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Abstract

Event Temporal Relation Classification (ETRC) is crucial to natural language understanding. In
recent years, the mainstream ETRC methods may not take advantage of lots of semantic informa-
tion contained in golden temporal relation labels, which is lost by the discrete one-hot labels. To
alleviate the loss of semantic information, we propose learning Temporal semantic information of
the golden labels by Auxiliary Contrastive Learning (TempACL). Different from traditional con-
trastive learning methods, which further train the PreTrained Language Model (PTLM) with un-
supervised settings before fine-tuning on target tasks, we design a supervised contrastive learning
framework and make three improvements. Firstly, we design a new data augmentation method
that generates augmentation data via matching templates established by us with golden labels.
Secondly, we propose patient contrastive learning and design three patient strategies. Thirdly we
design a label-aware contrastive learning loss function. Extensive experimental results show that
our TempACL effectively adapts contrastive learning to supervised learning tasks which remain
a challenge in practice. TempACL achieves new state-of-the-art results on TB-Dense and MA-
TRES and outperforms the baseline model with up to 5.37%F1 on TB-Dense and 1.81%F1 on
MATRES.

1 Introduction

The temporal relations of events are used to describe the occurring sequence of events in an article.
Therefore understanding the temporal relations of events in articles is useful for many downstream tasks
such as timeline creation (Leeuwenberg and Moens, 2018), generating stories (Goldfarb-Tarrant et al.,
2020), forecasting social events (Jin et al., 2021), and reading comprehension (Ning et al., 2020). Hence,
the ETRC task is an important and popular natural language understanding research topic among NLP
community.

The ETRC task is to determine the occurrence sequence of a given event pair. The context of the event
pair is usually given to aid judgment. Ning et al. (2019) first encoded the event pairs into embedded
representations and then used fully connected layers as a classifier to generate confidence scores for each
category of temporal relations. All related works of the NLP community since then have followed the
classification view: classifying the embedded representations. Naturally, we can encode the context and
events into a better embedding space in which the different relations are distinguished well, to get better
classification results.

Traditionally, all recent works use one-hot vectors to represent golden temporal relation labels in the
training stage. However, the one-hot vector reduces the label with practical semantics to the zero-one
vector. It makes the embedded representations extracted by the ETRC models waiting for classifying be
the similarities of the instances with the same label. But, the similarities are not equal to the label seman-
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tics, and lead to arbitrary prediction and poor model generalization, especially for confused instances. In
brief, the one-hot vectors which represent temporal relation categories lose much semantic information.

To cope with the loss of semantic information in golden labels, we propose to learn the lost semantic
information by contrastive learning, which is well confirmed and most competitive method for learning
representations under unsupervised settings, so that the ETRC model can obtain better event representa-
tions. However, effectively adapting contrastive learning to supervised learning tasks remains a challenge
in practice. General methods such as (Fang et al., 2020), which continue to train the PTLM model using
unsupervised contrastive learning on the input texts (without labels) from the target task before fine-
tuning, apply contrastive learning to supervised representation learning mechanically. They discard the
category information in the process of further training. In the supervised ETRC task, we want the event
pair representations with the same category to be as close as possible without collapsing. But direct ap-
plication of the unsupervised contrastive learning loss function would prevent them from getting closer,
because it discard the category information. It’s an inherent problem of self-supervised contrastive learn-
ing. So the standard contrastive learning is not natural for the supervised ETRC task. To solve this
problem we designed label-aware contrastive learning loss and design a new contrastive learning frame-
work. Additionally, we argue that we can do contrastive learning in the intermediate layers of the PTLM
as same as the last layer simultaneously. In a cascade structure, a change in previous layers affects the
subsequent layers and continuous positive changes will make the learning process easier. Hence, we
propose patient contrastive learning and design three patient strategies.

Overall, we propose TempACL: Firstly, we manually construct templates based on the semantics of
labels and get augmentation sentences by matching the labels of instances. Secondly, we train the encoder
of key samples which are necessary for contrastive learning by the augmentation datasets established by
the ETRC datasets and the augmentation sentences. Thirdly, we jointly train the ETRC model with cross
entropy loss and label-aware contrastive learning loss using a patient contrastive learning strategy.

The main contributions of this paper can be summarized as follows:

• We propose learning the lost semantic information in golden labels by contrastive learning, and then
design TempACL, a supervised contrastive learning framework based on a new data augmentation
method designed by us. To our knowledge, we are the first to propose using contrastive learning on
the ETRC task.

• In order to make our TempACL achieve better performance, we design label-aware contrastive
learning loss and patient contrastive learning strategy.

• We demonstrate the effectiveness of our TempACL on TB-Dense and MATRES datasets. Our
TempACL outperforms the current best models with up to 2.13%F1 on TB-Dense and 1.26%F1 on
MATRES and outperforms the baseline model with up to 5.37%F1 on TB-Dense and 1.81%F1 on
MATRES.

2 Related work

2.1 Event Temporal Relation Classification

Since the birth of pre-trained language models, researchers have mainly used them to encode event
representations and design many new methods based on them. Wang et al. (2020) propose a JCL method
that makes the classification model learn their designed logical constraints within and across multiple
temporal and subevent relations by converting these constraints into differentiable learning objectives.
Zhou et al. (2021) propose the CTRL-PG method, which leverages the Probabilistic Soft Logic rules
to model the temporal dependencies as a regularization term to jointly learn a relation classification
model. Han et al. (2021) propose the ECONET system, which further trains the PTLM with a self-
supervised learning strategy with mask prediction and a large-scale temporal relation corpus. Zhang
et al. (2021) propose the TGT network that integrates both traditional multi-head self-attention and a
new temporal-oriented attention mechanism and utilizes a syntactic graph that can explicitly find the
connection between two events. Tan et al. (2021) propose the Poincaré Event Embeddings method which
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encodes events into hyperbolic spaces. They argue that the embeddings in the hyperbolic space can
capture richer asymmetric temporal relations than the embeddings in the Euclidean space. And they also
proposed the HGRU method which additionally uses an end-to-end architecture composed of hyperbolic
neural units, and introduces common sense knowledge (Ning et al., 2019).

All of the above methods use the one-hot vector and lose the semantic information of the golden label.
To take advantage of the missing semantic information, we make the target ETRC model learn from them
via contrastive learning.

2.2 Contrastvie Learning

Contrastive learning aims to learn efficient representations by pulling semantically close neighbors to-
gether and pushing non-neighbors away (Hadsell et al., 2006). In recent years, self-supervised contrastive
learning and supervised contrastive learning have attracted more and more researchers to study them.

Self-Supervised Contrastvie Learning. In computer vision (CV), Wu et al. (2018) propose Memory-
Bank, which maintain a large number of representations of negative samples during training and update
negative sample representations without increasing batch size. He et al. (2020) propose MoCo, which
designs the momentum contrast learning with two encoders and employs a queue to save the recently
encoded batches as negative samples. Chen et al. (2020) proposed the SimCLR which learns represen-
tations for visual inputs by maximizing agreement between differently augmented views of the same
sample via a contrastive loss. Grill et al. (2020) propose BYOL, which uses asymmetric two networks
and discards negative sampling in self-supervised learning. In Natural Language Processing (NLP), Yan
et al. (2021) propose ConSERT, which has a similar model structure to SimCLR, except that ResNet is
replaced by Bert and the mapping header is removed. And they also propose multiple data augmentation
strategies for contrastive learning, including adversarial attack, token shuffling, cutoff and dropout.

Supervised Contrastvie Learning. Khosla et al. (2020) extend the self-supervised contrastive ap-
proach to the fully-supervised setting in the CV domain, and take many positives per anchor in addition
to many negatives (as opposed to self-supervised contrastive learning which uses only a single positive).
Gunel et al. (2020) extends supervised contrastive learning to the NLP domain with PTLMs.

Different from ConSERT we design a new data augmentation method based on templates in our con-
trastive learning framework. And different from Khosla’s work, we design a new supervised contrastive
loss which still uses only a single positive but does not treat the sentence representations with the same
label as negative examples.

3 Our Baseline Model

Our baseline model is comprised of an encoder and a classifier. We use RoBERTa (Liu et al., 2019) as our
encoder and use two fully connected layers and a tanh activation function between them as our classifier.
Recently, most of the related works use RoBERTa as an encoder, because RoBERTa can achieve better
results on the ETRC task than BERT in practice.

Each instance is composed of an event temporal triplet t (i.e. ( < e1 >, < e2 >, r ), where < e1 >
and < e2 > are event mentions and r is the temporal relation of the event pair. ) and the context s of the
events which may be a single sentence or two sentences.

We first tokenize the context and get a sequence of tokens X[0,n) with length n. Then we feed the X[0,n)

into RoBERTa. One event mention may correspond to multiple tokens, so we send the token embeddings
corresponding to these tokens to an average pooling layer to get the final event representation ei. Next, we
combine e1 and e2 into a classification vector e1 ⊕ e2, where ⊕ is used to denote concatenation. Finally,
we feed the classification vector into the classifier followed by a soft-max function to get confidence
scores for each category of temporal relations.

4 Self-Supervised Contrastive Learning

Contrastive learning is learning by pulling similar instance pairs closer and pushing dissimilar instance
pairs farther. The core of self-supervised contrastive learning is to generate augmented examples of
original data examples, create a predictive task where the goal is to predict whether two augmented
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Figure 1: Joint training with patient contrastive learning. We name the PLTM which encodes positive
and negative key samples as Encoder K and the PLTM used for ETRC as Encoder Q.

Figure 2: Overall process of TempACL

examples are from the same original data example or not, and learn the representation network by solving
this task. He et al. (2020) formulate contrastive learning as a dictionary look-up problem and propose an
effective contrastive loss function LCL with similarity measured by dot product:

LCL = − log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

{K−} exp (q · k−/τ)
(1)

where q is a query representation, k+ is a representation of the positive (similar) key sample, k− are
representations of the negative (dissimilar) key samples, K− is a negative key samples set, and τ is a
temperature hyper-parameter. He et al. (2020) also propose maintaining the dictionary as a queue of data
samples. It allows contrastive learning to reuse the previous batch of key samples so that we can increase
the number of negative samples without increasing the batch size, thus improving the performance of the
model. The dictionary size is a flexible hyper-parameter. The samples in the dictionary are progressively
replaced. The current batch is enqueued to the dictionary, and the oldest batch in the queue is removed.
In this paper, we follow this part of their work and transfer it to the supervised ETRC task.

5 TempACL Approach

In this section, we introduce our TempACL approach in details and draw the overall process of TempACL
in Figure 2. TempACL aims to encoder semantic information of golden temporal relation labels and uses
contrastive learning to make the baseline model extract better event representations. Hence, we first train
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Temporal Relation Templates
AFTER∗ the beginning of the event of < e1 > is after the end of the event of < e2 >.
BEFORE∗ the end of the event of < e1 > is before the beginning of the event of

< e2 >.
INCLUDES the beginning of the event of < e1 > is before the beginning of the event

of < e2 > and the end of event of < e1 > is after the end of the event of
< e2 >.

IS INCLUDED the beginning of the event of < e1 > is after the beginning of the event of
< e2 > and the end of event of < e1 > is before the end of the event of
< e2 >.

VAGUE∗ the temporal relation between the event of < e1 > and the event of < e2 >
is vague.

SIMULTANEOUS∗ the event of < e1 > and the event of < e2 > have the same beginning and
end time.

Table 1: Templates. All the six temporal relation labels are in TB-Dense and ∗ indicates the temporal
relation label also exists in MATRES.

Encoder K used for encoding semantic information of golden temporal relation labels, and then jointly
train the baseline model with auxiliary contrastive learning via the label-aware contrastive learning loss
function and a patient strategy. Specially, we fix the parameters of the Encoder K in the joint training
stage.

5.1 Training Encoder K
First of all, we need to establish templates. In order to make the positive key samples encoded by Encoder
K contain as much and as detailed semantic information of golden temporal relation labels as possible,
we need to create efficient templates that automatically convert each golden temporal relation label into a
temporal information-enriched sentence s′ to enrich the semantic information of golden temporal relation
labels. We argue that the time span of events (i.e., the duration of the events) guides ETRC. So we use the
start and end times of events and the temporal relation between events to describe the temporal relation
of the event pair on a subtle level. We show the templates in Table 1.

Subsequently, we build the augmentation dataset. For each record (t, s) in original Dataset, we use r
to match the templates and get s′ by filling events into the corresponding positions in the template, then
concatenate s and s′ to get an augmentation sentence saug = s + s′, finally get a new record (t, saug).
We combine all new records into an augmentation dataset.

Finally, we use the augmentation dataset to train the Encoder K with the help of the classifier which
we propose in section 3 under supervised setting. Encoder K is a RoBERTa model.

5.2 Joint Training with Patient Label-aware Contrastive Loss
The trained Encoder K has been obtained, we can start joint training in Figure 1. We send s in the original
dataset to Encoder Q, and then get event pair representations {e1j⊕e2j}12j=1 in different layers of Encoder
Q. eij is the hidden state corresponding to the event i from the j-th RoBERTa Layer. We simultaneously
send saug in the augmentation dataset to Encoder K, and then get event pair representations {ê1j ⊕
ê2j}12j=1 in different layers of Encoder K. êij is the hidden state corresponding to the event i from the j-th
RoBERTa Layer, and ˆ is used to denote the hidden state from the Encoder K. We normalized e1j ⊕ e2j
as the query q and ê1j ⊕ ê2j as key k with L2 Norm. According to different patient strategies, queries
and keys of different layers were selected for comparative learning.

We should not mechanically apply the loss function of self-supervised contrastive learning in equation
1 to the supervised ETRC directly. In the supervised ETRC task, we want the event pair representations
with the same category to be as close as possible without collapsing. But LCL treat the key samples in
the queue, whose event pair have the same temporal relation with the event pair of the query sample, as
negative key samples. Therefore, in the process of minimizing the LCL, the event pair representations
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TB-Dense MATRES
Documents Triplets Documents Triplets

Train 22 4032 204 10097
Dev 5 629 51 2643
Test 9 1427 20 837

Table 2: Data statistics for TB-Dense and MATRES

with the same category are mutually exclusive, which confuse the ETRC model. So we propose label-
aware contrastive loss function LLACL :

LLACL = −
N∑
i=1

(
log

exp (q · k+/τ)
exp (q · k+/τ) +

∑
{K′−} exp

(
q · k′−/τ

))
i

(2)

where K̄−is negative key samples set which except the key samples with the same label as q, and N is
the number of training samples. In practice, we convert q ·k where k ∈ {k : k ∈ K−, k /∈ K ′−} to −106

by matrix operations.
Inspired by Sun et al. (2019), we argue that using the event pair representations of the intermediate

layers of the Encoder Q and the event pair representations of the intermediate layers of the Encoder Q
for additional contrastive learning can enhance the learning of semantics of the Encoder Q, and improve
the performance of the baseline model. Hence we propose patient label-aware contrastive learning loss
LPCL based on equation 2:

LPCL = −
∑
j∈J

N∑
i=1

1

∥J∥

(
log

exp (q · k+/τ)
exp (q · k+/τ) +

∑
{K′−} exp

(
q · k′−/τ

))
i,j

(3)

where J is the set of intermediate layers involved in contrastive learning. Specifically, we propose three
patient contrastive learning strategies: (1) PCL-Last four: we contrast the last four layers of the Encoder
Q and Encoder K (Figure 1 upper right). (2) PCL-Skip: we contrast every two layers of the Encoder
Q and Encoder K (Figure 1 lower left). (3) PCL-Every: we contrast every layers of the Encoder Q and
Encoder K (Figure 1 lower right).

Finally, we jointly train ETRC task and auxiliary label-aware contrastive learning task with the final
loss function Lf inal:

Lfinall = αLCE + βLPCL (4)

where LCE is cross-entropy loss function, α and β are hyper-parameters which weight the importances
of ETRC task and auxiliary label-aware contrastive learning task.

6 Experiments and Results

In this section, we perform experiments on TB-Dense and MATERS and prove our TempACL performs
better than previous state-of-the-art methods. Details on the datasets, experimental setup, and experi-
mental results are provided in the following subsections.

6.1 Dataset

6.1.1 TB-Dense
TB-Dense(Cassidy et al., 2014) is a densely annotated dataset for the ETRC and annotated based on
TimeBank. It also annotates the temporal relations of pairs of events across sentences, different from
TimeBank which only annotates events in the same sentence. It annotates a total of 6 temporal relations
(AFTER, BEFORE, INCLUDE, IS INCLUDED, VAGUE, SIMULTANEOUS). We follow the split strat-
egy of Han et al. (2021) and Zhang et al. (2021) which uses 22 documents as train set, 5 documents as
dev set and 9 documents as test set.
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6.1.2 MATERS

MATERS(Ning et al., 2018) is refined from 275 documents in TimeBank and TempEval (containing
AQUAINT and Platinum). Ning et al. (2018) design a novel multi-axis (i.e., main, intention, opinion and
hypothetical axes) annotation scheme to further annotate the 275 documents. There are only 4 temporal
relations (BEFORE, AFTER, EQUAL and VAGUE) different from TB-Dense and the EQUAL is the
same as SIMULTANEOUS. We follow the official split strategy that uses TimeBank and AQUAINT for
training and Platinum for testing. We also follow the previous works (Ning et al., 2019; Tan et al., 2021)
that randomly select 20 percents of the official train documents as dev set.

We briefly summarize the data statistics for TB-Dense and MATRES in Table 2.

6.2 Experimental Setup

In the process of training Encoder K, we add a dropout layer between the Encoder K and the Classifier
and set the drop probability to 0.5, in order to make the key samples contain more useful temporal
information. We train Encoder K 10 and 20 epochs respectively on TB-Dense and MATRES. We set the
batch size to 24, the τ to 0.1, the learning rate of the Classifier to 5e-4 and the learning rate of RoBERTa
to 5e-6. We use grid search strategy to select the best α ∈ [0.7: 1.4] and β ∈ [0.01: 0.001]. As for the
dimension of the hidden states between two fully connected layers in the Classifier, we set it to 36. We
set the size of the queue to 3840 and 9600 respectively on TB-Dense and MATRES.

6.3 Main Results

As shown in Table 3, we compare our approach with other state-of-the-art methods in recent years on
TB-Dense and MATRES. We report the best F1 value for each method. The compared methods have
been introduced in section 2. And the results of compared methods are directly taken from the cited
papers except CERT1. We reproduce CERT and record the results.

We observe that our baseline model achieves 63.56%F1 on TB-Dense and 79.95%F1 on MATRES. It
demonstrates that our baseline model can effectively classify temporal relation, and even achieves a com-
petitive performance that is close to the current best 80.5%F1 on MATRES. Furthermore, our TempACL
outperforms previous state-of-the-art methods on ETRC with up to 2.13%F1 on TB-Dense and 1.26%F1

on MATRES. Compared with CERT, the traditional self-supervised contrastive learning method, our
TempACL achieves 4.01%F1 and 1.30%F1 improvement respectively. These experimental results prove
the effectiveness of learning semantic information of golden temporal relation labels via patient label-
aware contrastive learning. There are three possible reasons for the effectiveness: (1) The difference
between the query representation and the key representation comes from the semantic information of the
golden temporal relation label, because the input of Encoder Q doesn’t have the label information but
the input of Encoder K input does. The LLACL forces q closer to K to reduce the difference. So that in
the process of minimizing LLACL Encoder Q learns the label semantic information and forces itself to
extract more useful information related to golden temporal relation labels from the sentences that do not
contain any golden temporal relation label information. (2) The supervised contrastive learning frame-
work and LLACL designed by us is more suitable for the ETRC task than the traditional self-supervised
contrastive learning method. (3) The data augmentation method proposed by us not only utilizes the
semantic information of labels but also enriches the semantic information of labels.

Different from JCL and HGRU, which use external commonsense knowledge to enrich the information
contained in event representations, TempACL enables the model to better mine the information contained
in original sentences. Compared to ECONET and TGT, which use a larger pre-trained language model,
or TGT and HGRU, which use networks with complex structures followed RoBERTa base or BERT
Large, TempACL enables a smaller and simpler model which only contains a RoBERTa base and two
fully connected layers to achieve the state-of-the-art performance.

1https://github.com/UCSD-AI4H/CERT
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Method TB-Dense MATRES
JCL(Wang et al., 2020) RoBERTa base - 78.8
ECONET(Han et al., 2021) RoBERTa Large 66.8 79.3
TGT(Zhang et al., 2021) BERT Large 66.7 80.3
Poincaré Event Embeddings(Tan et al., 2021) RoBERTa base - 78.9
HGRU+knowledge(Tan et al., 2021) RoBERTa base - 80.5
CERT(Fang et al., 2020) RoBERTa base 64.92 80.46
Baseline (ours) RoBERTa base 63.56 79.95
TempACL (ours) RoBERTa base 68.93 81.76

Table 3: Comparison of various approaches on ETRC on TB-Dense and MATRES. Bold denotes the
best performing model. F1-score (%)

Method TB-Dense MATRES
Traditional-Last one 66.17 80.95
PCL-Last four 68.93 81.76
PCL-Skip 67.73 80.46
PCL-Every 65.23 80.37

Table 4: Results of TempACL with different strategies. F1-score (%)

6.4 Ablation Study and Qualitative Analysis

We observe that, TempACL make improvements of 5.37%F1 and 1.81%F1 on TB-Dense and MATRES
respectively compared with the baseline model. In this section, we first qualitatively analyze key samples,
and then we do the ablation experiments to further study the effects of patient strategies and label-aware
contrastive learning loss. We ensure that all ablation results are optimal by using optimal strategies under
the given conditions.

6.4.1 Qualitative analysis.
Wang and Isola (2020) propose to justify the effectiveness of contrastive learning in terms of simulta-
neously achieving both alignment and uniformity. Hence we reduce the dimension of key samples in
each layer through PCA and represent it in Fig.3 on TB-Dense. All four contrastive strategies we used
to utilize the key samples of the last layer, so we take Figure 3(l) to analyze the alignment and uni-
formity of TempACL. On the one hand, we can see that there are 6 clusters of representations that are
well-differentiated even in two dimensions. Our method maps key samples with the same category to a
relatively dense region. These well demonstrate that our embedded knowledge has a strong alignment.
On the other hand, we also can see that the 5 clusters, which represent temporal categories in Figure
3(l) right, are farther from the VAGUE cluster than each other. It means that our embedded knowledge
retains as much category information as possible. The farther away different clusters are, the more cate-
gory information and differences are retained. Moreover, different key samples with the same category
distribute evenly within the dense region, which means that our key samples retain as much instance
information as possible. Furthermore, the more evenly distributed they are, the more information they
retain. These well demonstrate that our embedded knowledge has a strong uniformity. We find that the
key samples encoded by the last four layers of the Encoder K have strong alignment and uniformity.

6.4.2 Last one strategy VS Patient strategy
In section 5.2 we propose three patient strategies. In this section, we do experiments to study which
strategy is optimal and report the experimental results in Table 4. PCL-Last four achieves the best
results on both TB-Dense and MATRES. On the one hand, PCL-Last four provides more positive and
negative samples. In Figure 3, the distribution of key samples in the last four layers also indicates that
these positive and negative samples have great value in learning. On the other hand, this layer-by-layer
approach greatly reduces the difficulty of learning. In the PTLM, different sub-layers are cascade, and the

CC
L 
20
22

Proceedings of the 21st China National Conference on Computational Linguistics, pages 861-871, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

868



Computational Linguistics

(a) layer 1 (b) layer 2 (c) layer 3 (d) layer 4

(e) layer 5 (f) layer 6 (g) layer 7 (h) layer 8

(i) layer 9 (j) layer 10 (k) layer 11 (l) layer 12

Figure 3: The distributions of key samples of each RoBERTa layers on TB-Dense.

Method TB-Dense MATRES
TempACL-LACL 68.93 81.76
TempACL-TCL 66.03 80.89
baseline 63.56 79.95

Table 5: Results of TempACL with different contrastive learning loss. F1-score (%)

changes in the output in the front layers influence the latter layers. PCL-every performs poorly and worse
than Traditional-Last one, because the first eight layers do not provide good positive and negative key
samples, and learning them confuses the model. However PCL-Skip performs better than Traditional-
Last one. This is because the number of bad key samples in PCL-Skip is relatively small, which makes
the negative impact of these bad key samples much smaller. The layer-by-layer approach reduces the
difficulty of learning and the benefits outweigh the negative impact.

6.4.3 Label-aware contrastive loss vs traditional contrastive loss
In order to determine whether our proposed label-aware contrastive loss has a positive effect, we conduct
a comparative experiment and record the experimental results in Table 5. We compare the TempACL with
label-aware contrastive learning loss (TempACL-LACL) and the TempACL with traditional contrastive
learning loss (TempACL-TCL) on TB-Dense and MATRES respectively. We can see that the TempACL-
LACL achieves 2.90%F1 and 0.87%F1 performance improvement over the TempACL-TCL respectively.
It shows the benefit of eliminating key samples with the same label as the query from the negative samples
set. The reason is that using key samples, which have the same label as the query, as negative samples
prevent instances of the same label from learning similar event representations to some extent, which runs
counter to the ETRC’s aims. And the label-aware contrastive learning loss can avoid such a situation.

7 Conclusion

In recent years, the mainstream ETRC methods focus on using discrete values to represent temporal
relation categories and lose too much semantic information contained in golden labels. So we propose
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TempACL, which makes the ETRC model learn the lost semantic information in golden labels via con-
trastive learning. Extensive experiments prove the contrastive learning framework in TempACL is more
suitable for the supervised ETRC task than traditional self-supervised contrastive learning. The patient
contrastive learning strategy designed by us provides more useful positive and negative key samples and
reduces the difficulty of contrastive learning. The label-aware contrastive learning loss designed by us
avoids the negative interactions between different queries and keys in the same category, which is an
inherent problem of self-supervised contrastive learning.
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