
Information Theory–based Compositional
Distributional Semantics

Enrique Amigó
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1. Introduction

The representation of text meaning is a fundamental issue in Natural Language Pro-
cessing (NLP). It involves encoding natural language in a way that can be handled
by information management systems. It is one of the main bottlenecks in Textual In-
formation Access, Text Mining, Dialogue Systems, and so forth. The conflict between
compositionality and contextuality (Frege’s principles) exhibits a tension between the
meaning representation paradigms, namely, symbolic and distributional (Maruyama
2019).

The Principle of Compositionality states that the meaning of a whole is a function of
the meaning of its parts and the syntactic way in which they are combined together. This
principle is the main foundation of the symbolic representation paradigm, which at-
tempts to relate language to propositional logic via extended semantic references (word
referential meaning) and grammars that capture the language structures. For instance,
in the symbolic paradigm, “table” and “sitting” are associated with their references
(icons in Figure 1a) and the utterance “sitting at a table” is the result of being combined
by means of a syntactic structure.

On the other hand, The Principle of Contextuality states that the meaning of words
and utterances1 is determined by their context. This principle supports the distribu-
tional representation paradigm, in which the meaning of linguistic items is inferred
from their context of use. Rather than symbols, words or utterances are represented as
points in a continuous vector space (embeddings; i.e., vectors in Figure 1b). For instance,
the words “table” and “sitting,” and the utterance “sitting at a table” are projected in the
representation space according to the textual context in which they usually appear. In
contrast to the symbolic paradigm, the distributional paradigm interprets the meaning
space as a continuous, that is, there exists a graded scale of meaning representations
between “sitting,” “table,” and “sitting at a table.”

Over the last decade, distributional NLP approaches have undoubtedly been the
predominant basis of NLP applications thanks to their predictive power over a sufficient
amount of textual data. In particular, Neural Language Models, such as Generative Pre-
trained Transformer (GPT) (Radford et al. 2019) and Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al. 2019), pre-trained over a huge amount of
parameters and text collections, have demonstrated high performance on specific tasks
with limited supervised data. However, in terms of meaning representation, there is
considerable consensus in the literature that one of the main limitations of the distribu-
tional paradigm is its lack of systematicity (Johnson 2004; Talmor et al. 2020; Pimentel
et al. 2020; Goodwin, Sinha, and O’Donnell 2020; Hupkes et al. 2020; Bender and Koller
2020). Robert Cumming defined language systematicity as follows (Cummins 1996,
page 591): A system is said to exhibit systematicity if, whenever it can process a sentence, it can
process systematic variants, where systematic variation is understood in terms of permuting con-
stituents or (more strongly) substituting constituents of the same grammatical category. Briefly,
while in the symbolic paradigm the productive rules defining grammars admit infinite
combinations and permutations, the distributional paradigm is somewhat conditioned
by the word sequences observed in the training corpus.

1 In this article we will use the terms word and utterance. The notion of word used in this article can be
generalized to any atomic element on which composition or distributional analysis is applied by the
computational linguistic model. This ranges from morphemes in synthetic languages such as German to
multiwords or collocations. On the other hand, we will use the term utterance to refer to the compound
expressions we want to represent.
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Figure 1
Representation paradigms in computational linguistics.

Because distributional and compositional representation approaches present com-
plementary properties (contextuality vs. systematicity), Maruyama (2019) raised the
need for a Kantian Synthesis. The hypothesis is that the meaning of linguistic forms
is given by a reflow between their context and components. In this line, a number of
authors have proposed adding a compositional layer over distributional representa-
tions. These models are referred to as Compositional Distributional Semantic models
(Mitchell and Lapata 2010; Arora, Liang, and Ma 2017; Clark and Pulman 2007; Coecke,
Sadrzadeh, and Clark 2010). As shown in Figure 1c, in the distributional compositional
paradigm, the utterance “sitting at a table” is not inferred from the context in which it
appears, but by a composition function applied on the distributional representations
of “sitting” and “table.” In other words, context of words determines their meaning. At
the same time, the meaning of the utterance is given by the words that compose it and
compositional operators. This allows us to exploit the compositionality systematicity on
utterances whose length does not allow us to infer usage statistics.

The main goal of this article is the formal study of embedding, composition,
and similarity functions in the context of Compositional Distributional representation
models, allowing for the analysis of the problem independently of the task in which
the representation is applied. For this purpose, we formalize the notion of Informa-
tion Theory–based Compositional Distributional Semantics, the contribution of which to
Distributional Compositional models consists of establishing formal constraints for
embedding, composition, and similarity functions (Figure 1d). These constraints are
based on Shannon’s concept of Information Content (IC), establishing a link between
distributional semantics, compositional language structures, and Information Theory.

We apply the following methodology. We first establish formal properties for em-
bedding, composition, and similarity functions based on Shannon’s Information Theory.
Then we analyze the existing approaches under this prism, checking whether or not
they comply with the established desirable properties. After this, we propose two
parameterizable composition and similarity functions that generalize traditional ap-
proaches while fulfilling the formal properties. Finally, we perform an empirical study
on several textual similarity datasets that include sentences with a high and low lexical
overlap, and on the similarity between words and their description. Our theoretical
analysis and empirical results show that fulfilling formal properties affects positively
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the accuracy of text representation models in terms of correspondence between the
embedding and meaning spaces.

The article is structured as follows. Section 2 analyzes the main existing semantic
approaches from a historical perspective and reviews Compositional Distributional Se-
mantics models in more detail. Sections 3 and 4 describe the proposed theoretical frame-
work for Information Theory–based Compositional Distributional Semantics (ICDS).
Section 5 describes the proposed generalized similarity and composition functions,
their properties, and their connection with existing functions. Section 6 displays our
experiments and results. Finally, we draw our conclusions in Section 7.

2. Related Work

2.1 Text Representation Paradigms

To get an overview of the different text representation paradigms, we will consider the
following set of properties.

SYSTEMATICITY: Whenever the representation is able process a sentence, it can pro-
cess systematic variants, where systematic variation is understood in terms of
permuting constituents or (more strongly) substituting constituents of the same
grammatical category.

USAGE CONTEXT: The meaning representation is sensitive to the contexts in which
the expression appears. There is a consensus among psycholinguists that the
semantics of the basic units of language (words, collocations) is determined by
their use (Wittgenstein 1953). Put in computational linguistic terms, this is known
as the Distributional Hypothesis (Harris 1954; Firth 1957).

CONTINUITY: There is a multidimensional continuous space where the meaning rep-
resentations are mapped. The distributional approach offers us a way to capture
the full continuum of meaning (Erk 2009; Gladkova and Drozd 2016). Moreover,
this space should be isometric with respect to the meaning affinity of expressions,
that is, it should reflect semantic similarities within the space of embeddings. The
continuity property offers important advantages, such as the ability to generalize
by proximity in space and to incorporate dimensionality reduction mechanisms,
and so on (Landauer 1997).

INFORMATION MEASURABILITY: The representation system includes a function that
measures the amount of information contained in the represented utterance. In
general, the amount of information is measured in terms of specificity or like-
lihood, in concordance with Shannon’s notion of Information Content (I(x) =
− log(P(x)). This links the representation system with the notion of language
model, and is a key aspect in representation models (Zhai 2008) and textual
similarity measures (Lin 1998).

In this section, we will show that, since the beginning of NLP, these properties have
been captured or lost as new paradigms have been established. The loss of properties
in each paradigm was compensated for by the use of different techniques. Table 1
summarizes this historic evolution.

The first semantic models were based on logicist approaches assuming the Prin-
ciple of Compositionality (e.g., via Preference Semantics [Wilks 1968]). These models
establish a univocal relationship between a symbol (or a set of symbols) in context
and its meaning (Boleda and Erk 2015). The space of senses is given by ontological
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Table 1
Semantic representation approaches and their properties. The table includes techniques used to
mitigate drawbacks.

SYSTEMATICITY USAGE CONTINUITY INFORMATION
CONTEXT MEASURABILITY

Symbolic
Paradigm

Complying: 4 7 7 7

WSD Ontological Ontological
Approach: Prob. grammars similarity deepness

Vector
Space
Model

Complying: 7 7 4 7

Tensor-based Dimensionality Feature
Approach: approaches reduction weighting

Count-based
Language
Models

Complying: 7 4 7 4

Independence Similarity between
Approach: assumption probabilities

Neural
Language
Models

Complying: 7 4 4 4

Vector
Approach: operators

Compositional
Distributional
Approaches

Complying: 4 4 4 4

resources such as WordNet (Fellbaum 1998). The symbolic paradigm is inherently
systematic, since it connects with propositional logic. The other aspects are only par-
tially captured. First, the compositional paradigm is fundamentally based on rules, not
on the distributional features of language (USAGE CONTEXT); however, the context of
use is partially captured by techniques such as Lexical Sense Disambiguation (Navigli
2009) that maps words to senses according to their context, and Probabilistic Grammars
(Sekine and Grishman 1995) trained on text corpora. Although the semantic space
in the symbolic paradigm is discrete, the lack of CONTINUITY is partially mitigated
by means of similarity metrics between nodes within an ontology, for example, via
Conceptual Density (Agirre and Rigau 1996) in WordNet. The lack of INFORMATION
MEASURABILITY at the lexical level within these models has also been addressed via
the deepness of nodes (specificity) in the hierarchical ontology (Seco, Veale, and Hayes
2004).

From the 1980s onward, the Statistical Paradigm, whose representation system
was fundamentally based on the Vector Space Model (VSM) (Salton and Lesk 1965),
gained strength. Under this paradigm, texts are represented as a bag of independent
words, disregarding word order and grammar. Consequently, SYSTEMATICITY is not
captured, since the structures of the language are ignored. Some approaches incorpo-
rate a certain level of SYSTEMATICITY by means of objects more complex than simple
vectors, such as tensors (Baroni and Lenci 2010; Padó and Lapata 2007; Turney 2007).
The natural language property that the VSM incorporates is CONTINUITY on which
similarity measures are applied, such as cosine, dot product, or Euclidean distance.
Because the original VSM assumes word independence, it does not capture USAGE
CONTEXT. This lack is tackled via dimensionality reduction approaches based on the
Distributional Hypothesis, such as Latent Semantic Indexing (Deerwester et al. 1990)
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or Latent Dirichlet Allocation (Blei et al. 2003).2 Regarding INFORMATION MEASUR-
ABILITY, the Term Frequency–Inverse Document Frequency (TF-IDF) term weighting
function and its variants (such as projection functions that are within vector space)
approaches the probability of the represented utterance and have a direct connection
with the notion of Information Content in Shannon’s theory (Robertson 2004).

The next generation of meaning representation consisted of the Count-based Lan-
guage Models. In these models, texts are represented as word sequences and their
probability distribution (Andreas, Vlachos, and Clark 2013). INFORMATION MEASUR-
ABILITY is captured via perplexity, a concept directly based on Shannon’s notion of
Information Content. Language Models are mainly usage-oriented, since perplexity is
based on the frequency of words in given contexts. Texts are represented as a whole
(holistic) in terms of the word sequence and its probability. Consequently, the lack of
SYSTEMATICITY is a limitation of Language Models because the probability of a word
sequence cannot be inferred from the probability of its parts (Bengio et al. 2003). Just like
in the VSM, a way of mitigating this lack consists in assuming statistical independence
and applying the product of probabilities; this is the case of the n-gram model (Brown
et al. 1993). Regarding semantic CONTINUITY, Language Models represent texts as
token sequences rather than a point in a continuous space. In addition, they do not
provide a direct notion of similarity between word sequences, but between differ-
ent Language Models (e.g., Kullback-Leibler divergence) or sequences vs. Language
Models (perplexity).

Lastly, the most successful approaches over the last few years are supported by
Neural Language Models, which are based on neural networks pre-trained over a
huge text corpus on the basis of USAGE CONTEXT (Devlin et al. 2019; Brown et al.
2020). Neural Language Models combine the properties of VSMs and Language Models.
On the one hand, text embedding is given by the activation state of neural network
inner layers. Therefore, as in the VSM, the representation space is a continuum, al-
lowing generalization. Just like traditional Language Models, the network is trained
to predict words, estimating a probabilistic distribution of word sequences given their
context. In consequence, Neural Language Models capture both USAGE CONTEXT and
INFORMATION MEASURABILITY. Their limitation is still SYSTEMATICITY. Finally, the
Compositional Distributional paradigm covers all properties and is discussed in detail
in the next section.

In Table 1, a summary of the semantic models and the linguistic features of language
that they address is shown. In view of this table, we can conclude that CONTINUITY,
INFORMATION MEASURABILITY, USAGE CONTEXT, and SYSTEMATICITY are comple-
mentary desirable properties that have been addressed from different paradigms,
although covering all of them simultaneously remains a challenge for the Natural
Language Processing community.

2.2 Distributional Semantic Representation Models: From Word Embeddings
to Transformers

In 2008, Collobert and Weston (2008) demonstrated that word embeddings generated
from a suitably large dataset carry syntactic and semantic meaning and improve the
performance on subsequent NLP tasks. However, the hype regarding neural encoders

2 Note that dimensionality reduction compresses the representation by taking into account the
interdependence between terms.
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really started in 2013 with the distributional semantic model known as Skip-gram with
Negative Sampling (SGNS, Word2Vec package) (Mikolov et al. 2013). Some authors
proposed the extension of this approach to represent longer linguistic units, such as
sentences (Kiros et al. 2015) or documents (Le and Mikolov 2014; Kenter, Borisov,
and de Rijke 2016). Static Neural Models (also referred to as Non-Contextual Neural
Models) such as SGNS or GloVe (Pennington, Socher, and Manning 2014) optimize
the correspondence between the scalar product of embeddings and their distributional
similarity (Mutual Information) (Levy and Goldberg 2014; Le and Mikolov 2014; Arora
et al. 2016). Assuming the distributional hypothesis (similar words appear in similar
contexts), this ensures a certain isometry between the embedding space and meanings.

These embedding approaches are static. That is, the representation of each word is
fixed regardless of the particular context in which it appears. The second generation
of encoders are sequential models that are sensitive to the word sequence order. The
Long Short Term Memory (LSTM) model (Hochreiter and Schmidhuber 1997) and its
variants introduced a memory cell that is able to preserve a state over long periods of
time. Several authors presented unsupervised, pre-trained, bidirectional LSTM–based
encoders, such as CoVe (McCann et al. 2017) and ELMo (Peters et al. 2018), which can
improve the performance on a wide variety of common NLP tasks. Next came graph-
based approaches, which use a fully connected graph to model the relation of every two
words within the input text. A successful implementation of this idea is the Transformer
(Vaswani et al. 2017). In the Transformer, the neural network is pre-trained over a large
text corpus under different self-supervised tasks such as Masked Language Modeling
(MLM), Sequence to Sequence (Seq2Seq), Permuted Language Modeling (PLM), De-
noising Autoencoder (DAE), Constrastive Learning (CTL), Replaced Token Detection
(TRD), Next Sentence Prediction (NSP), and Sentence Order Prediction (SOP). Com-
bining some of these tasks has also been proposed, such as BERT (Devlin et al. 2019),
Transformer-XL, ALBERT, XLNet (Yang et al. 2019), ELECTRA (Clark et al. 2020), BART
(Lewis et al. 2019), or GPT (Brown et al. 2020). Transformer-based Neural Language
Models are able to solve tasks quite accurately from a limited set of training samples
(via fine-tuning). Moreover, as Language Models, they have great predictive power
over word strings (Radford et al. 2019; Brown et al. 2020).

However, it has been shown in the literature that contextual models do not always
maintain the isometry with respect to the semantic similarity of words utterances.
They concentrate the representation of words in hypercones of multidimensional space.
This phenomenon has been called the representation degradation problem (Ethayarajh
2019; Gao et al. 2019; Li et al. 2020; Wu et al. 2020; Cai et al. 2021). The result is that
contextual models are very predictive as Language Models, but not very effective in
terms of text representation within a semantic space. In other words, although the
neural network is able to predict words from the previous sequence and classification
labels, the embedding space in which the texts are represented is not coherent with
their meanings. According to different authors, such as Gao et al. (2019) and Demeter,
Kimmel, and Downey (2020), this is due to an effect of infrequent words in the soft max
optimization function. We will see that this limitation has an effect on our experiments.
In addition, previous experiments show that the effect of the representation degradation
problem is stronger in higher net layers where the word representations are more
contextualized (Ethayarajh 2019). However, solving this problem is not the focus of the
article and we leave its analysis for future work.

Some approaches, such as Sentence-BERT (Reimers and Gurevych 2019) and the
Universal Sentence Encoder (Cer et al. 2018), address this problem by training the net-
work over sentence pairs as a similarity classification task. However, the effectiveness
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of these models may decline when the compared texts have different characteristics
from the text units on which they have been trained. In particular, Raffel et al. (2020)
found that supervised transfer learning from multiple tasks does not outperform unsu-
pervised pre-training. Yogatama et al. (2019) conducted an extensive empirical investi-
gation to evaluate state-of-the-art Natural Language Understanding models through
a series of experiments that assess the task-independence of the knowledge being
acquired by the learning process. They concluded that the performance is sensitive
to the election of the supervised training task. We confirmed this phenomenon in our
own experiments.

Recent experiments suggest through probes that Neural Language Models do not
capture the systematic nature of language (Talmor et al. 2020; Pimentel et al. 2020;
Goodwin, Sinha, and O’Donnell 2020; Hupkes et al. 2020; Bender and Koller 2020).
When probing, a researcher chooses a linguistic task and trains a supervised model to
predict annotations in that linguistic task from the network’s learned representations.
One of the most meticulous experiments was performed by Hupkes et al. (2020). This
team developed five behavioral tests in order to analyze whether neural networks are
able to generalize compositional aspects. The authors found that, for the majority of
these tests, Recurrent, Convolution-based, and Transformer models fail. In summary,
although tremendously powerful, Neural Language Models alone cannot represent
previously unseen textual information by composition.

2.3 Compositional Distributional Semantic Models

In the Compositional Distributional approach, texts longer than one word are repre-
sented by means of a composition function that combines distributional representa-
tions of linguistic units. A large body of literature has shown that the sum or global
average of word embeddings is very effective, often outperforming more sophisticated
methods (Mitchell and Lapata 2010; Boleda 2020; Lenci 2018; Blacoe and Lapata 2012;
Perone, Silveira, and Paula 2018; Baroni and Lenci 2010; Rimell et al. 2016; Czarnowska,
Emerson, and Copestake 2019; Wieting and Gimpel 2018; Ethayarajh 2018). An intrinsic
limitation of the additive approaches is that word order is not considered, since these
composition functions are associative and, in addition, some experiments suggest that
their effectiveness degrades with sentence length (Polajnar, Rimell, and Clark 2014).
The tensor product has also been studied as a composition function (Clark and Pulman
2007); its main disadvantage is that the space complexity grows exponentially as more
constituents are composed together.

As mentioned in the previous section, the Principle of Compositionality states that
the composite meaning depends on the meaning of constituents and their syntactic rela-
tionships. In order to capture the information of linguistic structures, some researchers
have trained an additive composition function on the basis of expression equivalences
(Zanzotto et al. 2010), sentence similarity and paraphrasing tasks (Mitchell and Lapata
2008; Wieting et al. 2015), or sentiment labels in movie reviews (Socher et al. 2012).
Their main limitations are that the composite structures are biased by the nature of the
training corpora and are difficult to scale on more complex linguistic structures.

In another line of work, some authors proposed adding a symbolic layer on top
of the distributional word representation. More specifically, Coecke, Sadrzadeh, and
Clark (2010) proposed a composition function relying on the algebra of pre-groups and
checked empirically the preservation of the vector dot product as an approach to simi-
larity, although this property was not formally derived. Its main drawback is scalability
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(Zhang 2014). It has been applied to relational words (Grefenstette and Sadrzadeh 2011);
simple phrases (Kartsaklis, Sadrzadeh, and Pulman 2012); and pronouns, prepositions,
and adjective phrases (Zhang 2014). Smolensky et al. (2016) presented an initial work
on mapping inference in predicate logic based on tensor product representations. This
approach is limited by the need for a previous mapping between phrases or sentences
and logical propositions.

Finally, other authors have grounded their compositional approach on Informa-
tion Theory notions. Arora, Liang, and Ma (2017) proved that applying IDF (word
specificity3) weighted sum of vector plus Singular Value Decomposition achieves com-
petitive results regarding some sequential models such as LSTM. Zhelezniak, Savkov,
and Hammerla (2020) represented sentences as a sequence of random vectors and
experimented with their Mutual Information approach as a sentence similarity measure.
A common limitation of both approaches is that they do not consider the syntactic
structure of the sentence.

In the context of the state of the art, we can situate our work as follows. We propose
a framework for Compositional Distributional representation and study the formal
desirable properties of embedding, composition, and similarity functions. Our work fo-
cuses on the problem of representation itself, taking as an objective the correspondence
between distributional representations and meanings.

3. Theoretical Framework

In this section, we describe the proposed theoretical framework. First, we establish a ge-
ometric interpretation of Distributional Semantics and its connection with Information
Theory. Next, we formally define the notion of Information Theory–based Composi-
tional Distributional Semantics and its formal properties.

3.1 Geometrical Interpretation of Distributional Semantics

First, our theoretical framework is built on a phenomenon that has been formally
justified and observed repeatedly in the literature: There exists a correspondence between
the vector norm and the specificity or IC of the represented utterance. Formally, according to
the analysis by Levy and Goldberg (2014) and Arora et al. (2016), the dot product of
SGNS embedding approximates the Pointwise Mutual Information (PMI) between two
words. With π(w) being the embedding of the word w:

〈π(w),π(w′)〉 ∝ PMI(w, w′) = log
(

P(w, w′)
P(w′) · P(w′)

)
This implies that there exists a correspondence between the vector norm and the IC

of represented utterances according to Shannon’s Information Theory:

IC(w) = − log(P(w)) = − log
(

P(w, w)
P(w) · P(w)

)
= PMI(w, w) ' 〈π(w),π(w)〉 = ‖π(w)‖2

3 Note that IDF(t) =
(

log( N
|{d∈D:t∈d}| )

)
, where D represents the document collection and N represents its

size, has a direct correspondence with its specificity of Information Content IC(t) = − log(P(t)) according
to the Shannon’s Information Theory.
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In addition, Gao et al. (2019) proved that under some assumptions, the optimal
embeddings of infrequent tokens in Transformer Language Models can be extremely
far away from the origin. Li et al. (2020, page 9121) observed empirically that “high-
frequency words are all close to the origin, while low-frequency words are far away
from the origin” in Transformer language models.

On the other hand, this phenomenon makes sense from the point of view of text
representation. The absence of textual information should be a singular point in the
representation space (origin of coordinates). This point should be equidistant to any
text with a fixed amount of information. In other words, the set of possible texts with
a fixed amount of information should form a sphere around the empty information
point. In short, it makes sense that the representations are distributed around the origin
of coordinates at a distance proportional to the amount of information they contain.

Figure 2 illustrates this idea. The longer a word sequence is, the lower its probability,
increasing its specificity and, therefore, its IC. Consequently, as we remove words from
an utterance, its embedding approaches the origin of coordinates (vector norm tends to
zero). At the end, the probability of the empty word set is maximal, and therefore, its IC
is minimal.

Another consequence of this geometrical interpretation of Distributional Semantic
representation is that the meaning in the pragmatic context of any utterance must be repre-
sented as an infinite norm vector (human thinking in Figure 2). Assuming that the meaning
in the pragmatic context of any utterance is extremely specific (time, place, actors, physic
context, open-ended world knowledge, etc.), then we can assert that its probability in
the semantic space tends to zero and therefore its IC according to Shannon’s Theory is
infinite. The representation is therefore theoretically an infinite vector and its proximity
depends exclusively on its angular distance.

Because it is a continuous representation space, the embedding distances should
approximate the semantic similarity of their utterances. However, we can consider two
different notions of semantic similarity. On the one hand, pragmatic semantic similarity
refers to the meaning proximity of two utterances taking into account the context in
which they are used. In our geometric space, since the pragmatic meaning corresponds
with infinite norm vectors, this would translate to the angular distance between infi-
nite norm vectors. In fact, cosine similarity is the standard measure in distributional
representations.

On the other hand, literal similarity takes into account the amount of information
provided by the utterance. For example, although “hello” may be equivalent to “hello

Figure 2
Geometric interpretation of text embedding based on Information Theory.
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from Barcelona” in a certain context of use, there is a difference in terms of literal
similarity, since “hello” is under-specified regarding “hello from Barcelona.” That is, the
space of possible meanings in the context of “hello” is broader and therefore its literal
IC is lower. In empirical terms, literal utterance similarity represents the expected
similarity given an annotator who is shown the two utterances without any information
about their pragmatic context.

We can summarize the geometrical interpretation of embedding models as follows:
The direction of an embedding represents the pragmatic meaning, and the vector norm of
embedding represents how much information the literal utterance provides about its meaning in
the pragmatic context. Returning to the example in Figure 2, the meaning of “Barcelona”
depends on its pragmatic context. As we add words (“from Barcelona,” “hello, from
Barcelona”), the meaning in the pragmatic context of what the sender means to express
becomes more precisely defined. That is, as we add context information to the expres-
sion when adding words, the embedding norm will become progressively longer and
its semantic orientation more precise. Only in infinity do we arrive at the meaning in
the pragmatic context. In this paper, we identify the properties that embedding, compo-
sition, and similarity functions should fulfill based on this geometric interpretation.

3.2 Information Theory–based Compositional Distributional Semantics

We formalize the notion of Information Theory–based Compositional Distributional Se-
mantics as a tuple of three functions, namely: embedding, composition, and similarity. This
framework synthesizes the distributional and compositional paradigms; the hypothesis
underlying the notion of ICDS is that there are minimal linguistic units whose semantics
are determined by their use and whose amount of information is determined by their specificity.
On the other hand, the systematicity of language can be captured by compositional mechanisms
while preserving the amount of information of the composite utterance.

Figure 3 illustrates the ICDS framework. The starting point in this example is a set
of three words: “yellow,” “star,” and “galaxy.” The semantics of these atoms are inferred
on the basis of their use or distributional properties, and not by composition. In our

Figure 3
Embedding (π), Information Content (IC, vector norm), Composition (�), and Similarity (δ)
functions in an Information Theory–based Compositional Distributional Semantics system.
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framework, we assume that there exists an embedding function π : S −→ Rn, which
returns a vector representation for each basic linguistic unit x in the space S of basic
linguistic units. Note that these semantic atoms are words but they could be multiword
terms such as Named Entities or compound terms in general. For instance, it is not
possible to infer the semantics of “John Smith” as a semantic composition of “John” and
“Smith” and the semantics must be inferred from its use as a distinct linguistic unit. The
same is true for some common terms; for example, the concept of “black hole” is not the
semantic composition of the concepts of “hole” and “black.” In our framework, we will
refer to these atoms as basic linguistic units. The framework also assumes that there
exists a composition function � that returns a new embedding given two representa-
tions and a similarity function δ that estimates the embedding meaning proximity. The
particularity of ICDS is that both the composition and the similarity functions must be
consistent with the embedding Information Content (vector norms).

In Section 2 we discussed four aspects that a semantic representation model should
cover as desirable properties. The embedding function π captures USAGE CONTEXT
and INFORMATION MEASURABILITY. The composition function � addresses SYSTEM-
ATICITY and, whenever it satisfies certain properties, it maintains the INFORMATION
MEASURABILITY coherence of composite representations. Finally, the semantic similar-
ity function δ defines the continuous space of semantic representations.

The key point is that this formal framework captures the duality between Composi-
tional and Distributional Semantics. The semantics of the basic linguistic units modeled
by means of the embedding function π is determined by the textual context in which
they appear, but, in turn, the semantics of complex structures is determined by the
composition function � and the way in which words are combined.

4. Formal Definition and Properties

In this article, we define the notion of Information Theory–based Compositional Distri-
butional Semantics as follows:

Definition 1 (ICDS)
An Information Theory–based Compositional Distributional Semantics representation is a tuple
(π, δ,�) with an embedding, semantic similarity, and composition function. S being the space of
basic linguistic units:

π : S −→ Rn,

δ : Rn × Rn −→ R,

� : Rn × Rn −→ Rn

In the following sections we formalize a set of formal properties for each of the
components of the above definition of ICDS. We cannot be sure that there are no other
possible properties that can be added in future work. However, based on our review
of related work, what we can be sure is that this set of nine properties is sufficient to
capture the particularities and differences among existing embedding functions.

4.1 Embedding Function Properties

The first two properties in Definition 1 affect the embedding function. In the following,
we will denote the atomic linguistic units (words, chunks) as x, y, or z.
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Property 1 (INFORMATION MEASURABILITY)
x being a linguistic unit, the vector norm of its embedding approximates the Information Content
of x.

‖π(x)‖ ' IC(x) = − log(P(x))

INFORMATION MEASURABILITY formalizes what has already been observed in the
experiments developed throughout the literature. That is, the correspondence between
embedding vector norm and word specificity or frequency (see Section 3.1). It states that
the embedding of the word sequence allows for estimating the probability of observing
the corresponding word sequence, which is projected within representation space by π
on the vector terminal point defined by the embedding vector. This property establishes
an explicit link between text embedding and Information Theory.

The consequence is that stopwords and other frequent tokens (with low expected
Information Content) are represented near the origin while infrequent words (with high
expected Information Content) are projected further away from the origin of coordi-
nates. In general, both Static and Contextual Neural Distributional Models comply with
this property (Arora et al. 2016; Levy and Goldberg 2014; Gao et al. 2019; Li et al. 2020).

Property 2 (ANGULAR ISOMETRY)
There must exist isometry between the angular position of embeddings and the expected similar-
ity of utterances according to humans. Being |π(x)| = |π(y)|:

cos (π(x),π(y)) ∝ E(SIM(x, y))

where E(SIM(x, y)) represents the expected similarity according to humans, which cor-
responds with the pragmatic context of the utterances. We assume the hypothetical case
of a representative set of humans who are presented with the utterances, and who are
asked about their semantic similarity.

ANGULAR ISOMETRY states the correspondence between the embedding direction
and the (pragmatic) meaning. This property formalizes the idea of desirable semantic
isometry, that is, it establishes a correspondence between the representation of texts and
their semantic similarity given a fixed degree of specificity (Information Content). Given
two embeddings with similar length (equally informative according to the analysis in
Section 3.1), the expected similarity between represented utterances according to human
annotators should be correlated with the angle these vectors maintain.

4.2 Composition Function Properties

The next three properties concern the composition function �. Unfortunately, it is not
possible for the composition function to predict the probability (i.e., IC) of a compound
expression (“yellow star”) given the probability of its components (P(“yellow”) and
P(“star”)) and its syntactic relationship. This is in fact an inherent limitation of Language
Models in terms of compositionality (see Section 2.1). However, we can state constraints
for the IC of the composite expression. These boundaries define three formal constraints
illustrated in Figure 4. The black and gray dots represent the component and compound
representations, respectively.
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Figure 4
Illustration of composition function properties.

Property 3 (COMPOSITION NEUTRAL ELEMENT)
Null information components (zero norm) do not affect the composition.

‖~v2‖ = 0 =⇒ ‖~v1 � ~v2‖ = ‖~v1‖

In principle, adding empty information should not affect the composition. It follows
from COMPOSITION NEUTRAL ELEMENT that when a embedding with (nearly) empty
information is composed with another given embedding, the resulting composite em-
bedding will be very close to the given embedding. For instance, “green” is semantically
similar to “the green,” assuming that “the” is not informative (Figure 4a).

Property 4 (COMPOSITION NORM LOWERBOUND)
The vector norm of the composite embedding is higher than or equal to the norm of each
component; that is, the composition never reduces the Information Content.

‖~v1 � ~v2‖ ≥ ‖~v1‖ ‖~v1 � ~v2‖ ≥ ‖~v2‖

COMPOSITION NORM LOWERBOUND states that adding textual information should
not reduce the final amount of information. That is, the IC (i.e., vector norm, see
Section 3.1) of an utterance embedding increases when adding words. For instance,
“green grass” is more informative than “green” and “grass” (Figure 4b).

Property 5 (COMPOSITION NORM MONOTONICITY)
The norm of the composite vector is monotonic with respect to the angle between the compound
vectors:

‖~v1‖ = ‖~v2‖ = ‖~v3‖

cos (~v1,~v2) > cos (~v1,~v3)

}
=⇒ ‖~v1 � ~v2‖ < ‖~v1 � ~v3‖

COMPOSITION NORM MONOTONICITY states that the more semantically dissimilar
the components are (greater angular distance), the more information the composite
embedding contains. This property responds to the intuition that combining two se-
mantically distant utterances should produce specific and infrequent utterances, that is,
with a high information content associated with it. For instance, “green” and “colour”
are semantically close and their representation vectors should therefore point to nearby
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areas in the infinite (Figure 4c). That is to say that “green” and “colour” have an angular
distance that is less than that of two semantically unrelated words, such as “green” and
“thought.” The compound term “green thought” is therefore more specific, less likely, and
more informative than “green colour”; and its vector norm should therefore be larger.
In other words, under fixed single vector norms (equal IC), the semantic orientation
similarity of components decreases the Information Content of the composition.

In addition to these three properties, there is another aspect to consider in ICDS.
Compositionality requires sensitivity to the linguistic structure.

Property 6 (SENSITIVITY TO STRUCTURE)
Given the three embeddings ~v1, ~v2, ~v3 with an equal norm and angularly equidistant, their
composition is not associative:

‖~v1‖ = ‖~v2‖ = ‖~v3‖ > 0

cos (~v1,~v2) = cos (~v1,~v3) = cos (~v2,~v3) > 0

}
=⇒ (~v1 � ~v2)� ~v3 6= ~v1 � (~v2 � ~v3)

Let us explain the motivation for SENSITIVITY TO STRUCTURE. The Principle of
Compositionality assumes that linguistic units are progressively grouped into more
complex semantic units, according to the structure of the language (Figure 4d). That
is, the composition function must be applied on the representations according to how
the words are considered to be structured. For example, assuming constituents, the
composition function on the sentence “This house is very big” is applied following the
brackets: “((This house) is (very big))”.

Unfortunately, we cannot define formal geometric properties that ensure that the
distributional model captures the semantics of composition. However, a basic require-
ment is that the final representation is at least sensitive to the way in which the language
is structured. That is, different ways of grouping words in the composition function
should produce different representations. More formally, the vector composition func-
tion should not be associative.

4.3 Similarity Function Properties

The next three properties concern the similarity function δ (see Figure 5).

Property 7 (ANGULAR DISTANCE SIMILARITY MONOTONICITY)
Under equal vector norm (equal IC), similarity is a monotonic decreasing function with regard
to the angular distance (and semantic orientation proximity).

cos (~v1,~v2) > cos (~v1,~v3)

‖~v1‖ = ‖~v2‖ = ‖~v3‖ > 0

}
=⇒ δ(~v1,~v2) > δ(~v1,~v3)

ANGULAR DISTANCE SIMILARITY MONOTONICITY expresses the monotonicity of
similarity regarding the semantic orientation of text representation vectors. Note that
ANGULAR ISOMETRY (defined above) states the correspondence between the semantic
similarity of text units and their embedding angle. ANGULAR DISTANCE SIMILARITY
MONOTONICITY ensures that the similarity function δ is coherent with this principle.
More formally, similarity between two representation vectors increases if the cosine of
the angle formed by the vectors increases, that is, if the angle is reduced (Figure 5a).
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Figure 5
Illustration of the preconditions of the properties ANGULAR DISTANCE SIMILARITY
MONOTONICITY, ORTHOGONAL EMBEDDING SIMILARITY MONOTONICITY, and EQUIDISTANT
EMBEDDING SIMILARITY MONOTONICITY.

Property 8 (ORTHOGONAL EMBEDDING SIMILARITY MONOTONICITY)
Given orthogonal embeddings, the larger their norm is (their specificity), the less similar will be:

cos (~v1,~v2) = cos (~v3,~v4) = 0

‖~v1‖ < ‖~v2‖, ‖~v3‖ < ‖~v4‖

}
=⇒ δ(~v1,~v2) > δ(~v3,~v4)

ORTHOGONAL EMBEDDING SIMILARITY MONOTONICITY expresses the decreasing
monotonicity of similarity regarding the IC (i.e., vector norm) of components. That is,
given two semantically unrelated utterances, the more they contain information, the
more they are semantically dissimilar. Let us consider two semantically distant words
such as “green” and “thought,” and two semantically distant utterances such as “green
colour” and “retrospective thought” (Figure 5b). The more information we add to the
semantically distant utterances, the lower their similarity should be.

Property 9 (EQUIDISTANT EMBEDDING SIMILARITY MONOTONICITY)
Given two embedding pairs (~v1,~v′1) and (~v2,~v′2), and with ~ε being a vector that represents their
equidistance, then:

~v′1 = ~v1 + ~ε, ~v′2 = ~v2 + ~ε

‖~v2‖ > ‖~v1‖ >> ‖~ε‖

}
=⇒ δ(~v2,~v′2) > δ(~v1,~v′1)

EQUIDISTANT EMBEDDING SIMILARITY MONOTONICITY captures the idea that
given two utterances that are close to each other, their specificity gives them similarity.
Figure 5c reflects this idea. The utterances “green” and “green grass” are not necessarily
similar, given that the term “green” could refer to any kind of object. However, their
similarity could be higher in a more specific context, for instance, “the top of the mountain
is green” vs. “the top of the mountain is green grass.” Under our geometrical interpretation,
the further away the related embeddings are from the origin (more specificity and
content), the more they are semantically similar. More formally, under equal Euclidean
distance, semantic similarity grows with the embedding vector norm.
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5. Function Analysis and Generalization

In this section we analyze existing embedding, composition, and similarity functions
(the tuple that defines an ICDS) on the basis of the formal properties stated in our formal
framework. In addition, we define novel parameterizable functions that generalize
existing approaches for composing. We also introduce the linguistic structures that will
be considered in our experiments.

5.1 Embedding and Information Content Functions

According to previous studies, both static (SGNS, GloVe) and contextual (BERT, GPT)
embedding models keep the correspondence between the embedding vector norm
and the specificity of the represented linguistic unit (see Section 3.1). Therefore, the
vector norm can be used as Information Content function, satisfying INFORMATION
MEASURABILITY.

Regarding ANGULAR ISOMETRY, previous work demonstrates the correspondence
between the angular distance and the semantic similarity of words in static embedding
models such as SGNS and GloVe. At a theoretical level, the dot product of Skip-
gram with Negative-Sampling embedding approximates the PMI of words (Levy and
Goldberg 2014; Arora et al. 2016).

〈π(x),π(y)〉 ∝ PMI(x, y) = log
(

P(x, y)
P(x) · P(y)

)

Note that under the distributional hypothesis (“similar contexts imply similar mean-
ing”), PMI should approximate the semantic similarity between utterances. That is, a
high PMI between two utterances implies a high co-occurrence (P(x, y)) with respect to
their likelihood in isolation (P(x) and P(y)). Consequently, two infrequent terms that co-
occur will have a high PMI, while a frequent term (e.g., a determiner) will have a low
PMI with any other term.

The main drawback of static embedding functions is that the occurrence’s local
context is not considered. In contrast, Contextual Neural Language Models (e.g., BERT,
GPT) take into account the textual context of language units when embedding them (see
Section 2). However, due to the representation degeneration problem (see Section 2.2),
contextual models suffer from limitations in terms of ANGULAR ISOMETRY (Property 2).

5.2 Composition Functions

In this section we study the properties of basic composition functions such as sum-
mation or averaging. The global average, namely, the direct average of all embedding
vectors that make up an utterance, and sum have been found to be strong baselines for
compositional tasks (Boleda 2020; Lenci 2018; Blacoe and Lapata 2012; Perone, Silveira,
and Paula 2018; Baroni and Lenci 2010; Rimell et al. 2016; Czarnowska, Emerson, and
Copestake 2019; Wieting and Gimpel 2018; Ethayarajh 2018).

In addition, in order to satisfy the formal properties, we propose a generalized
composition function based on Information Theory that can be instantiated in different
measures according to the chosen parameters.
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Table 2
Formal constraints analysis for embedding, composition, and similarity functions.
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Static 4 4 Global average 7 7 7 7 Euclidean 4 4 7
(SGNS, GloVe) FSum (λ = 1,µ = −2) 4 7 7 7 Cosine 4 7 4

Contextual 7 4 FAvg (λ = 1
4 ,µ = − 1

2 ) 7 7 7 4 Dot prod. 4 7 4
(BERT,GPT) FInd (λ = 1,µ = 0) 4 4 7 4 ICM 4 4 4

FJoint (λ = 1,µ = 1) 4 7 4 4
FInf 4 4 4 4

Definition 2 (Generalized Composition Function)
The generalized composition function Fλ,µ : Rn × Rn −→ Rn is defined as:

Fλ,µ(~v1,~v2) = ~v1 + ~v2
‖~v1 + ~v2‖

·
√
λ(‖~v1‖2 + ‖~v2‖2)− µ〈~v1,~v2〉

The first component on the right-hand side of the expression is the unit vector
of their sum and determines the vector direction. The second component determines
the vector norm (magnitude), which depends on the norm of single vectors and their
inner product. This function generalizes the most common composition functions in the
literature. In particular, it leads to the sum of vectors (FSum) when λ = 1 and µ = −2, and
to the pairwise average vector4 (FAvg) when λ = 1

4 and µ = − 1
2 .

FSum and global average do not comply with COMPOSITION LOWERBOUND (Prop-
erty 4, see Table 2). For instance, two vectors pointing to opposite directions can cancel
each other. Furthermore, they do not comply with COMPOSITION NORM MONOTONIC-
ITY (Property 5). In fact, the more distant in orientation the original vectors are, the
shorter the length of the composite vector. In addition, the sum and global average
are the only non-associative functions in this set. Therefore, they also fail to satisfy
SENSITIVITY TO STRUCTURE (Property 6). The four remaining functions are sensitive to
the text structure. Global average does not comply with COMPOSITION NEUTRAL
ELEMENT either.

4 The difference between pairwise and global averaging lies on the composition procedure for utterances
of N components with N being bigger than 2. The former applies pairwise compositions until the ROOT
node is reached (2 components are considered at each step) while the latter composes all terms in a single
averaging step.
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On the other hand, pairwise average vector (FAvg) is sensitive to the addition of
null information (e.g., avg(4, 0) = 2 < 4). Therefore, it does not satisfy COMPOSITION
NEUTRAL ELEMENT (Property 3). It also fails to satisfy COMPOSITION NORM MONO-
TONICITY (Property 5).

In addition to the basic composition function, Fλ,µ also generalizes certain Informa-
tion Theory–based interpretable functions. Let FInd denote the particularization λ = 1
and µ = 0. In FInd, the IC (vector norm) of the composite vector depends exclusively
on the IC of single vectors. In other words, FInd assumes that the combined linguistic
forms are statistically independent, and, therefore, that the Information Content in the
composition is additive. This means that the IC of the composition does not depend on
the degree of statistical co-occurrence of the language forms being combined:

‖FInd(π(x),π(y))‖2 = ‖π(x)‖2 + ‖π(y)‖2 ' IC(x) + IC(y)

FInd does not satisfy COMPOSITION NORM MONOTONICITY since the angular distance
does not affect the composite embedding.

Let FJoint denote the particularization λ = 1 and µ = 1. Assuming correspondence
between PMI and the dot product, in FJoint, the Information Content of the composite
vector is the joint Information Content of the components.5 This means that the IC of
the composition depends exclusively on the degree of statistical co-occurrence (P(x, y))
of the language forms being combined. Low co-occurrence words will produce more
information when combined than high co-occurrence words:

‖FJoint(π(x),π(y))‖2 = ‖π(x)‖2 + ‖π(y)‖2 − 〈π(x),π(y)〉 ' − log(P(x, y)) = IC(x, y)

Because the composite embedding corresponds to the joint IC in FJoint, it does not
comply with COMPOSITION NORM LOWERBOUND (Property 4).

None of the previous composition functions satisfy all properties simultaneously.
The following theorem establishes the range of values of λ and µ for which all formal
properties are satisfied. This theorem implies that none of the previous functions (FJoint,
FInd, FSum, and FAvg) satisfies the three composition properties simultaneously. However,
the functions FJoint and FInd are just at the boundaries (see proof in Section A.1):

Theorem 1
The generalized composition function satisfies COMPOSITION NEUTRAL ELEMENT (Prop-
erty 3), COMPOSITION NORM LOWERBOUND (Property 4), COMPOSITION NORM MONO-
TONICITY (Property 5), and SENSITIVITY TO STRUCTURE (Property 6) if and only if λ = 1

and µ ∈
(

0, min(‖~v1‖,‖~v2‖)
max(‖~v1‖,‖~v2‖)

]
.

Let FInf denote to the particularization λ = 1 and µ = min(‖~v1‖,‖~v2‖)
max(‖~v1‖,‖~v2‖) .The motivation

for this parameter instantiation is, first, that it falls within the theoretical range in
which the properties of composition are satisfied. Second, it satisfies the property that

5 Note that: ‖π(x)‖2 + ‖π(y)‖2 − 〈π(x),π(y)〉 ' − log(P(x))− log(P(y))− log
(

P(x,y)
P(x)·P(y)

)
= − log(P(x, y))
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composing two vectors with the same direction results in the longer one. This means
that adding redundant information does not affect the original embedding. Therefore it
does not increase the amount of information. For instance, two repeated sentences have
the same meaning as one of them. More formally:

cos (~v1,~v2) = 1 ∧ ‖~v1‖ > ‖~v2‖ =⇒ Finf (~v1,~v2) = ~v1

Note that this parameter fixing is somehow arbitrary. According to Theorem 1, a suitable
composition function parameterization should be fixed between µ > 0 (FInd instantiates
µ = 0) and µ = min(‖~v1‖,‖~v2‖)

max(‖~v1‖,‖~v2‖(FInf ) . At one end (FInd, at the boundary but not included) the
IC of the utterance “hello hello” doubles the IC of the word “hello.” At the other end (FInf,
at the boundary and included) both utterances are equivalent. Both functions represent
the boundaries of the formal parameter range.

Thus, any other choice of parameter values within the formal range will give us a
function where the IC of “hello hello” will be between the IC of “hello” and the double
of this value. At the moment, we have no information beyond that contained in the
embedding vectors, so no pragmatic aspect is considered in the composition. However,
the theory leaves room for including this kind of information, so that the IC of “hello
hello” would be larger than the IC of “hello.” Since we do not currently have a criterion
for what the IC difference should be between these two cases, for our FInf function we
are left with the value at the extreme end of the theoretical range, and it does not increase
the amount of IC.

In conclusion, we can state that, unlike the most common composition functions in
the literature, the proposed function FInf is the only one that simultaneously satisfies all
four properties.

5.3 Similarity Functions

The most popular vector similarity functions in the literature are Euclidean distance,
cosine similarity, and the inner product. Table 2 summarizes the formal properties of
these similarity functions.

Euclidean distance is monotonic regarding both ANGULAR DISTANCE SIMILARITY
MONOTONICITY (Property 7) and ORTHOGONAL EMBEDDING SIMILARITY MONO-
TONICITY (Property 8). However, it is invariant with respect to the origin of coordinates.
Therefore, it does not satisfy EQUIDISTANT EMBEDDING SIMILARITY MONOTONICITY
(Property 9). On the other hand, cosine similarity focuses exclusively on angular dis-
tance, satisfying ANGULAR DISTANCE SIMILARITY MONOTONICITY (Property 7) but
not ORTHOGONAL EMBEDDING SIMILARITY MONOTONICITY (Property 8). EQUIDIS-
TANT EMBEDDING SIMILARITY MONOTONICITY (Property 9) is satisfied given that the
cosine of two close points increases as they move away from the origin of coordinates if
the Euclidean distance between them is maintained.

The third typical similarity approach is the inner product (〈~v1,~v2〉 =
‖~v1‖‖~v2‖ cos (~v1,~v2)), which has a correspondence with PMI in distributional models.
The inner product is monotonic regarding the angle between vectors, and it is sensitive
to vector norms. It lacks the property of ORTHOGONAL EMBEDDING SIMILARITY
MONOTONICITY. The reason for that is that orthogonal vectors achieve zero similarity
regardless of their norm.
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As an alternative, the Information Contrast Model (ICM) (Amigó et al. 2020) is a
generalization of the well-known PMI model, which adds three parameters α1, α2, and
β. Then, x and y being two probabilistic events:

ICMα1,α2,β(x, y) = log
(

P(x, y)β

P(x)α1 · P(y)α2

)
= α1IC(x) + α2IC(y)− βIC(x, y)

ICM ranges between −∞ and ∞, and is equivalent to PMI when β = 1. It is also
equivalent to the product of conditional probabilities when β = 2. ICM also generalizes
the Linear Contrast Model proposed by Tversky (1977) under certain assumptions.

Assuming symmetricity (α1 = α2 = 1), assuming that the inner product approaches
the PMI of the projected linguistic units,

〈x, y〉 ' PMI(x, y) '
(

P(x, y)
P(x) · P(y)

)
' IC(x) + IC(y)− IC(x, y)

and assuming INFORMATION MEASURABILITY (IC(x) ' ‖π(x)‖), then ICM can be
rewritten as:

ICMV
β = ‖~v1‖2 + ‖~v2‖2 − β(‖~v1‖2 + ‖~v2‖2 − 〈~v1,~v2〉)

= (1− β)(‖~v1‖2 + ‖~v2‖2) + β‖~v1‖‖~v2‖ cos (~v1,~v2)

We will refer to this similarity function as the Vector-based ICM. Interestingly,
ICMV

β is equivalent to the inner product when β = 1, and it is equivalent to the Eu-
clidean distance when β = 2. In addition, ICMV

β is the only one that satisfies the three
similarity constraints (see Table 2 and formal proof in Section A.2):

Theorem 2
The Vector-based Information Contrast Model satisfies ANGULAR DISTANCE SIMILARITY
MONOTONICITY (Property 7), ORTHOGONAL EMBEDDING SIMILARITY MONOTONICITY
(Property 8), and EQUIDISTANT EMBEDDING SIMILARITY MONOTONICITY (Property 9)
whenever β ∈ (1, 2).

According to previous studies (Amigó and Gonzalo 2022), given a collection of doc-
ument pairs, the optimal parameter can be estimated as the ratio between the average
sum of Information Content and the average joint Information Content of all instance
pairs for which similarity must be estimated:

β̂ =
Avg

(
IC(x) + IC(y)

)
Avg

(
IC(x, y)

) (1)

In terms of the vector-based ICM:

β̂ =
Avg

(
‖~v1‖2 + ‖~v2‖2

)
Avg

(
‖~v1‖2 + ‖~v2‖2 − 〈~v1,~v2〉

) (2)

The estimator β̂ is designed to satisfy similarity formal properties, to give an aver-
age similarity value of zero (neutral), and also to give neutral similarity to document
pairs with average single and joint Information Content.
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5.4 Linguistic Structures

If the composition function satisfies SENSITIVITY TO STRUCTURE (all excepting FSum
and the global average), the linguistic structure and the order in which linguistic units
are composed affects the composite embedding. Regarding the literature, past linguistic
theories have discussed the sequential versus hierarchical processing of linguistic data
(Frank, Bod, and Christiansen 2012).

For instance, in a sequential right-to-left manner, an example sentence would be
structured as: Just (Robert (showed (up (for (the (party)))))). A left-to-right composition
would be: ((((Just Robert) showed) up) for) the) party. On the other hand, a hierarchical
structure could be: (Just Robert) ((showed up) (for (the party)))).

Many structural constraints have been granted to the development of languages
that may express and share intrinsic features of text semantics but also, some of these
attributions to languages may have just appeared as a simple-to-explain aggregation
of elements that do not relate directly to the Compositional Theorem of textual units.
Therefore, an order must be specified to decide which child node is the next one to
modify the parent via composition. In this work, we have explored a right-to-left and
left-to-right order; but more complex approaches, such as a rule-based system consid-
ering the type of relations in dependency parsing or constituent types, could also be
used. In this article, we consider three different linguistic structures. The first is the
sequential composition of the data in which composition is based on a temporal order,
assuming that the text is humanly understood either by the forward or backward com-
position/propagation of its components semantics. The second structure is constituency
parsing, in which the role of sequential and component relations is more balanced. A
third option is the dependency tree. In this case, sequential order plays a minor role
in the composition and dependencies among elements are what drive the main struc-
tural process.

6. Experiments

The purpose of the experiments carried out in this article is to study to what extent
the satisfaction of the described formal properties affects the effectiveness of meaning
representation models. In this sense, the combination of the Word2Vec embedding
function, the FInf combining function, and the ICM similarity, which satisfy all formal
properties, should equal or improve the rest of approaches. Our experiments have been
sensitive enough to capture the positive effect of the properties ANGULAR ISOMETRY,
COMPOSITION NEUTRAL ELEMENT, SENSITIVITY TO STRUCTURE, and EQUIDISTANT
EMBEDDING SIMILARITY MONOTONICITY.

Because most of the composition functions are not associative, they are sensitive to
the linguistic structure that guide the representation composition. That is, considering
different linguistic structures lead to different word groupings in the composition pro-
cess. In this article we compare the most common linguistic structures in NLP tools,
namely, bag of words (no structure), sequential, constituent, and dependency parsing.

Our main findings are:

1. In the absence of supervision, contextual embedding functions (BERT
and GPT-2) perform worse than non-contextual (static) word embedding
functions (Word2Vec). Note that, according to the literature, the
contextual embedding functions have limitations in terms of ANGULAR
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ISOMETRY due to the representation degradation problem (Ethayarajh
2019; Gao et al. 2019; Li et al. 2020; Wu et al. 2020; Cai et al. 2021).

2. Composition functions based on Information Content (FInd, FJoint, and
FInf) perform better than traditional composition functions (FSum, FAvg),
suggesting that COMPOSITION NEUTRAL ELEMENT and SENSITIVITY TO
STRUCTURE are relevant properties.

3. Using models trained on similarity tasks such as S-BERT improves
non-supervised similarity measures on tasks similar to those on which
they have been trained. However, the effectiveness decreases
substantially when applied to data of a different nature. This
corroborates the limitations of current contextual embedding models as
meaning representation methods in non-supervised scenarios
(ANGULAR ISOMETRY).

4. The ICM similarity function generalizes both the Euclidean distance and
the dot product (see Section 5.3). Unlike these, ICM satisfies
simultaneously ORTHOGONAL EMBEDDING SIMILARITY
MONOTONICITY and EQUIDISTANT EMBEDDING SIMILARITY
MONOTONICITY. The experiments show that ICM outperforms its
components in isolation. However, the cosine similarity, which simply
ignores the vector norms (ORTHOGONAL EMBEDDING SIMILARITY
MONOTONICITY), achieves similar or even better results than ICM.
Unfortunately, this suggests that our datasets are not sensitive to the
effect of the IC (i.e., vector norm) of the compared utterances.

5. Although considering structures improves the results (SENSITIVITY TO
STRUCTURE) with respect to bag of words-based approaches (sum, global
average), we did not observe any substantial and consistent difference
between linguistic structures (sequential, constituent, and dependency).

6.1 Evaluation Metric

Models of distributional representation have been evaluated in multiple ways through-
out the literature. In many cases, extrinsic evaluation is applied, studying the effective-
ness of the model for the performance of a particular task for which training data are
available. However, this evaluation criterion may be biased by the task itself and also
captures aspects that are not specific to the representation, such as behavior against
training samples.

Other evaluation metrics focus on the characteristics of the model as a representa-
tion system. Some of them focus on the sensitivity of the model such as non-conflation or
Demonstration of Multifacetedness (Wang et al. 2019). In view of the literature, it is not an
aspect that discriminates too much between models.

Another common criterion is analogy, which states that the representation model
must maintain a certain coherence in how the words relate to each other. That is, if
there is a relationship between two words, for example, France-Paris, then from Ger-
many, it should be possible to infer Berlin. Rogers, Drozd, and Li (2017) distinguish
between four types of analogies: inflectional morphology, derivational morphology,
lexicographic semantics, and encyclopedic. The Bigger Analogy Test Set contains 15
types of linguistic relationships (Gladkova and Drozd 2016). Analogy as an evaluation
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criterion was referenced when word embedding models became popular (Mikolov et al.
2013) and in subsequent work (Baroni, Dinu, and Kruszewski 2014; Levy and Goldberg
2014; Schnabel et al. 2015; Rogers, Drozd, and Li 2017; Wang et al. 2019). Furthermore,
analogy has been exploited in different NLP tasks such as word sense disambiguation,
search, and so forth (Rogers, Drozd, and Li 2017). However, this assessment criterion is
not appropriate in our context, since it focuses on lexical representation. Note that we
are interested in assessing the embedding compositionality.

On the other hand, contextuality metrics quantify the extent to which the representa-
tion model captures the context in which words occur. Some of the measures proposed
in the literature are the average cosine distance between representations of the same
word in different contexts, or between the representation of a sentence and the set of
its words. Ethayarajh (2019) studied the variance of principal components of the matrix
formed by the embeddings of a word in different contexts. However, this evaluation
criterion is also lexical-oriented.

Isotropy is another criterion for assessing representation. It is assumed that the
distribution of embeddings in the space must have certain a priori characteristics, that
is, the distribution of embeddings should look the same regardless of the reference
point. Some measures that capture this aspect are the distribution of scalar products
with the average vector (Mimno and Thompson 2017), the average dot product with
unit vectors (Mu and Viswanath 2018), the average distance to their nearest neighbor of
frequent versus infrequent terms (Li et al. 2020), or the average cosine distance between
embeddings (Cai et al. 2021). Isotropy is related to the capacity of the representation
model to use the full dimensional space. It has been shown to have some positive effect
on the effectiveness of representation models, but in this article we will focus on less
indirect aspects.

In our experiments, we will focus on isometry. That is, there must exist a similarity
function over the embedding space that correlate with the proximity of meanings.
Several authors directly compute the correlation between embedding cosine and lexical
similarity annotated by humans (Gladkova and Drozd 2016; Qiu et al. 2018; Wang et al.
2019). Some available lexical similarity datasets are Wordsim-353 (Finkelstein et al.
2001), MEN (Bruni, Tran, and Baroni 2014a), SimLex-999 (Hill, Reichart, and Korhonen
2015), or SimVErb-3500 (Gerz et al. 2016). There are also some variants in which instead
of graded similarity values, the embedding proximity is compared against synonyms or
term categories (Baroni, Dinu, and Kruszewski 2014). For instance, Mu and Viswanath
(2018) evaluated clustering algorithms over word representations and Cohenen et al.
clustered representations according to their sense and quantified the discriminative
power of distance to sense centroids (Mu and Viswanath 2018). Some word/concept
datasets are Almuhareb (2006), ESSLLI 2008 Distributional Semantic Workshop shared
task dataset (Baroni, Evert, and Lenci 2008), or the Batting test set (Baroni and Lenci
2010). Detecting an outlier in a term set is another isometry-based metric (Camacho-
Collados and Navigli 2016). Another approach consists of measuring the component-
wise correlation between word vectors from a word embedding model and manually
constructed linguistic word vectors in the SemCor dataset (Miller et al. 1994), that is,
Qvec (Tsvetkov et al. 2015).

But all the previous metrics are lexically oriented. Isometry can be extrapolated
to sentence representation via semantic text similarity annotations (Zhang et al. 2020;
Poerner, Waltinger, and Schütze 2020; Li et al. 2020; Yang et al. 2019). Note that testing
isometry is distinct from using textual similarity as an extrinsic task-oriented metric.
That is, a neural distributional model might not provide a match between representation
and meaning spaces (isometry), and yet provide very good results in supervised textual
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similarity prediction with training data. This is the case of BERT (Devlin et al. 2019). It
should also be noted that in our experiments, the term isometry is not entirely accurate
from a formal point of view, since both the semantic similarity itself and some similarity
functions (e.g., PMI, ICM) do not necessarily fulfill the properties of a metric space
(Amigó et al. 2020; Amigó and Gonzalo 2022). For simplicity, we will use this term in
the article to refer to our evaluation criterion.

In this article we will focus on the notion of non-supervised isometry, evaluating
the correspondence between embedding distances and meaning similarity of sentences
and paragraphs. This evaluation methodology checks simultaneously the suitability of
the embedding, composition, and similarity functions.

6.2 Datasets

We have selected different publicly available datasets that annotate the similarity scores
of two pieces of text based on a certain target.

STS. The most popular semantic similarity dataset, STS (Cer et al. 2017), corresponds
to the evaluation set from the corpus of English STS shared task data (2012–2017). It
contains 1,102 pairs of sentences annotated with their meaning similarity ranging from
0 to 5, with 0 being two completely dissimilar sentences and 5 being two completely
equivalent sentences. This dataset is composed of multiple subsets (MSRpar, MSRvid,
answer-answer, track5, and images).

SICK. In general, the STS dataset is oriented to ambiguity and lexical semantic proximity
rather than linguistic structures, and many sentence pairs consist of the substitutions of
terms with synonyms. Marelli et al. (2014) developed SICK, a dataset created from STS
specifically to test Compositional Distributional Semantic models given that the pairs
of sentences encode compositional knowledge.

DEF2DEF. A common feature of the above two corpora is that their sentence pairs tend
to have a high lexical overlap. In order to experiment on purely semantic proximity, we
have developed DEF2DEF, where the texts compared consist of definitions of words.
For this purpose, we take word pairs from the MEN Test Collection. MEN consists of
2,993 pairs of words annotated with their lexical-semantic similarity ranging from 0
to 50 (Bruni, Tran, and Baroni 2014b). We replace the words with their first definition in
the WordNet set of synsets, which corresponds to the most frequent use of the word and
assume that the semantic similarity between their respective definitions does not differ
greatly from the original annotations. To corroborate this assumption, we have carried
out a parallel annotation in which two human experts identify between two pairs of
definitions, the pair that has the highest similarity between its definitions; 88.5% of
the 200 annotated pairs matched the corresponding word similarities from the original
MEN corpus. We used the following steps to sample comparison pairs from MEN
corpus: (i) Define number of samples to annotate (200) and a relatedness difference
threshold (20). (ii) Extract pairs of words from the MEN corpus and their relatedness
score RS1. (iii) For each original pair of words, randomly select another pair of words
from the MEN corpus and their relatedness score RS2 such that abs(RS1 − RS2) ≥ 20.
Note that repeated pairs are avoided at this step. (iv) The new gold standard becomes
1 if RS1 > RS2, else 0. Hypothetically, word-level comparisons should match results
of definition level comparisons. The model performance in all previous datasets is
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evaluated in our experiments via the Pearson correlation between the predicted and
groundtruth similarities.

WORD2DEF. In all previous datasets, sentence pairs have a similar semantic speci-
ficity or Information Content; for instance, “short sentence” to “short sentence” or
“paragraph” to “paragraph” in STS and SICK datasets. In contrast, the MEN corpus
contains word pairs with similar semantic specificity. Following the methodology in-
troduced by Kartsaklis, Sadrzadeh, and Pulman (2012), we have built WORD2DEF, a
custom benchmark based on proximity between words and their definitions. A good
composition function should result in representations that are closer to the defined
words rather than the other alternatives (excluding synonyms and ambiguously defined
words acting as noise). Note that the candidate list includes words with a great deal of
diversity in terms of specificity. In order to produce positive and negative similarity
instances, we have followed a series of careful steps to avoid variants of the target
words, stopwords, multiwords, and so forth, that may introduce noise and deviate
the results: (i) Select the set of SINGLE words in the Word2Vec vocabulary (without
digits) that do not appear in the MEN dataset and have at least one WordNet synset
(80,058 tokens); (ii) Lemmatize the available words according to their grammatical
tagging (NOUN, VERB, ADVERB, and ADJECTIVE) (44,642 tokens); (iii) Filter out
those lemmas that are stopwords, or have no associated synset in Wordnet, or vector
in Word2Vec (43,469 tokens); (iv) Keep 30,000 random words from the filtered lemmas
(using a pre-defined seed for reproducibility purposes) (30,000 tokens); (v) Collect the
20,183 different words appearing in MEN; (vi) For each word in MEN, consider the
word and its corresponding definition as positive similarity instances (20,183 positive
instances). Thus, they are represented by a maximum similarity value of 1; (vii) For
each word in MEN, consider their corresponding definition (and we set a maximum
similarity among them) and 100 random tokens out of the 30,000 tokens batch collected
in step (4) as negative similarity samples (201,830 negative instances). In this second
case, they are represented by a similarity value of 0; and (viii) For each similarity
function, receiver operator characteristic (ROC) area under the curve (AUC) score is
computed taking the 0–1 ground truth labels and the similarity predictions as input.

6.3 Semantic Representation Systems in Comparison

This subsection briefly explains the reasons behind all considered instantiations of the
functions composing an ICDS representation system (see Section 5 for the theoretical
details and constraints of such systems). These components correspond to the embed-
ding π, composition � and the similarity function δ. Table 3 illustrates all possible
configuration set-ups that are considered in our experiments.

We consider both static (non-contextual) and contextual embedding functions. The
former is instantiated with Word2Vec representations, although other well-known al-
ternatives such as GloVe or FastText (Mikolov et al. 2018) could also apply. In addition,
the embedding function in the experiments is also instantiated by pre-trained contex-
tualized representation models based on Transformer Encoder/Decoder architectures:
BERT (Devlin et al. 2019) and GPT-2 (Brown et al. 2020). Following the suggestions given
by Ethayarajh (2019), we take the second layer in GPT-2. This author suggests that upper
layers of contextualizing models produce more context-specific representations.

We also include S-BERT (Reimers and Gurevych 2019) in the experiments. S-BERT
is a supervised BERT variant representation approach that provides embeddings at the
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Table 3
Configurations considered for the experiments.

Embedding π Composition � Linguistic structures Similarity δ

GPT-2 (Layer-2)
FAvg, FInd Sequential

(L2R and R2L)

Cosine

Dot product

ICMβ

Euclidean

FJoint, FInf

FSum, Max Pooling None

Unsupervised BERT
FAvg, FInd Sequential

(L2R and R2L)
FJoint, FInf

FSum, Max Pooling, CLS Token
NoneSupervised S-BERT Global Average

Word2Vec

FSum

FAvg, FInd Sequential, Constituents,

FJoint, FInf Dependency Tree

(L2R and R2L)

sentence level by re-training the model on SNLI and NLI annotated corpora (Bowman
et al. 2015), or even on STS training datasets.6 In terms of our theoretical framework,
S-BERT consists of the selected BERT version (BERT, distilBERT, RoBERTa. . . with re-
trained weights) as the embedding function π, followed by a simple composition
function � (vector global average). S-BERT and similar supervised approaches have
reported state-of-the-art results in semantic textual similarity, jointly performing the
processes of vector space projection and semantic composition. We are interested in
analyzing the relative performance of unsupervised and supervised BERT as well as in
determining how task-specific this fine-tuned model is.

Regarding the composition function �, in our experiments, we consider traditional
sum (FSum) and pairwise average (FAvg) operations, as well as three other configurations
of the Generalized Composition Function: FInd, FJoint, and FInf . In addition, with regard
to the BERT model, we consider max pooling7 and CLS token extraction8 as two alter-
natives to combine the contextualized token representations. All of these composition
functions are applied on top of all embedding functions except for S-BERT.

Note that S-BERT simply uses the global average on top of the BERT architecture as
a single composition function option.

Concerning the linguistic structures and composition order used in our experiments
(see Section 5.4), in the case of BERT and GPT-2, we consider the sequential structure
in both L2R and R2L directions. Note that Fsum, Max Pooling, Global Average, and CLS
token are composition criteria that do not comply with Property 6 (SENSITIVITY TO

6 These datasets were created to identify a certain semantic similarity/relation between pairs of sentences.
7 Max Pooling is a technique commonly used in Computer Vision to reduce the dimension of the image

while maintaining the spatial relation of pixels as much as possible. In this NLP operation, we apply it
over the dimensions of the token embeddings.

8 CLS token, also known as Classification Token, is a token added at the beginning of each text input
during the pre-processing step to be used in classification tasks adopting the role of representing the
whole text.
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Table 4
Example of the resulting flattened linguistic structures.

Sequential [‘Just’, ‘Robert’, ‘showed’, ‘up’, ‘for’, ‘the’, ‘party’]

Constituents [[‘Just’, ‘Robert’], [‘showed’, ‘up’, [‘for’, [‘the’, ‘party’]]]]

Dependency (L2R) [‘showed’, [‘Robert’, ‘Just’], ‘up’, [‘party’, ‘for’, ‘the’]]

Dependency (R2L) [[‘Just’, ‘Robert’], ‘up’, [‘for’, ‘the’, ‘party’], ‘showed’]

STRUCTURE). Therefore, the structure does not affect the composite representation. In
the case of static embeddings (Word2Vec), we use sequential, constituency, and depen-
dency parsing. In order to extract the proper linguistic structures from the whole set
of texts, we used the Stanford Core NLP API, including both tokenizer and parsers
for extracting constituent and dependency trees. These tree representations were later
flattened into nested lists following a right-to-left (R2L) or left-to-right (L2R) direction
for a more efficient computation of the compositions. A visualization of such flattening
output is presented in Table 4.

Finally, the similarity functions included in our experiments are cosine similarity,
dot product, ICMβ, and Euclidean similarity. Their definitions, correspondences, and
formal properties are described in Section 5.

6.4 Results

For clarity of exposition, the complete table of results will be available in the Github
repository.9 This section shows aggregated data in bar charts that allow us to analyze
the results and draw conclusions. The most important empirical results that we have
been able to derive from the experiments are described below.

6.4.1 Contextual vs. Static Embedding Functions. According to previous studies
(Ethayarajh 2019; Gao et al. 2019; Li et al. 2020), although Contextual Neural Language
Models such as BERT and GPT have a high prediction power as Language Models, they
do not distribute words isometrically. That is, there is no isometry between the angular
position of utterance embeddings and their expected semantic similarity according to
humans (ANGULAR ISOMETRY). Consequently, applying these embedding functions
may affect the effectiveness of similarity functions, at least in a non-supervised represen-
tation oriented experiment such as this. We can observe this effect in our experiments.

Figure 6 shows the Pearson correlation between estimated and real similarities for
the datasets STS, SICK, and DEF2DEF. In this experiment, we compare the performance
of embedding functions. In every approach, we apply the sequential structure SEQ
(selecting the best processing direction, L2R or R2L, in each case), the best composition
function (within Fsum, Favg, Find, Fjoint, and Finf), and cosine as similarity functions. In

9 Source code, data used in the experiments, and the complete table of results are publicly available to
encourage reproducible research: https://github.com/alarca94/ICDS.
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Figure 6
Contextual vs. Static Embedding function performance in terms of Pearson correlation across
several semantic similarity prediction datasets using the cosine similarity, a sequential structure,
and the best configuration of the remaining components.

Table 5
Contextual vs. Static Embedding function performance in terms of ROC-AUC score at the
WORD2DEF dataset using the cosine similarity, a sequential structure, and the best
configuration of the remaining components.

SEQ + COS
GPT-2 BERT BERT (CLS) S-BERT W2V
0.4713 0.6609 0.5133 0.8841 0.9589

the case of BERT-CLS and S-BERT, the linguistic structure and the composition function
is given directly by the Neural Language Model. Table 5 shows the result of the same
experiment over the WORD2DEF test set and ROC-AUC as an evaluation measure.

As Table 5 and Figure 6 show, unsupervised contextual embedding functions
(pre-trained BERT and GPT-2) achieve a lower correlation than static embeddings
(Word2Vec) in every dataset. For example, differences of around 50% are observed
between BERT and Word2Vec in STS-MSRvid or between GPT-2 and Word2Vec in
DEF2DEF. In fact, the results obtained by a two-tailed Steiger’s test (Steiger 1980)
show a significant statistical difference when comparing Word2Vec to GPT-2 and BERT
with a p-value below 2% for all datasets except STS-MSRpar and STS-answer-answer.
The correlation values obtained for BERT using the CLS field are even lower and the
statistical test shows a significant difference with respect to Word2Vec in all datasets
with a p-value of 0%. The differences between contextual and static embedding are more
evident in the WORD2DEF dataset where a word is compared to a complete sentence
(Table 5).

On the other hand, contextual embeddings perform better when applying a super-
vised transfer learning from paraphrasing datasets. This is the case of S-BERT, whose
correlation value exceeds those obtained with Word2Vec word embeddings. Neverthe-
less, the statistical test is only able to detect a significant improvement with respect to
static embeddings for the STS-images dataset where, similar to other STS subsets and
the SICK dataset, sentence pairs are comparable and words overlap. On the contrary,
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S-BERT falls behind Word2Vec performance in the DEF2DEF corpus with a p-value of 0.
In the case of WORD2DEF, S-BERT achieves an ROC-AUC score of 0.88 while Word2Vec
achieves 0.94. Consistent with previous studies (Raffel et al. 2020; Yogatama et al.
2019), this result suggests that transferring learning from supervised tasks can bias the
system performance.

In sum, the experiments suggest that static embedding functions are more effective as
text representation models in nonsupervised scenarios. In our opinion, this is related to
the lack of ANGULAR ISOMETRY due to the representation degradation problem in
contextual embedding functions.

6.4.2 Composition Functions. In order to analyze the performance of the composition
functions, we evaluate static embeddings (Word2Vec) with the best linguistic structure
for each dataset and cosine similarity. Figure 7 and Table 6 show the results.

First, we observe that in general, Favg performs worse than other functions. In
particular, Steiger’s method on Pearson correlations indicates that Favg is statistically
outperformed by Find, Finf, and Fjoint with a p-value below 3% on 5 out of 7 datasets
with the exception of STS-MSRvid and STS-answer-answer. This finding suggests that
COMPOSITION NEUTRAL ELEMENT is a relevant property (see Table 2). Note that Favg
has the counter-intuitive effect of reducing the magnitude (Information Content) of the
embedding as we add information by compositing it with other shorter vectors.

Figure 7
Composition function performance in terms of Pearson correlation across several semantic
similarity prediction datasets using static embeddings, cosine similarity, and the best
configuration of the remaining components.

Table 6
Composition function performance in terms of ROC-AUC score at the WORD2DEF dataset using
static embeddings, cosine similarity, and the best configuration of the remaining components.

W2V + BEST STRUCTURE + COS
FAVG FSUM FIND FJOINT FINF

0.9511 0.9589 0.9595 0.9597 0.9596
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In the datasets DEF2DEF and WORD2DEF, without word overlap between sen-
tences, Fsum obtains similar results to the non-associative functions Find, Fjoint, or Finf.
These results suggest that the SENSITIVITY TO TEXT STRUCTURE in those datasets is not
crucial when composing embeddings. However, in the case of sentence-level datasets
with a high overlap (SICK and 3 out of 6 STS datasets), the structure-sensitive composite
embedding functions, Find, Fjoint, and Finf outperform Fsum with a p-value close to 0%.
In sum, as can be guessed, satisfying SENSITIVITY TO TEXT STRUCTURE in the compo-
sition function is especially relevant when comparing sentences with high word overlap.

We do not find a consistent and substantial difference across datasets between Finf
and the parameterizations at the boundaries of the theoretical area in which COMPO-
SITION NORM LOWERBOUND and COMPOSITION NORM MONOTONICITY are satisfied
(see Table 2). However, it should be noted that Fjoint and Find are just at the boundaries
(see Section 5.2).

6.4.3 Similarity Functions. In the previous analysis, the similarity function was fixed
to be the cosine similarity in order to consistently explore the composition function
behavior. Now, we explore the alternative similarity functions. Table 7 and Figure 8
contain the average performance across datasets for S-BERT and Word2Vec with differ-
ent composition functions. In the case of static embedding (Word2Vec), we selected the
best linguistic structure per dataset. Note that in order to average Pearson correlations,
scores are transformed with Fisher Z-transformation, averaged and transformed back
to the original space.

First, the results provide evidence for the importance of satisfying the formal con-
straints ORTHOGONAL EMBEDDING SIMILARITY MONOTONICITY and EQUIDISTANT
EMBEDDING SIMILARITY MONOTONICITY. Note that ICM falls within the limits of the
theoretical range corresponding to the dot product (ICM with β = 1) and Euclidean
distance (ICM with β = 2). In all static embedding cases, ICM outperforms the dot
product and Euclidean distance. To be more precise, when ICM is paired with Finf so
that all considered properties are satisfied, a statistical significant difference is achieved
in all 7 datasets with respect to dot product and 4 datasets when comparing it against
Euclidean distance.

However, the cosine distance obtains greater results than ICM with the theoretically
estimated parameter with statistical significance in 3 to 4 datasets out of the 7 datasets
included in Figure 8, depending on the composition function used to compute final

Table 7
Similarity function performance in terms of ROC-AUC score at the WORD2DEF dataset per
composition function on static embeddings after selecting their best configuration per dataset.
S-BERT is added for comparison purposes (contextual embeddings and state-of-the-art
performance).

COS DOT ICM EUC
S-BERT 0.8840 0.8819 0.9447 0.8837
W2V + FAVG 0.9511 0.9340 0.9550 0.7643
W2V + FIND 0.9595 0.9179 0.9586 0.6722
W2V + FJOINT 0.9597 0.9320 0.9617 0.7465
W2V + FINF 0.9596 0.9253 0.9605 0.7070
W2V + FSUM 0.9589 0.8926 0.9519 0.5981
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Figure 8
Similarity function average performance in terms of Pearson correlation over all presented
semantic similarity datasets per composition function on static embeddings after selecting their
best configuration per dataset. S-BERT is added for comparison purposes (contextual
embeddings and state-of-the-art performance).

embeddings. Based on our embedding space interpretation (see Section 3.1), this result
suggests that the Information Content or specificity of the compared texts are not crucial
in our semantic similarity datasets. In other words, the annotations in at least these
textual similarity datasets are more focused on angular distance (pragmatic similarity)
than vector magnitudes (literal similarity which takes into account the amount of infor-
mation provided by texts).

The difference between both similarity functions is really subtle in the case of
WORD2DEF lying on both directions depending on which composition function is
presented, and thus no clear conclusions can be drawn. One possible reason why
both similarities are on par with each other in this scenario when previous datasets
presented significant differences could be the increasing importance of ORTHOGONAL
EMBEDDING SIMILARITY MONOTONICITY when specificity between each pair of texts
differs in larger quantities.

6.4.4 Linguistic Structures. One of the premises of this research work is the fact that
following a structure in the composition stage of an ICDS representation system should
benefit performance with respect to traditional orderless baselines such as the sum of
vectors. This statement was proven to be true in Section 6.4.2 where the sum operation
was outperformed by all other unsupervised composition functions that followed a
certain structure. The next experiment aims to investigate whether there are signifi-
cant performance changes when alternating from one linguistic structure to another
among all of the options presented in Section 5.4. The corresponding results for each
structure across datasets are shown in Figure 9, fixing the model configuration to
Word2Vec as the representation system, Finf as the composition function, and cosine as
the similarity function. The ROC-AUC results for the dataset WORD2DEF are 0.95847,
0.95967, and 0.95941 for the sequential structure, syntactic constituents, and dependency
trees, respectively.
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Figure 9
Similarity prediction power of our main proposed baseline (Word2Vec as the representation
system, FInf as the composition function and cosine as the similarity function) in terms of
Pearson correlation across all presented semantic similarity datasets with respect to the selected
linguistic structure to follow during composition.

Unfortunately, no substantial difference can be found among the tested linguistic
structures. The effect of each linguistic structure depends strongly on the dataset and
task. For instance, both DEP and SEQ achieve a significant statistical difference with
respect to CONST at STS-MSRvid with a p-value below 5%; but SEQ is outperformed
significantly by DEP and CONST at SICK with a p-value of 0% and both DEP and
CONST are significantly outperformed by SEQ, with a p-value below 5% at STS-answer-
answer. No other significant differences can be extracted from the statistical analysis for
the other 4 datasets. Nonetheless, the importance and benefits of following a structure
instead of associative composition functions has been illustrated previously.

7. Conclusions

In this article, we have formalized the concept of an Information Theory–based Com-
positional Distributional Semantics as a tuple of three functions, namely, embedding,
composition, and similarity. The main contribution is to have established a bridge
between representation space and Information Theory, not only for embeddings but
also for composition and similarity functions. The proposed framework includes a set
of nine formal constraints based on Information Content boundaries and monotonicity
in embedding, composition, and similarity functions.

Regarding embedding function, our experiments show that adding embeddings
from internal layers of contextual neural networks such as GPT-2 or BERT does not
outperform the use of static embeddings when performing a textual semantic com-
position process, at least in terms of the semantic similarity prediction. These results
are consistent with the Representation Degradation Problem identified in the literature
(Ethayarajh 2019; Gao et al. 2019; Li et al. 2020). It is true that the S-BERT model based on
supervised transfer learning manages to increase the effectiveness in certain datasets.
However, its effectiveness decreases in problems that are not similar to the tasks on
which it has been trained, as in the case of word-definition comparison.
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Our formal analysis shows that popular, well-known baseline composition and sim-
ilarity functions do not satisfy all the constraints simultaneously. In order to overcome
this formal limitation, we have defined two parameterizable approaches that gener-
alize standard composition (sum) and similarity (Euclidean distance or dot product)
functions. Our theoretical study shows that these functions satisfy all constraints within
certain parameter ranges. Our empirical study suggests that the generalized composi-
tion function within the theoretical parameter range outperforms standard functions
such as the sum or the global average.

The same occurs in the case of the similarity functions, where the Euclidean distance
or the scalar product fall outside the range. However, our results also show that the
cosine distance, while not sensitive to the vector norm (Property 8, ORTHOGONAL
EMBEDDING SIMILARITY MONOTONICITY), is a robust similarity estimate. Accord-
ing to our embedding space interpretation, this means that the similarity annotations
in our datasets are more closely related with the pragmatic context (i.e., vector direc-
tion) than with literal utterance similarity. That is, it does not take into account how
much information the message provides in relation to its meaning in context (i.e.,
vector norm).

Finally, according to our experiments, the election of linguistic structures does not
affect the performance substantially. Sequential text processing achieves results similar
to those of more complex structures. However, the results also show that considering
structure (sequential, constituents, or dependencies) outperforms those approaches that
do not consider word order (i.e. sum, or global average of embeddings). That is, we
have not been able to contribute new results to the discussion between the sequen-
tial or hierarchical nature of language, although we have been able to confirm that
considering structures is more effective than representing texts as a bag of words. It
should be noted that this effect becomes tangible in the case of similarity between
sentences with some overlap of words (STS and SICK corpora), whereas in our defini-
tion vs. definition or definition vs. word comparison, we have not managed to observe
this effect.

In view of our analysis, our recommendation for unsupervised text representation
is to combine static (non-contextual) embeddings following a sequential structure using
the proposed composition function Finf, and using ICM with either the estimated β
value or cosine as a similarity function. Note that this recommendation applies only
to non-supervised scenarios. The literature has demonstrated repeatedly the predictive
power of contextual models in supervised tasks.

As future work we can identify several research lines. Firstly, to address the problem
of the degeneration of representation in contextual approaches. This direction has al-
ready been explored in multiple studies (Ethayarajh 2019; Gao et al. 2019; Li et al. 2020).
Also, in line with previous work, we see the need to design semantic similarity datasets
over more heterogeneous cases and scenarios when comparing general purpose rep-
resentation models. A third line of work is the development of datasets that capture
the effect of specificity and the amount of information on the estimation of semantic
similarity between textual representations, as has been observed in experiments within
cognitive sciences (Tversky 1977; Amigó et al. 2020). A fourth and perhaps the most
ambitious line of research is to close the circle of Neuro-Symbolic Artificial Intelligence in
the context of distributional semantics. In this article we have addressed the represen-
tation phase in which symbolic information (text) is translated into a continuous space.
The pending step is extraction, in which the representation in this continuous space is
translated into a symbolic domain. There are several authors who have focused on this
challenge (Sarker et al. 2021).
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Appendix A. Proofs

A.1 Proof for Theorem 1

The generalized composition function is defined as

Fλ,µ(~v1,~v2) = ~v1 + ~v2
‖~v1 + ~v2‖

·
√
λ(‖~v1‖2 + ‖~v2‖2)− µ〈~v1,~v2〉

If ‖~v2‖ = 0 then Fλ,µ(~v1,~v2) = ~v1
‖~v1‖ ·

√
λ(‖~v1‖2) = ~v1

‖~v1‖ ·
√
λ‖~v1‖, which is equal to ~v1

whenever λ = 1, satisfying COMPOSITION NEUTRAL ELEMENT. Also, if ‖~v1‖ = ‖~v2‖ =
‖~v3‖ then

‖Fλ,µ(~v1,~v2)‖ =
√
λ(‖~v1‖2 + ‖~v1‖2)− µ〈~v1,~v2〉 = ‖~v1‖ ·

√
2λ− µ · cos (~v1,~v2)

Therefore, the composite embedding magnitude is inversely monotonic regarding the
cosine whenever µ > 0, satisfying COMPOSITION NORM MONOTONICITY. So, at this
point, we can state the constraints λ = 1 and µ > 0.

Let us analyze the COMPOSITION NORM LOWERBOUND property. The square of the
composite embedding magnitude (information content) is ‖Fλ,µ(~v1,~v2)‖2 = λ(‖~v1‖2 +

‖~v2‖2)− µ〈~v1,~v2〉 = λ(‖~v1‖2 + ‖~v2‖2)− µ(‖~v1‖ · ‖~v2‖ · cos (~v1,~v2)).
Given that λ = 1, µ > 0, and cos (~v1,~v2) ≤ 1, we can assert that ‖Fλ,µ(~v1,~v2)‖2 ≥

‖~v1‖2 + ‖~v2‖2 − µ(‖~v1‖ · ‖~v2‖). If the magnitude of the composite embedding equals the
magnitude of the maximum component then

‖~v1‖2 + ‖~v2‖2 − µ‖~v1‖‖~v2‖ = max(‖~v1‖, ‖~v2‖)2

⇐⇒ max(‖~v1‖, ‖~v2‖)2 + min(‖~v1‖, ‖~v2‖)2 − µ‖~v1‖‖~v2‖ = max(‖~v1‖, ‖~v2‖)2

⇐⇒ µ =
min(‖~v1‖, ‖~v2‖)2

‖~v1‖‖~v2‖
=

min(‖~v1‖, ‖~v2‖)
max(‖~v1‖, ‖~v2‖)

Therefore ‖Fλ,µ(~v1,~v2)‖ ≥ max(‖~v1‖, ‖~v2‖) and VECTOR MAGNITUDE COMPOSITION

MONOTONICITY is satisfied whenever µ ∈
(

0, min(‖~v1‖,‖~v2‖)2

‖~v1‖‖~v2‖

]
.

Finally, let us analyze the Sensitivity to Structure property. Because ‖~v1‖ = ‖~v2‖ =
‖~v3‖ > 0 and cos (~v1,~v2) = cos (~v1,~v3) = cos (~v2,~v3) > 0, then the proposition (~v1 �
~v2)� ~v3 6= ~v1 � (~v2 � ~v3) fits at least if their unit vectors are different. Therefore, we only
need to check that

~v3 +
~v1+~v2
‖~v1+~v2‖∥∥∥∥~v3 +
~v1+~v2
‖~v1+~v2‖

∥∥∥∥ 6=
~v1 +

~v2+~v3
‖~v2+~v3‖∥∥∥∥~v1 +
~v2+~v3
‖~v2+~v3‖

∥∥∥∥
Given that the three vectors share the same norm and relative angular distance (cosine),
we can assert that ‖~v2 + ~v3‖ = ‖~v1 + ~v2‖ and∥∥∥∥~v3 +

~v1 + ~v2
‖~v1 + ~v2‖

∥∥∥∥ =

∥∥∥∥~v1 +
~v2 + ~v3
‖~v2 + ~v3‖

∥∥∥∥
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Therefore, we only need to prove that ~v3 +
~v1+~v2

c 6= ~v1 +
~v2+~v3

c , for which it is a sufficient
condition that it is fulfilled at least for one of the vector components. That is to say,

∃i
(

v3i +
v1i

+v2i
c 6= v1i +

v2i
+v3i
c

)
. This is equivalent to ∃i (c · v3i + v1i + v2i 6= c · v1i + v2i +

v3i ), which is true whenever (v3i 6= v1i ), since the property states as a condition that the
cosine between vectors is greater than zero as well as their norms. Therefore, we can
affirm that (v3i 6= v1i ) for at least one component of the vector, so it is demonstrated that
the composition function satisfies the SENSITIVITY TO STRUCTURE property.

A.2 Formal Proof for Theorem 2

The embedding based ICM metric is defined as

ICMV
β = (1− β)(‖~v1‖2 + ‖~v2‖2) + β‖~v1‖‖~v2‖ cos (~v1,~v2)

In order to satisfy ANGULAR ISOMETRICITY, the expression must be monotonic
regarding cos (~v1,~v2) and, therefore, β must be strictly greater than zero. In order to
satisfy COMPOSITION NORM MONOTONICITY, ICMV

β must decrease with ‖~v1‖ and ‖~v2‖
when cos (~v1,~v2) = 0. Therefore β > 1.

Let us consider SENSITIVITY TO STRUCTURE. Let ~v = (x1, .., xn) and ~ε = (ε1, ..,εn).
Then

ICMV
β (~v,~v + ~ε)=‖~v‖2 +‖~v + ~ε‖2−β

(
‖~v‖2 +‖~v + ~ε‖2−〈~v, ~ε〉

)
=

=‖~v‖2 +‖~v + ~ε‖2−β
∑

i
(x2

i + (xi +εi )2− xi (xi +εi ))=‖~v‖2 +‖~v + ~ε‖2−β
∑

i
(x2

i + x2
i +ε2

i + 2xiεi− x2
i − xiεi ))=

= ‖~v‖2 +‖~v + ~ε‖2−β
∑

i
(x2

i +ε2
i + xiεi )) = ‖~v‖2 +‖~v + ~ε‖2−β

∑
i

1
2 (x2

i +ε2
i ) +

∑
i

1
2 (x2

i +ε2
i + 2xiεi )) =

= ‖~v‖2 +‖~v + ~ε‖2−β
(

1
2‖~v‖

2 + 1
2‖~ε‖

2 + 1
2‖~v + ~ε‖2

)

We remove the constant 1
2‖~ε‖2. We obtain (‖~v‖2 + ‖~v + ~ε‖2 − β

(
1
2‖~v‖2 + 1

2‖~v + ~ε‖2)
)
=

(1− β
2 )(‖~v‖2 + ‖~v + ~ε‖2). Assuming that ‖~v‖ >> ‖~ε‖ then ‖~v + ~ε‖2 is monotonic re-

garding ‖~v‖. Therefore, the expression (1− β
2 )(‖~v‖2 + ‖~v + ~ε‖2) is monotonic regarding

‖~v‖whenever β < 2, satisfying SENSITIVITY TO STRUCTURE.
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