLAOElement]
Data Ingestion outcome._type: str _ggt_elemgnt_name(element_class): str
dc: DocumentCollector to_json(): dict

(Text directory, DictConfig)

to_xml(): Ixml.etree.Element
write_as_json()
write_as_xml()

load_outcome_from_csv(dc, outcome_file)
load_entity_from_json(dc, outcome_file)
ingest(dc, outcome_file, outcome_type)

Class PipelineProcessor

single_clao_stages: list(PipelineStage)
all_claos_stages: list(PipelineStage)

__init__(single_clao_stages, all_claos_stages)
from_stages_config(DictConfig): PipelineProcessor
process(CLAO)

process_multiple(list(CLAO))

Figure 4: The data ingestion module. It is used to ingest data and create an initial clinical language annotation
object (CLAO) which can include text or other types (in future iterations).

Class RemoveStopWord

stopword_pattern: re.Pattern
clao: CLAO

process(CLAO)
clean_text(str): str

Class ConvertToLowerCase

clao: CLAO

Class RegexTokenization

token_regex: re.Pattern
clao: CLAO

process(CLAO)
clean_text(str): str

Class ExcludePunctuation

PipelineProcessor
Object

clao: CLAO

process(CLAO)
get_tokens(CLAO, span): List[Token]

Class SimplePOSTagger

nltk_regs: ['taggers/averaged_perceptron_tagger']

process(CLAO)

+ CLAO object

process(CLAO)
clean_text(str): str

Class PorterStemming

clao: CLAO

process(CLAO): str

Class SpellCorrectLevenshtein

clao: CLAO

process(CLAO): str

Class RegexSentenceBreaking

pattern: re.Pattern
clao: CLAO

process(CLAO)

Class FastTextEmbeddings

vector_size: int

window: int

min_count: int

epochs: int Class SentenceEmbeddings
save_embeddmg;. bool dlao. CLAO

saved_file_name: str

clao: CLAO process(CLAO)

__init__(vector_size, window, min_count, epochs,
save_embeddings, saved_file_nam):
process(claos: ListfCLAO])

Figure 5: The analysis engine module. Each class has a method named process() that pre-processes and stores
information from and to a clinical language annotation object (CLAO) during each stage.

— - Class MentionDetection
Class AbbreviationExpansion

PipelineProcessor expanded_text : str g;it_o(r;hrgles: o
Object clao: CLAO .
+ CLAO object MentionD fon(rules. fl)
entionDetection(rules_file: str
LA —
process(CLAO) process(CLAO)
l Class FactExtraction
Class CoreferenceResolution ontology : str
concepts: str Closs RelmtionExtact
entities_list: list concepts_cui: str ass kelationextraction
clao: CLAO concept_definition: str clao: CLAO
semantic_type: str
X — process(CLAO)
process(CLAO) clao: CLAO
load_ontology(ontology)
process(CLAO)

Figure 6: The classification module. This module is used to process and classify input from a clinical language
annotation object (CLAO) in turn adding new information to it.

Class Evaluator

claos: listfCLAQ]
gold_standard:text

tp: float
fp:float
tn:float
fn:float
(CLAO, config, Gold precision:float Report
Standard) recall(tp,fp,tn,fn):float

accuracy(tp,fp,tn,fn):float
recall(tp,fp,tn,fn):float
f1(tp,fp,tn,fn):float
confusion_matrix(tp,fp,tn,fn)
get_all_metrics():dict
export_metrics_to_yaml()

Figure 7: The evaluation module. A module that uses a clinical language annotation object (CLAO) and a gold
standard to provide evaluation output in a report format.

A.1 Sample annotation

<?xml version="1.0" encoding="UTF-8'?>
<annotation>
<text start="0" end="41" description="raw_text">Patient has type ii dm. This is not good.</text>
<sentence id="0" start="0" end="23">
<entity id="0" start="12" end="22" entity_group="0" token_ids="[2, 5)" type="MENTION" confidence="1"
label="PROBLEM">Type Il Diabetes Mellitus</entity>
<token id="0" start="0" end="7" pos="NN" stem="patient" embedding_id="0">Patient</token>
<token id="1" start="8" end="11" pos="VBZ" stem="ha" embedding_id="1">has</token>
<token id="2" start="12" end="16" pos="VBN" stem="type" embedding_id="2">type</token>
<token id="3" start="17" end="19" pos="JJ" stem="ii" embedding_id="3">ii</token>
<token id="4" start="20" end="22" pos="NN" stem="dm" embedding_id="4">dm</token>
<token id="5" start="22" end="23" pos="." stem="." embedding_id="5">.</token>
</sentence>
<sentence id="1" start="24" end="41">
<token id="6" start="24" end="28" pos="DT" stem="thi" embedding_id="6">This</token>
<token id="7" start="29" end="31" pos="VBZ" stem="is" embedding_id="7">is</token>
<token id="8" start="32" end="35" pos="RB" stem="not" embedding_id="8">not</token>
<token id="9" start="36" end="40" pos="JJ" stem="good" embedding_id="9">good</token>
<token id="10" start="40" end="41" pos="." stem="." embedding_id="5">.</token>
</sentence>
<embedding id="0">[-0.0021704417, -0.010320467, —4.0913405e-06, —0.026113503, 0.003324223]</
embedding>
<embedding id="1">[0.03536414, —0.066816024, 0.018991465, 0.03511271, —0.02413405]</embedding>
<embedding id="2">[-0.04219764, 0.051192448, 0.053828064, 0.013828199, -0.024849724]</embedding>
<embedding id="3">[-0.011548042, —0.056690447, 0.0042386726, 0.013731264, —0.042996213]</
embedding>
<embedding id="4">[-0.015310202, —0.06731376, —0.023788698, —0.070030175, 0.0918083]</embedding>
<embedding id="5">[-0.07549597, —0.034822427, —0.048076335, 0.05481594, -0.04260452]</embedding>
<embedding id="6">[-0.08328381, 0.042492405, 0.026664842, 0.000608474, —-0.023121541]</embedding>
<embedding id="7">[-0.095420435, —0.043184925, 0.05082492, -0.015773036, —0.037915066]</embedding

>

<embedding id="8">[0.01620562, 0.030467993, —0.0037846065, 0.009880951, 0.0008572937]</embedding>
<embedding id="9">[0.10948994, 0.040386822, 0.030505553, —0.03049627, 0.04858529]</embedding>
<entity_group id="0" entity_type="MENTION">Type |l Diabetes Mellitus</entity_group>
<actual_label>0</actual_label>
<probability>0.67</probability>
<predicted_label>0</predicted_label>

</annotation>

Figure 8: A sample CLAO file comprising of two sentences in a single paragraph.

