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Abstract

The discovery of causality mentions from text
is a core cognitive concept and appears in
many natural language processing (NLP) ap-
plications. In this paper, we study the task
of Event Causality Identification (ECI) from
social-political news. The aim of the task is
to detect causal relationships between event
mention pairs in text. Although deep learning
models have recently achieved a state-of-the-
art performance on many tasks and applications
in NLP, most of them still fail to capture rich
semantic and syntactic structures within sen-
tences which is key for causality classification.
We present a solution for causal event detection
from social-political news that captures seman-
tic and syntactic information based on gated
graph neural networks (GGNN) and contex-
tualized language embeddings. Experimental
results show that our proposed method outper-
forms the baseline model (BERT (Bidirectional
Embeddings from Transformers) in terms of
f1—score and accuracy.

1 Introduction

Causality is a core cognitive concept and appears
in many natural language processing (NLP) tasks.
We can define causality in generic terms as a se-
mantic relationship between two arguments known
as cause and effect. The occurrence of one argu-
ment (cause argument) causes the occurrence of
the other (effect argument) (Feder et al., 2021; Tan
et al., 2022b).

Event Causality Identification (ECI) is a task
that identifies causal relationships between events
from a given text (Zuo et al., 2021). To understand
how documents containing causal relationships are
identified, we present a sample of 5 sentences high-
lighting causes, effects and causal-markers leading
to the rationale for classifying different documents
in Figure 1 . Let us take an example of two sen-
tences; Sentence 1: "The protests spread to 15 other
towns and resulted in two death and the destruc-
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tion of property" and sentence 5: "The properties
including houses, banks were destroyed" as shown
in Figure 1. Sentence 1 is causal and sentence 5 is
non-causal. The first sentence is regraded as causal
because it has the cause (in blue color) and effect
(in green color) linked by a causal-marker (in red
color) unlike the 5-th sentence which only has the
effect.

1. The protests spread to other towns and resulted in 7
two death and the destruction of property
2. The conflict in south Sudan has claimed over 3000 lives [

and left over 50000 people injured @

3. Rebel attacks created panic among residents

. Because we hated the president
. The properties including houses, banks were
destroyed

Figure 1: Examples of different text statements indi-
cating whether they contain causal relationships or not.
The causal markers are in red color, causes are in blue
color and effects are in green color

In general, an expression is regarded as non-
causal if any of the following conditions are satis-
fied; (1) the reader is unable to construct a "why"
question regarding the effect, (2) the cause does not
precede the effect in time, (3) the effect is equally
likely to occur or not without the cause and (4) the
cause and effect can be swapped without change in
meaning (Tan et al., 2022b).

Event Causality Identification has been actively
studied in information retrieval with deep learning
as the dominant approach delivering state-of-the-
art performance (Chen et al., 2015; Lai et al., 2020;
Zuo et al., 2021). BERT (Devlin et al., 2019) has
been utilized for automatic event causality detec-
tion on the Causal News Corpus (a dataset used
in this study) (Tan et al., 2022b,a). The challenge
with deep learning models is that they represent
documents as a sequence of tokens either using

Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE), pages 85 - 90

December 7-8, 2022 ©2022 Association for Computational Linguistics



the traditional count based methods or embedding
based methods yet the task of causality detection re-
quires understanding rich structures and reasoning
within a sentence. The main contribution of this
work is the use of the gated graph neural networks
(GGNN) initialized with contextualized language
representations on the task of causal event detection
from social-political news.

2 Related Work and Background

In this section, we highlight some of the related
work and background information relevant to our
proposed methodology.

2.1 Document Representations

The nature in which words are represented directly
influences the performance of models trained us-
ing them on downstream tasks. Traditionally, doc-
uments were represented using bag of word ap-
proaches that base on co-occurrence statistics of
terms within documents (Salton et al., 1975). The
key challenge with this approach is that it does
not easily capture semantic relationships among
words. An alternative approach to bag of words
is word embeddings (Mikolov et al., 2013). Word
embeddings represent words as real-valued vectors
rather than counts capturing semantic and syntactic
information. Word embeddings are classified into
static word embeddings and contextualized word
embeddings.

Static word embeddings obtain stand-alone rep-
resentations of words without considering the con-
text in which these words are used . Popular models
in this category are Word2Vec models (Skip-gram
and CBOW (Continuous bag of Words) ) (Mikolov
et al., 2013). Skip-gram uses center words to pre-
dict contextual words while CBOW uses contextual
words to predict central words. GloVe (Global Vec-
tors for Word Representation) (Pennington et al.,
2014) is a log bi-linear regression model which
leverages co-occurrence statistics of the corpus to
represent documents. Contextual embeddings such
ELMO (Peters et al., 2018) (Embeddings from Lan-
guage Models) and BERT move beyond global rep-
resentations like Word2Vec and assign each word
a representation basing on its context hence achiev-
ing a better performance compared to static word
embeddings.
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2.2 Graph Neural Networks

Deep learning models especially those based on
the recent transformer architecture have become
dominant strategies for NLP tasks because of their
impressive performance. One of the most popular
transformer models is BERT (Devlin et al., 2019;
Vaswani et al., 2017). BERT is a language repre-
sentation model that pre-trains deep bi-directional
representations from unlabeled text by jointly con-
ditioning on both left and right contexts in all layers.
It is pre-trained with two objectives: masked lan-
guage modeling and next sentence prediction using
the bookcorpus (800 million words) and English
wikepedia (2,500 million words).

Despite the impressive performance, transformer
models represent documents as a sequence of to-
kens which is a limitation for some NLP problems
that can be naturally expressed with a graph struc-
ture. There is now a growing interest to perform
deep learning on graphs using graph neural net-
works. Graph neural networks exploit the global
features in text representations learning by aggre-
gating information from neighbors through edges.
Convolutional neural networks were first extended
to handle graphs for text classification (Defferrard
et al., 2016). Graph Neural Networks have since
been extended to other architectures like Recurrent
Neural Networks and Gated Recurrent Unit (Wu
et al., 2021). In our work, we apply models graph
neural networks in an application context for event
causality classification from social-political news.

2.3 Event Causality Identification

The task of event causality detection from text is
a semantically challenging task since it involves
understanding the complex structure, relationships
and dependencies within text. Traditional meth-
ods have used lexical and syntactical patterns
(Hashimoto, 2019; Gao et al., 2019), co-occurrence
statistics of events (Hu et al., 2017), causality mark-
ers like "due" and "because" (Hidey and McKeown,
2016) and temporal semantics of events (Ning et al.,
2018). Our proposed model uses GGNN to auto-
matically extract and induce more abstract repre-
sentations.

Advanced deep learning methods based on the
transformer architecture (Vaswani et al., 2017) like
BERT (Bidirectional Embeddings from Transform-
ers) (Devlin et al., 2019) have also been applied for
this task (Al-Garadi et al., 2022; Nan et al., 2020).
Even-though these models have achieved good per-
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Figure 2: We first obtain contextualized embeddings of the news articles which we use to build a graph representation.
A gated graph neural encoder (GGNN) and recurrent neural network decoder were used for graph neural network
encoding. Finally, a fully connected neural networks was used for Event Causality Identification binary classification

task

formance on event causality detection, they repre-
sent text as sequences which may not be sufficient
to capture the long dependencies that are required
for this event causality detection task.

Graph neural networks which extract rich struc-
tures and represent text as graph have also been ex-
plored. Graph convolutional Network (GCN) have
been proposed for document level event causality
detection that captures inter-sentence event men-
tion pairs (Tran Phu and Nguyen, 2021).

Our model is different from such related work in
that we use a gated graph neural network on a novel
dataset; Causal News Corpus where such models
have not yet as of writing the paper not explored
(Tan et al., 2022b).

3 Methodology

In this section, we describe our proposed method-
ology for the task of Event Causality Identification
from social-political news.

3.1 Document Representation

Formally, let us denote a corpus of N documents
we would like to classify as D = {;,;}"¥ where
z; is the i-th document with a co-responding la-
bel y; € Y for Y € {1,..., K}. Each document
z; € D is represented by a sequence of words
{w1, ..., wnt }(w; € v) where nt is the number of
words in document z; and v is the vocabulary size.

We encode words w; € z; into a continu-
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ous vector representation using contextualized lan-
guage representations produced by BERT (De-
vlin et al., 2019). Each document x; in the cor-
pus is represented in one token sequence which
may contain a single sentence or a pair of sen-
tences. The first token of every sequence is al-
ways a special classification token ([CLS]) and
different sentences are separated by a special to-
ken ([SEP]). Documents are represented as follows
[[CLS], w1, ...wy,[SEP],wy,[SEP]] for an input into
pre-trained BERT. We concatenate vectors of the
top layers of the pre-trained BERT to obtain con-
tinuous vector representations of each word de-
noted as E = {e;j, ...e, }. The embedding vectors
in E are fed into a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) (Long Short Term
Memory) to produce a sequence of hidden vectors
hY = {hY, ..., h¥} that will be used as initialization
to the graph encoder (Wu et al., 2021).

3.2 Gated Graph Neural Encoder

After representing each word in the corpus C' with
a corresponding word embedding, we build a graph
representation of all documents in the corpus and
their associated dependencies. To apply our en-
coder, we represent our documents as G = (V, E),
where V indicates a set consisting of different word
embeddings for each word in the vocabulary and
F indicates a set of edges (relationships) formed
between documents.



We use a Gated Graph Neural network (GGNN)
which is a modification of the vanilla Graph Neural
Network by adding Gated Recurrent Unit filters
(Chung et al., 2014). Our GGNN encoder con-
sists of L stacked GGNN layers operating over a
sequence of hidden vectors at the i—th layer h(%).
The hidden vector hé at the [—th layer is computed
by averaging the hidden vectors of neighboring
nodes z; at the (I — 1)—th layer: Gated Recurrent
Unit (GRU) is used to update node embeddings
by incorporating the aggregated information taking
into consideration of edge type and edge direction:

h{%

(2

= [IL’?, O]T
al) = AT[RIY | =0T
h" = GRU (", n{'™V)

ey

where A € R is a matrix determining how nodes
in the graph are communicating with each other, z;

@

are the initial node features, a, * is the aggregation

of information from different nodes and hgl) is the
i—th hidden state at the [—th layer.

3.3 Recurrent Neural Network Decoder

The graph-level embeddings C' obtained by the
Graph Encoder are fed into a sequence decoder as
heuristic information. In the decoding stage, an
embedding layer is used to embed all the previ-
ous sequences. We used graph embedding C and
sequence embedding e’ at time step t using a recur-
rent neural network:

ht =RNN(Concat(e®,C), htD)
w =FC(,h®,C)

where h(®) represents hidden state at time step t,
FC(.) represents fully connected layer and we ini-
tialize the hidden state with global graph represen-
tation C' i.e h(® = C.

4 Experimental Results

4.1 Data

The dataset used for experiments in this paper
was provided by the organizers of the shared task
on Causal Event Classification organized at Sth
Workshop on Challenges and Applications of Au-
tomated Extraction of Socio-political Events from
Text (CASE) at EMNLP 2022. The training data
consists of 2925 news articles, validation set con-
tained 323 news articles and test data consisted of
311 news articles (Tan et al., 2022b,a).
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4.2 Experimental Setup

We conduct experiments with pre-trained BERT
(Devlin et al., 2019) and gated graph neural net-
works . Experiments are done with 50 epochs, max
length of 512, batch size of 50 and the learning
rate was set at 0.0005. The final submissions are
evaluated using f1-score. Transformers are im-
plemented using hugging-face transformer library
(Wolf et al., 2020) and graph neural networks were
implemented using graph4nlp library (Wu et al.,
2021). Our code implementation can be found on
the this link (https://github.com/TrustPaul/

ggnn.git).

4.3 Discussion

Model f1 Accuracy
BERT (Baseline) 80.06 81.11
GGNN-W2V 81.01 75.23
GGNN-B(Ours) 84.78 84.52

Table 1: f1—score and accuracy on the development
set of the baseline model (BERT (Bidirectional Em-
beddings from Transformers) and our proposed model
(GGNN(Gated Graph Neural Network (Li et al., 2016;
Devlin et al., 2019; Tan et al., 2022b))

Experimental results demonstrate that the perfor-
mance of our proposed method (GGNN-B) com-
pared to the baseline method that uses BERT
(Devlin et al., 2019; Tan et al., 2022b) proposed
by Tan et al.,(2022) as shown in Table 1. Our
method improves over the baseline in terms of
precision (84.78% versus 80.06%), f1 (86.19 ver-
sus 83.47%) and accuracy (84.52% versus 81.11).
However fine-tuned BERT outperforms GGNN-
W2V (83.47% against 76.19%) in terms of f1-
score, a gated neural network of the same archi-
tecture as GGNN-B but with the graph constructed
with Word2Vec embeddings.

Model f1 Accuracy
BERT (Baseline) 78.01 77.81
GGNN-W2V 75.72 72.03
GGCN-B(Ours) 81.67 80.06

Table 2: f1—score and accuracy on the test set of the
baseline model (BERT (Bidirectional Embeddings from
Transformers) and our proposed model (GGNN(Gated
Graph Neural Network (Li et al., 2016; Devlin et al.,
2019; Tan et al., 2022b))

Experimental results on the test set demonstrate
that our proposed method GGNN-B achieves an
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accuracy of 80.06% compared to an accuracy of
77.81% achieved by the baseline model (BERT).
GGNN-B (our model) achieves a better f1-score
compared to the baseline (82.58% against 81.12%)
but BERT outperforms the same graph neural net-
work architecture initialized with Word2Vec em-
beddings (Mikolov et al., 2013).

We hypothesize that the performance difference
observed between our model which is based on
graph neural networks and the baseline model
based on only BERT is due to the superiority
of graphs in representing complex structures re-
quired for understanding causal relationship against
BERT that represents text as sequences. The fact
that BERT outperforms Graph Neural networks
when initialized with Word2Vec reinforces the role
played by graph initialization of graph neural net-
works on performance and also demonstrates the
advantages of contextualized embeddings extracted
by BERT to downstream tasks over static embed-
dings extracted by Word2Vec.

5 Conclusion

In this work, we propose a novel deep learning
approach for event causality detection from social-
political news articles. Our proposed approach
use gated graph neural networks and contextu-
alized language representations which represent
text documents as a graph and model complex
semantic relationships ideal for causality detec-
tion. Experimental results reveal that our proposed
model improves performance over the baseline
comparison model (BERT) in terms of accuracy
(80.06% versus 77.81%) and f1—score (82.58%
versus 81.12%).
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