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Reproducibility has become an increasingly debated topic in NLP and ML over recent years,
but so far, no commonly accepted definitions of even basic terms or concepts have emerged. The
range of different definitions proposed within NLP/ML not only do not agree with each other,
they are also not aligned with standard scientific definitions. This article examines the standard
definitions of repeatability and reproducibility provided by the meta-science of metrology, and
explores what they imply in terms of how to assess reproducibility, and what adopting them
would mean for reproducibility assessment in NLP/ML. It turns out the standard definitions
lead directly to a method for assessing reproducibility in quantified terms that renders results
from reproduction studies comparable across multiple reproductions of the same original study,
as well as reproductions of different original studies. The article considers where this method sits
in relation to other aspects of NLP work one might wish to assess in the context of reproducibility.

1. Introduction

Reproducibility of results is coming under increasing scrutiny in the machine learn-
ing (ML) and natural language processing (NLP) fields, against the background of
a perceived reproducibility crisis in science more widely (Baker 2016), and NLP/ML
specifically (Mieskes et al. 2019). There have been workshops and checklist initiatives,
conferences promoting reproducibility via calls, chairs’ blogs and special themes, and
the first shared tasks, including REPROLANG’20 (Branco et al. 2020) and ReproGen’21
(Belz et al. 2021b).

Despite this growing body of research on reproducibility, it has been observed that
no standard terms and definitions have emerged (Cohen et al. 2018). For the Association
of Computing Machinery (ACM 2020), results have been reproduced if obtained in a
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different study by a different team using artifacts supplied in part by the original
authors, and replicated if obtained in a different study by a different team using artifacts
not supplied by the original authors. For Drummond (2009), replicability is defined as
an experiment being able to be re-run exactly, whereas reproducibility is the ability to
obtain the same result by different means. For Rougier et al. (2017), “[r]eproducing the
result of a computation means running the same software on the same input data and
obtaining the same results. [...]. Replicating a published result means writing and then
running new software based on the description of a computational model or method.”
Wieling, Rawee, and van Noord (2018) tie reproducibility to “the same data and meth-
ods,” and Whitaker (2017), followed by Schloss (2018), tie definitions of reproducibility,
replicability, robustness, and generalizability to different combinations of same vs. dif-
ferent data and code. For Cohen et al. (2018) reproducibility is “a property of the outcomes
of an experiment: arriving—or not—at the same conclusions, findings, or values,”
whereas they “exclude issues related to the ability to repeat the experiments reported
in a paper [which is] replicability or repeatability.”

No two of the above definitions are fully in agreement with each other, and none
are entirely aligned with the standard scientific definitions of repeatability and repro-
ducibility used in other fields and codified in the International Vocabulary of Metrology
(VIM) (JCGM 2012). In fact, the US National Information Standards Organization had
to ask the ACM to “harmonize its terminology and definitions with those used in
the broader scientific research community” (ACM 2020), which prompted the latter to
switch its definitions of replicability and reproducibility, without however achieving
full alignment with the standard definitions of the two terms.

The remainder of this article examines the VIM definitions and the kind of approach
to assessing reproducibility their adoption for NLP/ML would result in. Section 2
presents and discusses the VIM definitions (JCGM 2012), Section 3 lays out what repro-
ducibility assessment looks like if wholly based on them, including practical steps and
an example application in NLP. Section 4 discusses the limits of the proposed approach
and a variety of questions that have come up in discussions and reviews of this work.
The article concludes (Section 5) with a consideration of what would need to change for
Quantified Reproducibility Assessment (QRA) to become part of NLP workflows, and
what incentive the field might have to accept the implied overhead.

2. Definitions from VIM and Implications for Reproducibility Assessment

The International Vocabulary of Metrology (VIM) (JCGM 2012) defines repeatability and
reproducibility as follows (defined terms in bold, see VIM for subsidiary defined terms):

2.21 measurement repeatability (or repeatability, for short) is measurement
precision under a set of repeatability conditions of measurement.

2.20 a repeatability condition of measurement (repeatability condition) is a
condition of measurement, out of a set of conditions that includes the
same measurement procedure, same operators, same measuring system,
same operating conditions and same location, and replicate
measurements on the same or similar objects over a short period of time.1

1 In physical measurements objects can change simply as a function of time.
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2.25 measurement reproducibility (reproducibility) is measurement
precision under reproducibility conditions of measurement.

2.24 a reproducibility condition of measurement (reproducibility condition)
is a condition of measurement, out of a set of conditions that includes
different locations, operators, measuring systems, etc. A specification
should give the conditions changed and unchanged, to the extent
practical.

In other words, repeatability and reproducibility are properties not of objects, scores,
results, or conclusions, but of measurements M that are parameterized by measurand
m, object O, time t, and conditions of measurement C and return a measured quantity
value v. They are defined as measurement precision, that is, quantified by calculating
the precision of a set of measured quantity values, relative to a set of conditions of
measurement, which have to be known and specified for assessment of repeatability
and reproducibility to be meaningful.

These definitions map directly to the following formal definitions of repeatability
and reproducibility. First, repeatability R0 (where all conditions of measurement are
fixed):

R0(M1, M2, . . .Mn) := Precision(v1, v2, . . . vn), where Mi : (m, O, ti, C) 7→ vi (1)

and the Mi are repeat measurements for measurand m performed on object O at different
times ti under (the same) set of conditions C. Reproducibility R is defined in the same
way except that condition values differ for at least one condition in the Mi (hence Ci is
here subscripted):

R(M1, M2, . . .Mn) := Precision(v1, v2, . . . vn), where Mi : (m, O, ti, Ci) 7→ vi (2)

VIM does not tell us how to compute precision. Below, the unbiased coefficient of
variation is used, but other measures are possible. The members of each set of conditions
can be construed as attribute/value pairs each consisting of a name and a value. VIM
does not tell us which exact set of measurement conditions to use; these depend on
measurement type.

3. Assessing Reproduction Results in Practice

Generally, when carrying out a reproduction study of some original work in ML/NLP,
we consider the system and how it was created and trained, the scores that were
obtained for it, and the claims made on the basis of the scores. In existing work, the
corresponding questions that are addressed in assessing the results of reproduction
are of three broad types: how easily can the system be recreated; how similar are
the scores; and can the same claims be supported. Only the second of these is about
reproducibility in the general scientific sense, and only is it answerable from metrology.
In order to have a complete approach to answering it in practice we need three more
components in addition to the definitions from Section 2: (i) a method for computing
precision; (ii) specified conditions of measurement; and (iii) a procedure for carry-
ing out reproducibility assessments. Each is addressed in turn below, followed by an
example application.
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Computing Precision. In other fields, measurement precision is typically reported in
terms of the coefficient of variation (CV) defined as the standard deviation over the
mean (of a sample of measured quantity values). Other values reported can include:
mean along side standard deviation with 95% confidence intervals, coefficient of vari-
ation, and percentage of values within n standard deviations. CV serves well as the
“headline” result, because it is a general measure, not in the unit of the measurements
(unlike mean and standard deviation), providing a quantification of degree of repro-
ducibility that is comparable across studies (Ahmed 1995, page 57). This also holds for
percentage within n standard deviations but the latter is less recognized and intuitive.

In reproduction studies in NLP/ML, sample sizes tend to be very small. We there-
fore need to use de-biased sample estimators: We use the unbiased sample standard
deviation, denoted s∗, with confidence intervals calculated using a t-distribution, and
standard error of s∗ approximated on the basis of the standard error of the unbiased
sample variance se(s2) as ses2 (s∗) ≈ 1

2σse(s2) (Rao 1973). Assuming that measured quan-
tity values are normally distributed, we calculate the standard error of the sample

variance in the usual way: se(s2) =
√

2σ4

n−1 . Finally, we also use a small sample correction
(Sokal and Rohlf 1971) for the coefficient of variation, which gives us the unbiased
coefficient of variation CV∗, defined as follows:2

CV∗ =
(

1 + 1
4n

)
s∗
|m|

where s∗ is the unbiased standard deviation, and m the sample mean.
(3)

Before applying CV∗ to values on scales that do not start at 0 (in NLP this hap-
pens mostly in human evaluations) values need to be shifted to start at 0 to ensure
comparability.3

Conditions of Measurement. Individual conditions are specified by name and value,
and their role is to capture those attributes of a measurement where different values may
cause differences in measured quantity values. For repeatability assessment, conditions
need to capture all sources of variation in results (although not necessarily each with a
separate condition). It so happens that much of the reproducibility work in ML and NLP
has so far focused on what standard conditions of measurement (information about
system, data, dependencies, computing environment, etc.) for metric measurements
need to be specified in order to enable repeatability assessment, even if it hasn’t been
couched in these terms.

Reproducibility checklists such as those provided by Pineau (2020) and the ACL4

for metric evaluation, and evaluation datasheets like the one proposed by Shimorina
and Belz (2021) for human evaluation, are lists of types of information (attributes), for
which authors are asked to provide information (values), that can directly be construed
as conditions of measurement. In the example in the following section, we use the
following conditions of measurement, based on the above checklists and described in
more detail in Belz, Popovic, and Mille (2022):

1. Object conditions: (a) System code, (b) Compile/training information.

2 Code and data are available here: https://github.com/asbelz/coeff-var.
3 Otherwise CV∗ reflects differences solely due to different minimum values.
4 https://2021.aclweb.org/calls/reproducibility-checklist/.
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2. Measurement method conditions:5 (a) Measurement method specification,
(b) Measurement method implementation.

3. Measurement procedure conditions:6 (a) Measurement procedure, (b) Test
set, (c) Performed by.

The names of the conditions of measurement used in this paper are as given above. The
values for each condition characterize how measurements differ in respect to the condi-
tion; in reporting results from QRA tests below, we use paper and method identifiers
as shorthand for distinct condition values (full details in each case being available from
the referenced papers). The intention here is not to propose a definitive set of conditions
for general use; that is beyond the scope of this article, and at any rate should evolve by
consensus over time.

Reproducibility Assessment Procedure. We now have all the components needed for
quantified reproducibility assessment, but how do we go about carrying it out in
practice? From metrology we know we need to compute the precision of two or more
measured quantity values obtained in measurements of the same object and measurand
with specified conditions of measurement, identical in the case of repeatability and
differing in the case of reproducibility. There are two possible starting positions: (a)
the original and (some) reproduction studies have been carried out; and (b) the original
study has been carried out, but no reproductions.

In the case of a, the conditions of measurement that can be used are limited to
the information that can be gleaned from publications, code/data repositories, and
the authors. This rules out repeatability assessment in most cases. In such cases, re-
producibility assessment involves the steps indicated in the bottom half of Figure 1,
termed 1-Phase QRA. The example QRA below is such a case. If the set of measurements
includes subsets of measurements that have more conditions in common, then it makes
sense to report R for these subsets separately.

In the case of b, repeatability assessment can be carried out, and arguably should be
carried out before any reproducibility assessment. For a true estimate of the variation
resulting from given differences in condition values, the baseline variation, present
when all condition values are the same, needs to be known. Repeatability assessment
should therefore be carried out prior to reproducibility assessment. For example, if
the coefficient of variation is xC0 under identical conditions C0, and xCi under varied
conditions Ci, then it is the difference between xC0 and xCi that estimates the effect of
varying the conditions. The steps in this 2-phase reproducibility assessment are shown
at the top of Figure 1.

Example Application.7 As an example of how QRA can be used in practice we apply
the approach outlined above, in its 1-phase version with conditions of measurement and
CV∗ as given above, to a set of reproductions of the essay scoring system evaluations
reported by Vajjala and Rama (2018), which were carried out as part of REPROLANG
(Branco et al. 2020). More particularly, we look at five of the 11 multilingual essay
scoring system variants and the weighted F1 scores (wF1) computed for them. Table 1

5 For definition of ‘measurement method’, see VIM 2.5.
6 For definition of ‘measurement procedure’, see VIM 2.6.
7 We report four example applications, including human evaluations, in full detail elsewhere (Belz,

Popovic, and Mille 2022), including the other six multilingual system variants from the Vajjala and Rama
(2018) reproductions below.
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2-PHASE QUANTIFIED REPRODUCIBILITY ASSESSMENT

REPEATABILITY PHASE
1. Select measurement to be assessed, identify shared object and measurand.

2. Select initial set of repeatability conditions of measurement C0, specify value
for each condition.

3. Perform n ≥ 2 reproduction measurements to yield measured quantity
values v0

1, v0
2, . . . v0

n.

4. Compute precision for v0
1, v0

2, . . . v0
n, giving repeatability score R0.

5. Unless precision is as small as desired, identify additional conditions that
had different values in some of the reproduction measurements, and add
them to the set of measurement conditions, also updating the measurements
to ensure same values for the new conditions. Repeat Steps 3–5.

REPRODUCIBILITY PHASE
6. From the final set of repeatability conditions, select the conditions to vary,

and specify the different values to test.
7. For each combination of differing condition values:

(a) Carry out n reproduction tests, yielding measured quantity
values v1, v2, . . . vn.

(b) Compute precision for v1, v2, . . . vn, giving reproducibility
score R.

Report all resulting R scores, alongside baseline R0 score.

1-PHASE QUANTIFIED REPRODUCIBILITY ASSESSMENT

1. For set of n measurements to be assessed, identify object and measurand.
2. Identify all conditions of measurement C for which information is available

for all measurements Mi, and specify condition values for each measurement.
3. Gather the n measured quantity values v1, v2, . . . vn.
4. Compute precision of v1, v2, . . . vn, giving reproducibility score R.

Report resulting R score.

Figure 1
Top: Steps in 2-Phase QRA with baseline repeatability assessment (omit Step 5 for standard
conditions of measurement). Bottom: Steps in 1-Phase QRA where baseline repeatability
assessment is impossible).

shows object (system variant) and measurand (wF1) in the first two columns. The base-
line classifier (mult-base) uses document length (number of words) as its only feature.
For the other variants, +/− indicates that the multilingual classifier was / was not
given information about which language the input was in; mult-dep uses n-grams over
dependency relation, dependent POS, and head POS triples; and mult-emb uses word
and character embeddings. The mult-base model is a logistic regressor, the others are
random forests.

As can be see from the Performed by column and the measured quantity values
(wF1 scores) in the second-to-last column, for each system variant, we have the original
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Table 1
QRA results for five of the multilingual essay scoring system variants reported by Vajjala and
Rama (2018). Reproductions by Huber and Çöltekin (2020); Arhiliuc, Mitrović, and Granitzer
(2020); Bestgen (2020); Caines and Buttery (2020). OTE = outputs vs. targets evaluation;
si = different random seeding method; envi = different compile/run-time environments;
di = different test data splits.

Object conditions Measurement method Measurement procedure Measured
Object Meas- conditions conditions quantity CV∗

urand Code by Compiled/ Method Implemented Proc- Test set Performed value
trained by by edure by

mult-base wF1

Va.& Ra./s1 Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Va.& Ra. 0.428

14.63

Va.& Ra./s2 Hub.&Colt. wF1(o,t) Va.& Ra. OTE Va.& Ra./d2 Hub.&Colt. 0.493
Va.& Ra./s? Arhiliuc&al. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Arhiliuc&al. 0.426
Va.& Ra./s1 Va.& Ra./env1 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.574
Va.& Ra./s1 Va.& Ra./env2 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.579
Va.& Ra./s2 Va.& Ra./env2 wF1(o,t) ≈Va.& Ra. OTE Va.& Ra./d3 Bestgen 0.590
Va.& Ra./s1 Va.& Ra./env3 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Cai.&But. 0.574

Cai.&But. Cai.&But. wF1(o,t) Cai.&But. OTE Va.&Ra./d4 Cai.&But. 0.600

mult-dep− wF1

Va.& Ra./s1 Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Va.& Ra. 0.703

4.5

Va.& Ra./s2 Hub.&Colt. wF1(o,t) Va.& Ra. OTE Va.& Ra./d2 Hub.&Colt. 0.660
Va.& Ra./s? Arhiliuc&al. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Arhiliuc&al. 0.650
Va.& Ra./s1 Va.& Ra./env1 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.651
Va.& Ra./s1 Va.& Ra./env2 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.699
Va.& Ra./s2 Va.& Ra./env2 wF1(o,t) ≈Va.& Ra. OTE Va.& Ra./d3 Bestgen 0.711
Va.& Ra./s1 Va.& Ra./env3 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Cai.&But. 0.651

Cai.&But. Cai.&But. wF1(o,t) Cai.&But. OTE Va.&Ra./d4 Cai.&But. 0.710

mult-dep+ wF1

Va.& Ra./s1 Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Va.& Ra. 0.693

4.39

Va.& Ra./s2 Hub.&Colt. wF1(o,t) Va.& Ra. OTE Va.& Ra./d2 Hub.&Colt. 0.661
Va.& Ra./s? Arhiliuc&al. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Arhiliuc&al. 0.652
Va.& Ra./s1 Va.& Ra./env1 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.653
Va.& Ra./s1 Va.& Ra./env2 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.699
Va.& Ra./s2 Va.& Ra./env2 wF1(o,t) ≈Va.& Ra. OTE Va.& Ra./d3 Bestgen 0.712
Va.& Ra./s1 Va.& Ra./env3 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Cai.&But. 0.653

Cai.&But. Cai.&But. wF1(o,t) Cai.&But. OTE Va.&Ra./d4 Cai.&But. 0.716

mult-emb− wF1

Va.& Ra./s1 Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Va.& Ra. 0.693

17.03

Va.& Ra./s2 Hub.&Colt. wF1(o,t) Va.& Ra. OTE Va.& Ra./d2 Hub.&Colt. 0.658
Va.& Ra./s? Arhiliuc&al. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Arhiliuc&al. 0.683
Va.& Ra./s1 Va.& Ra./env1 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.668
Va.& Ra./s1 Va.& Ra./env2 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.692
Va.& Ra./s2 Va.& Ra./env2 wF1(o,t) ≈Va.& Ra. OTE Va.& Ra./d3 Bestgen 0.689
Va.& Ra./s1 Va.& Ra./env3 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Cai.&But. 0.659

Cai.&But. Cai.&But. wF1(o,t) Cai.&But. OTE Va.&Ra./d4 Cai.&But. 0.391

mult-emb+ wF1

Va.& Ra./s1 Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Va.& Ra. 0.689

16.23

Va.& Ra./s2 Hub.&Colt. wF1(o,t) Va.& Ra. OTE Va.& Ra./d2 Hub.&Colt. 0.662
Va.& Ra./s? Arhiliuc&al. wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Arhiliuc&al. 0.681
Va.& Ra./s1 Va.& Ra./env1 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.659
Va.& Ra./s1 Va.& Ra./env2 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Bestgen 0.681
Va.& Ra./s2 Va.& Ra./env2 wF1(o,t) ≈Va.& Ra. OTE Va.& Ra./d3 Bestgen 0.684
Va.& Ra./s1 Va.& Ra./env3 wF1(o,t) Va.& Ra. OTE Va.& Ra./d1 Cai.&But. 0.657

Cai.&But. Cai.&But. wF1(o,t) Cai.&But. OTE Va.&Ra./d4 Cai.&But. 0.401

score reported by Vajjala and Rama, and seven reproduction scores from four different
papers (Huber and Çöltekin 2020; Arhiliuc, Mitrović, and Granitzer 2020; Bestgen 2020;
Caines and Buttery 2020). The conditions of measurement described above are given in
columns 3–9; for space reasons the condition values are given as paper and method IDs;
for example, Test set = Va.&Ra./d2 means the original data was used, but the test set split
was different. Finally, CV∗ scores are given in the last column.

Results show that system variant pairs that differ only in whether they use lan-
guage information have very similar CV∗ scores. For example, mult-dep− (without
language information) and mult-dep+ (with language information) have a CV∗ of 4.5
and 4.39, respectively. This tendency holds for all such pairs (including the ones not
shown here), indicating that using language information makes next to no difference to
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reproducibility.8 Results also show that the syntactic information is obtained/used in a
way that is particularly reproducible, whereas the word embeddings are obtained/used
in a way that is particularly hard to reproduce. Overall, the random forest models using
syntactic features have the best reproducibility; the logistic regressors using domain-
specific features (mult-dom systems not included here) have the worst.

These insights can be used in different ways. The substantial differences in CV∗

seen here might prompt further code checking (and indeed there seem to have been
issues with the mult-base code according to three of the reproduction papers). Knowing
that the method for obtaining word embeddings is associated with particularly poor
reproducibility might prompt an attempt to improve it. Automated CV∗ checking can be
built into further development of the system to ensure good reproducibility of baseline
variants.

4. Discussion

Is QRA all we need? QRA directly addresses the second of the questions (how similar
are scores) mentioned at the start of Section 3 by computing degree of reproducibility
as a function of scores. It also contributes to answering the first (how recreatable is the
system) by providing pointers to which conditions of measurement (which aspect of
system, training, compiling, evaluation, etc.) may be causing poor reproducibility. And
it contributes to answering the third question (can the same conclusions be drawn) by
providing a quantitative basis for deciding what is otherwise a subjective judgment.
That is not to say that QRA does everything; in particular, conducting study-level
comparisons (e.g., correlation between sets of scores, system rankings, and significant
differences) provides additional insights (Fokkens et al. 2013).

What counts as a good level of reproducibility? This differs substantially between disciplines
and contexts. In bio-science assays, precision (CV) ranges from <10 for enzyme assays,
to 20–50 for in vivo and cell-based assays, and >300 for virus titre assays (AAH/USFWS
n.d.). For NLP, typical CV ranges would have to be established over time, but it seems
clear that we would expect them to be much lower (better) for metric-based measure-
ments than for human-assessments. For wF1 measurements, the > 15 CV∗ scores above
seem very high.

Does it matter how similar scores are? CV∗ provides a quantitative basis for deciding if
the same conclusions can be drawn as discussed above, but looking at the degree of
similarity of scores relative to similarity of conditions of measurement can also reveal
important information, as exemplified by the systematic patterns in CV∗ found in the
example application in the last section. Knowing what are expected degrees of repro-
ducibility for a type of system or evaluation method helps pinpoint problems when
those expectations aren’t met.

If score differences in reproductions of the same system are larger than score dif-
ferences reported as a new state of the art for the same task elsewhere, then that’s a
problem because it is unclear whether higher scores are in fact due to methodological
improvements. If reproduction scores are, as would seem reasonable to assume, nor-
mally distributed, then overall, half of all reproduction scores should be better than

8 The high CV∗ for the baseline system may be due to an issue with the evaluation code (macro-F1 instead
of weighted-F1), as reported by Bestgen (2020); Caines and Buttery (2020); and Huber and Çöltekin (2020).
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the original scores, and half worse. But that is not the case: a recent survey (Belz et al.
2021a) showed that 60% of all reproductions that are different are in fact worse. In this
way, examining differences between scores can facilitate higher-level insights, in this
case, an apparent tendency to cherry-pick better results.

Differences in quality between studies. In the course of a reproduction study, it can happen
that the reproducing authors discover what they consider errors in code or mismatches
between the published description of the code and the code itself. In such cases, some
judgment is involved: there is no point in reproducing an erroneous original study;
if the code is different from the description, but not otherwise deemed problematic, a
reproduction with corrected description might still make sense. Beyond actual errors,
conditions of measurement capture the similarities and differences (some of which may
be deemed a matter of quality) between different studies.

QRA in NLP workflows. In order to put metrological principles and quantified repro-
ducibility assessment into practice, two things are needed at the field level: (i) recording
conditions of measurement for all evaluations using a standard template; and (ii) rou-
tinely reporting CV∗ and conditions of measurement for reproduction studies. Ideally,
the third element would be to conduct repeatability assessment as part of developing
new evaluation methods, and usefully even as part of new applications of existing
methods.

5. Conclusion

The reproducibility debate in NLP/ML has been framed in terms of exactly what
information we need to share so that others are guaranteed to obtain the same metric
scores, and initially the expectation was that “[r]eproducibility would be quite easy
to achieve in machine learning simply by sharing the full code used for experiments”
(Sonnenburg et al. 2007, page 2450). What is becoming clear, however, is that no matter
how much of our code, data, and ancillary information we share, residual amounts of
variation remain that are stubbornly resistant to being eliminated. A recent survey (Belz
et al. 2021a) found that just 14% of the 513 original/reproduction score pairs analyzed
were exactly the same. Judging the remainder simply “not reproduced” is of limited
usefulness, as some are much closer to being the same than others. On the other hand,
judging whether the same conclusions can be drawn on the basis of possibly different
scores without a quantitative basis is prone to subjectivity and low agreement.

QRA offers an alternative by quantifying the closeness of results in a way that is
comparable across different studies and can be used to establish, over time, expected
levels of closeness for different types of systems and evaluation methods. Such expected
CV∗ levels and the individual CV∗ results for given reproductions moreover provide a
quantitative basis for deciding whether the same conclusions can be drawn, as well as
providing information about the recreatability of systems and evaluation methods.

Reproducibility is one of the cornerstones of scientific research: Inability to repro-
duce results within accepted limits is, with few exceptions, seen as casting doubt on
their validity. Building QRA into NLP workflows comes with an overhead, both in terms
of recording information about systems and evaluations in a standardized form, and in
terms of carrying out reproduciblity assessments. It can often seem in NLP that the
performance-improvement paradigm and the pressure to maximize publications does
not allow for any additional work not directly contributing to increasing performance
or publications. In medicine and the physical sciences more generally it’s inconceivable
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that reproducibility assessment could be viewed as an optional extra. As NLP/ML
matures as a science, perhaps it’s time that we too insist on our results being verifiably
reliable, including in the important sense of being reproducible.
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