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Abstract

Bilingual Word Embeddings (BWESs) are one of the cornerstones of cross-lingual transfer of NLP models. They can be built
using only monolingual corpora without supervision leading to numerous works focusing on unsupervised BWEs. However,
most of the current approaches to build unsupervised BWEs do not compare their results with methods based on easy-to-access
cross-lingual signals. In this paper, we argue that such signals should always be considered when developing unsupervised
BWE methods. The two approaches we find most effective are: 1) using identical words as seed lexicons (which unsupervised
approaches incorrectly assume are not available for orthographically distinct language pairs) and 2) combining such lexicons
with pairs extracted by matching romanized versions of words with an edit distance threshold. We experiment on thirteen
non-Latin languages (and English) and show that such cheap signals work well and that they outperform using more complex
unsupervised methods on distant language pairs such as Chinese, Japanese, Kannada, Tamil, and Thai. In addition, they are even
competitive with the use of high-quality lexicons in supervised approaches. Our results show that these training signals should
not be neglected when building BWEs, even for distant languages.
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. . . tial seed lexicons to build BWEs without relying on
mapping monolingual embeddings into a shared space. . L . . . .
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AL 0018 Alv’arez-M,elis and Jaakkoia 201’8' Chonand = Useseven for distinct-script pairs. In contrast to[Sggaard

Cardic. 2018: Hoshen and Wolf. 2018: Mohiuddin and et al. (2018), we test identical word pairs on multiple
Toty 261 9 A’laux otal 2019 ]50u et’al. 2000- Grave language pairs with distinct scripts, including pairs us-

- : ing distinct numerals. In addition, we propose to (2
et al., 2019; L1 et al., 2020). However, with one ex- g . . . . prop . (2)
: . . strengthen identical pairs by extending them with fur-
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seed lexicons edit distance, which exploits implicit links between lan-
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It has been shown that identical word pairs of two lan- i:ﬁies i Hie fofim of approximate Word tanstieration
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et al., 2017; |Artetxe et al., 2017). However, they were . . .
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tested identical word pairs on English and Greek which

i ! which all obtain a score close to 0 on the Bilingual
use different alphabetical characters but the same numer- . . —~
. ; Dictionary Induction (BDI) task (Vuli¢ et al., 2019).
als. Regardless of these experiments, recent works still
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In this paper however, we argue that such signals should 'We use (non-)Latin language here as a short form for
be used as a cheap and effective baseline in the devel- language standardly written in a (non-)Latin script.
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cons (Lample et al., 2018) and show that our noisy word
pairs make it possible to build BWEs for language pairs
where unsupervised approaches failed before and give
accuracy scores similar to high quality lexicons.

Our work calls into question — at least for BDI — the
strong trend toward unsupervised approaches in recent
literature, similarly to |[Vuli€ et al. (2019), given that
cheap signals are (i) available and easy to exploit, (ii)
sufficient to obtain performance similar to dictionaries
based on parallel resources like MUSE and (iii) able
to make up for the failure of unsupervised methods.
Finally, we analyze which lexicon properties impact
performance and show that our lexicon outperform un-
supervised methods also for non-English language pairs.
Our paper calls for the need to use easily accessible
bilingual signals, such as identical and/or transliteration
word pairs, as baselines when developing unsupervised
BWE approaches.

2. Unsupervised pair extraction

We show that we can extract the seed lexicon needed
for mapping systems without the need for labeled data,
making up for the failure of unsupervised methods. First,
we show that identical pairs do appear in corpora of
distant languages and can be exploited. Secondly, we
propose a novel method to boost the identical pairs sets
by extracting the initial seed lexicon without the need
for any bilingual knowledge, starting from monolingual
corpora, and using romanization and edit distance.

2.1.

When dealing with languages with different scripts,
identical pairs would seem to be unlikely to occur, which
is assumed by unsupervised mapping methods. Smith
et al. (2017} |Artetxe et al. (2017) form dictionaries
from identical strings which appear in both languages
but limit their approach to similar languages sharing a
common alphabet, such as European ones. Similarly,
(Lample et al., 2018) refrain from using such identical
word pairs, assuming they are not available for distant
languages. An exception is the work of |Sggaard et all
(2018) which shows the presence of identical pairs be-
tween English and Greek, which share numerals only
but not alphabetical characters.

However, we show that there are domains where these
pairs are actually available in large quantity even for
pairs with different scripts, including the use of different
numerals; an example is Wikipedia: see the statistics
of fastText Wikipedia embeddings (Bojanowski et al.,
2017) in Table [l Most of these identical pairs are
punctuation marks and digits, non-transliterated named
entities written in the Latin script, or English words
(assumingly words of a title) which were not translated
in the non-English languages. This is also true for lan-
guage pairs not including English. In this paper, we
build BWESs based on these pairs and show that they are
sufficient for good BDI results on distant language pairs
with distinct scripts.

Identical pair approach
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Lang ID | Lang ID | Lang ID
ko-th* 17K | ko-he* 11K | he-th* 15K
en-zh* 62K | en-bn* 31K | en-ar* 19K
en-th 46K | en-hi* 30K | en-ru 18K
en-ja 43K | en-ta* 23K | en-he* 17K
en-el 35K | en-kn* 21K | en-ko* 15K
en-fa* 32K

Table 1: Number of identical pairs per language pair.
Language pairs using different digits as their official
numerals, on top of different alphabetical characters,
are indicated with *.

2.2. Romanization based augmentation
(ID++)

Identical pairs are noisy and may appear in smaller
quantities for certain corpora and language pairs (e.g.,
he-ko). We propose our romanization approach that
builds the seed lexicon completely automatically and
can augment the identical pairs set. We exploit the
concept of transliteration and orthographic similarity
to find a cheap signal between languages (cf. (Riley]
and Gildea, 2018;; |Severini et al., 2020a; |Severini et al.!
2020b; Severini et al., 2022)) and to take advantage of
cognates (Chakravarthi et al., 2019j |Laville et al., 2020).
It consists of 3 steps at the end of which we add the
identical pairs and run VecMap in a semi-supervised
setting.

1. Source candidates  First, we generate a list of
source language words, which are the candidates to be
matched with a word on the target side. We use the En-
glish Wikipedia dumpsE] as our monolingual corpus and
apply Flair (Akbik et al., 2018]) to extract Universal Part-
of-Speech (UPOS) tags. We collect all English proper
nouns (PROPN), since names are often transliterated
between languages. The resulting English proper noun
set consists of ~800K words.

2. Target candidates The language-specific tar-
get data is extracted from the vocabulary of the pre-
trained Wikipedia fastText embeddings (Bojanowski et
al., 2017). The sets are not pre-processed with a POS
tagger assuming that such a tool is missing or perform
poorly for low-resource languages. Compared to the
English proper noun set, the vocabularies are smaller:
between 40K and 500K. Then, we romanize the corpora
to obtain equivalent words but with only Latin charac-
ters — this supports the distance-based metrics in step (3).
We use Uroman (Hermjakob et al., 2018) for romaniza-
tion. Examples of romanization are kaps (Russian)—
carl and BoPBuiov (Greek) — babylon. Uroman mainly
covers 1-1 character correspondences and does not vo-
calize words for Arabic and Hebrew. In general, its
romanization is not as accurate as the transliteration of
a neural model. However, neural models need a training
corpus of labeled pairs to work well, while Uroman only

“https://dumps.wikimedia.org/| (01.04.2020)




en-th en-ja en-kn en-ta en-zh
Unsupervised
1. 0.00 096 0.00 0.07 0.07
2. 0.00 048 0.00 0.07 0.00
3. 0.00 0.00 0.00 0.00° 0.00
Semi-supervised (Artetxe et al., 2018)

ID 2440 4887 22.03 1793 37.00
Rom. 23.33 4846 2290 18.00 0.27
ID++ 23.47 49.14 2423 1820 35.00
MUSE | 24.33 4873 23.78 18.80 36.53

Table 2: acc@1 on BDI for unsupervised (1: |Artetxe
et al. (2018), 2: |Grave et al. (2019), 3: Mohiuddin
and Joty (2019)) and semi-supervised approaches for
5 languages for which unsupervised methods fail. The
semi-supervised results are obtained using VecMap with
three different initial lexicons: the identical pair set (ID),
ID extended with romanization based pairs (ID++) and
the MUSE dictionary. We show an ablation study as
well, i.e., the romanized pairs only (Rom.). Scores from
Mohiuddin et al. (2020) are marked with .

uses the character descriptions from the Unicode tableE]
manually created tables and some heuristics, supporting
a large number of languages.

3. Candidate matching  To find the corresponding
target word for an English noun, the noun is compared
with each (romanized) target word based on their orthog-
raphy. The similarity of two words w; and w is defined
as 1 — NL(w1, ws), where NL is the Levenshtein dis-
tance (Levenshtein, 1966)) divided by the length of the
longer string. We select a pair of words if the similarity
is > 0.8; this ensures a trade off between number of
pairs and quality, based on manual investigation. We
use the Symmetric Delete algorithm to speed up com-
putation, similarly to (Riley and Gildea, 2018)). It takes
the lists of source and target words, and a constant k
and identifies all the source-target pairs that are identi-
cal after k insertion or deletionsE] The final step is to
look up, for each romanized target word, its original
non-romanized form.

3. Evaluation

We evaluate our seed lexicons on BDI to show the qual-
ity of the BWEs obtained with them. Recent papers
(Marchisio et al., 2020) show that there is a direct rela-
tionship between BDI accuracy and downstream BLEU
for machine translation. Moreover, Sabet et al. (2020)
show that good-quality word embeddings directly re-
flect the performance also for extrinsic tasks like word
alignment. We use the VecMap tool to build BWEs
since it supports both unsupervised, semi-supervised
and supervised techniques (Artetxe et al., 2018). The

3lhttp://unicode.org/Public/UNIDATA/UnicodeData.txtl
“We used minimum frequency and minimum length equal
to 1, k equals to 2.
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semi-supervised approach is of particular interest to
us since it performs well with small and noisy seed
lexicons by iteratively refining them. VecMap iterates
over two steps: embedding mapping and dictionary in-
duction. The process starts from an initial dictionary
that is iteratively augmented and refined by extracting
probable word pairs from the BWEs built in the current
iteration with BDI. The method is repeated until the
improvement on the average dot product for the induced
dictionary stays above a given threshold. We use pre-
trained Wikipedia fastText embeddings (Bojanowski
et al., 2017) as the input monolingual vectors, taking
only the 200K most frequent words and using default
parameters otherwise. We compare the performance of
VecMap using our lexicons with MUSE. MUSE con-
tains dictionaries for many languages and it was created
using a Facebook internal translation tool (Lample et
al., 2018), thus it can be considered as a higher qual-
ity cross-lingual resource based on parallel data. Since
Kannada is not supported by MUSE, we use the dictio-
nary provided by Anzer et al. (2020). We show acc@1
scores based on CSLS vector similarity calculated by
the MUSE evaluation tool (Lample et al., 2018)E]
Tables[2]and [3|show accuracy for all language pairs con-
sidering English as the source; see Table|7|in Appendix
B for the full table containing results in both directions.
Table 2] gives scores for language pairs for which unsu-
pervised methods completely diverge (acc@1 < 1). We
report results for three unsupervised methods (Artetxe et
al., 2018} Mohiuddin and Joty, 2019; |Grave et al., 2019).
In contrast, using identical word pairs as lexicon (ID) or
its extension with the romanizetion based pairs (ID++)
with VecMap leads to successful BWEs without any
parallel data or manually created lexicons. In addition,
scores are even comparable to high-quality dictionaries
like MUSE. Looking at results for all language pairs in
Table[2]and 3] our sets always obtain results comparable
to MUSE (baseline dictionaries), with improvements
for Arabic, Chinese, Russian and Greek. In the unsuper-
vised cases (Table E]) both ID and ID++ pair sets lead
to an accuracy improvement of at least 17 points. ID++
outperform ID for three of the five low-resource pairs
and five out of eight high-resource pairs proving that
the romanized pairs can indeed strengthen the identical
pairs sets. These results show that good quality BWEs
can be built by relying on implicit cross-lingual signals
without expensive supervision or fragile unsupervised
approaches.

MUSE test w/o proper nouns The work of [Ket
mentchedjhieva et al. (2019)) highlights that MUSE test
sets contain a high number of proper nouns for Ger-
man, Danish, Bulgarian, Arabic and Hindi. Since our
romanization augmentation is based on such names, we
evaluate their performance on the subsets of MUSE test

>We follow |Artetxe et al. (2018) work for comparison
reasons and did not remove identical pairs from the test sets.
However, overlaps between train romanized lexicons and test
lexicons correspond to less than 1%.



Unsup. ID Rom. ID++ | MUSE Unsup. ID Rom. ID++ | PanLex
en-ar 36.30 | 40.27 3933 40.20 | 39.87 th-ko 0.00 | 2.81 337 3.09 2.95
en-hi 40.20 | 4047 39.60 40.20 | 40.33 th-he 000 ] 975 000 8.86 10.13
en-ru 4480 | 49.13 48.87 49.53 | 48.80 ko-th 0.00 | 1590 14.23 15.26 14.36
en-el 4790 | 47.87 48.00 4827 | 48.00 ko-he 14.62 | 15.68 16.08 16.00 15.11
en-fa 36.70 | 37.67 36.80 37.67 | 38.00 he-th 0.00 | 1642  0.00 16.54 17.90
en-he | 44.60 | 44.47 4453 4467 | 45.00 he-ko | 1430 | 15.39 15.15 1509 | 16.06
en-bn 18.20 | 19.87 19.80 20.13 | 21.60
en-ko 19.80 | 27.92 2840 28.81 28.94 Table 4: acc@1 on BDI for unsupervised and semi-

Table 3: acc@1 on BDI for (best) unsupervised method
and semi-supervised VecMap with different initial lexi-
cons. (full table in Appendix B, Table[7).

sets that don’t contain proper nouns. We remove proper
nouns using the list of names obtained in Section [2.2]
and evaluate the performance of all the approaches pre-
sented above. The new sets contains 10% less pairs on
average. Results are shown in Table[8] Appendix C. The
performance is similar to the one obtained on the origi-
nal test sets, proving that our dictionaries and methods
are not biased towards aligning word embeddings of
proper nouns.

Non-English centric evaluation =~ We analyze the
performance of ID and ID++ for language pairs that
do not include English. We use the test dictionaries
from [Vulic et al. (2019)) that are derived from PanLex
(Baldwin et al., 2010; |Kambholz et al., 2014} by automat-
ically translating each source language word into the
target languages. We run VecMap for all combinations
of Korean, Hebrew, and Thai. Romanized train lexi-
cons are extracted by combining the languages through
English (e.g., th-ko is obtained using en-th and en-ko),
i.e., words are paired if their English translation is the
same. Table [ shows results. When Thai is involved,
the unsupervised method fails as for English-Thai. Both
ID and ID++ always outperform the respective unsu-
pervised scores, and perform similar to higher-quality
dictionaries. Additionally, ID++ outperforms ID in 3
out of 6 cases. These results demonstrate further the
simplicity and high quality of our methods.

Romanized-only = We analyze the performance of
romanized pair lexicons on their own. Line Rom. in
Table 2| and [3| shows that they obtain competitive results
to the other two approaches, with improvements for
Japanese, and perform similarly to MUSE dictionaries.
The only failure is for Chinese (en-zh) — presumably
because Chinese has a logographic script that does not
represent phonemes directly, so romanization is less
effective. These results show that the romanized pairs on
their own also represent strong signals that shouldn’t be
neglected. Moreover, they constitute a good alternative
when identical pairs are not available is such quantities
(e.g., corpora of religious domain, law field, or cultural-
specific documents).

Impact of OOVs  We analyze the pairs used for the
various sets (Appendix A, Table[5). We define OOV's
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supervised VecMap for all combinations of Korean,
Hebrew, and Thai. Panlex are results obtained with
training lexicons from [Vuli¢ et al. (2019) and semi-
supervised VecMap.

as words for which there is no embedding available
among the pre-trained Wikipedia fastText embeddings.
Our romanized sets contain a substantial number of
OOVs. (The identical pair sets do not contain OOV's
because words are extracted from the top 200K most
frequent.) The main reason for OOVs is that the selected
English pair of a word is so rare that they do not have
embeddings. On the other hand, the high number of
OOVs (and resulting reduction of usable pairs) has only
a limited negative impact on the performance.

Size of seed set and word frequency  We analyze
the impact of the size of the initial romanized seed set
and of word frequency. Appendix A, Table[6] displays
accuracy scores for MUSE and Romanized lexicons
containing the n € {25, 1000} least and most frequent
word pairs. Performance of VecMap applied to seed
sets of size 25 is close to 0. The only exception is Rus-
sian, where the unsupervised approach already works
well. Next, we investigate seed sets of size 1000 con-
sisting of either the least frequent or the most frequent
words. High-frequency seed sets give better results as
expected. The effect is particularly strong for Tamil:
the high-frequency set has performance close to the full
set, whereas the low-frequency set is at <0.07. The
performance of MUSE seed sets of size 25 and roman-
ized seed sets of size 1000 is similar, demonstrating
the higher quality of MUSE. However, obtaining the
romanized pairs is much cheaper.

4. Conclusion

We have analyzed two cheap resources for building
BWEs which can alleviate the issues of unsupervised
methods which fail on multiple language pairs. We fo-
cused on a wide range of non-Latin languages paired
with English. (i) We exploited identical pairs that sur-
prisingly appear in corpora of distinct scripts. We
showed that they can be used even when numerals are
distinct in contrast to previous work. (ii) We combined
them with a simple method to extract the initial hypoth-
esis set via romanization and edit distance. With both
approaches, we obtained results that are competitive
with high-quality dictionaries. Without using explicit
cross-lingual signal, we outperformed previous unsuper-
vised work for most languages and in particular for five



language pairs for which previous unsupervised work
failed. Our results question the strong trend towards
unsupervised mapping approaches, and show that cheap
cross-lingual signals should always be considered for
building BWEs, even for distant languages.
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A. Statistics

In this section we show statistics on the language pairs
analyzed and additional scores. Table [5] presents the
number of pairs for each set that are not OOVs in the
fastText wiki embeddings (Bojanowski et al., 2017) .
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MUSE ID Romanized ID++
en-th 6,799 | 46,653 10,721/ 53,804 58779/ 101066
en-ja 7,135 | 43,556 11,488/ 118,626 54970/ 161848
en-kn 1,552 | 21,090 12,888/ 59,207 33843/ 80032
en-ta 8,091 | 23,538 5,987 /120,836 29472/ 143990
en-zh 8,728 | 62,289 6,360/ 41,829 68597 /103971
en-ar | 11,571 | 19,275 4,773/ 61,031 24019/ 80115
en-hi 8,704 | 30,502 16,180/ 73,553 46557 /103791
en-ru | 10,887 | 18,663 9,913 /301,698 28520 /319688
en-el | 10,662 | 35270 20,740/ 150,472 55841/ 185244
en-fa 8,869 | 32,866 10,226/ 85,210 43019/ 117817
en-he 9,634 | 17,012 4,005/ 40,258 20977/ 57059
en-bn 8,467 | 31,954 10,721/ 53,804 42573/ 85532
en-ko 7,999 | 15,518 9956/ 134156 25344 /149031

Table 5: Number of pairs used that are not OOVs in the
fastText wiki embeddings compared to the full size of
the sets. For MUSE full and identical pairs sets there
are no OOVs.

B. Main results

In Table[7] there are the accuracy scores based on CSLS
vector similarity calculated by the MUSE evaluation
tool (Lample et al., 2018). We show the scores for
thirteen language pairs in both directions. The first
five pairs are the ones for which unsupervised methods
fail. We show both unsupervised and semi-supervised
VecMap performance with baselines dictionaries and
our three sets.

C. MUSE proper nouns removal

Table[8]shows results computed on the subsets of MUSE
test sets that don’t contain proper nouns. We remove
proper nouns using the list of names obtained in Section
[2.2] The new sets contains 10% less pairs on average.

D. Reproducibility

We run our method on up to 48 cores of Intel(R)
Xeon(R) CPU E7-8857 v2 with 1TB memory and a sin-
gle GeForce GTX 1080 GPU with 8GB memory. The
training of semi-suprised BWEs using VecMap took ap-
proximately 1 hour per language pair. For VecMap, as
well as for all others methods we analyzed, we used the
latest code available in their git repositories with default
parameters. ID++ is implemented in Python.



MUSE Rom.

25L 25H 1000L 1000H 25L 25H 1000L  1000H

en-ta — | 1473  16.27 17.33 17.40 0.00 0.00 0.07 17.80
+— | 1648 18.35 22.44 23.44 0.00 0.00 0.00 21.57

en-fa — | 35.33 3420 38.07 37.20 0.00 020 3747 37.47
«— | 41.73 42.60 44.14 4421 0.07 0.13 4240 4340
en-zh — 1 39.00 3940 38.20 37.67 0.00 0.00 0.07 0.40
+— | 3293 3447 3433 34.40 0.00 0.00 0.07 0.60

en-ru — | 49.07 43.07 49.07 49.27 | 4933 47773 4940  49.00
<~ | 6593 60.60 65.93 66.13 | 65.80 64.47 65.60 66.40

Table 6: acc@1 using 25 or 1000 pairs lower-frequency (L) and higher-frequency (H) sets for MUSE and our

romanized only (Rom.) set.

Baselines Our
Unsupervised Semi-sup. Semi-sup.

1 2 3 MUSE ID Rom. ID++

1 en-th — 0.00 0.00 0.00 24.33 | 2440 23.33 2347
— 0.00 0.00 0.00 19.04 | 19.92 17.96 19.85

2 enda — 0.96 0.48 0.00 48.73 | 48.87 48.46 49.14
— 0.96 0.00 0.00 32.87 | 33.22 34.80 33.43

3 en-kn — 0.00 0.00 0.00 23.78%| 22.03 2290 24.23
— 0.00 0.00 0.00 41.25%| 43.04 4250 41.79

4 en-a — 0.07 0.07 0.00° 18.80 | 1793 18.00 18.20
— 0.07 0.00 0.00° 2438 | 24.78 23.51 24.78

5 en-zh — 0.07 0.00 0.00 36.53 | 37.00 0.27 35.00
— 0.00 0.00 0.00 32.80 | 34.33 0.07 32.67

6  en-ar — | 33.60 7.67 36.30° 39.87 | 40.27 39.33 40.20
«— | 4772 1292 52.60° 5448 | 54.42 5442 54.62

7 en-hi — | 40.20 0.00 0.00° 40.33 | 40.47 39.60 40.20
+— | 50.57 0.07 0.00° 50.50 | 49.77 4990 50.10

8 enru — | 48.80 37.33 46.90° 48.80 | 49.13 48.87 49.53
~— | 66.13 5273 64.70° 65.67 | 66.13 65.73 66.07

9 enel — | 47.67 34.67 47.90° 48.00 | 47.87 48.00 48.27
«— | 63.40 4920 63.50° 63.33 | 63.27 64.40 06347

10 en-fa — | 33.27 0.53 36.70° 38.00 | 37.67 36.80 37.67
<~ | 39.99 0.40 44.50° 4347 | 43.67 4293 43.60

11 en-he — | 4460 37.13 44.00° 45.00 | 4447 4453 44.67
«~ | 57.88 50.01 57.10° 5794 | 58.14 5781 57.94

12 enbn — | 18.20 0.00 0.00° 21.60 | 19.87 19.80 20.13
+— | 22.19 0.00 0.00° 28.46 | 28.88 28.67 29.41

13 enko — | 19.80 9.62 0.00 2894 | 2792 2840 28.81
«— | 2437 13.83 0.00 34.09 | 33.40 33.74 33.95

Table 7: acc@1 for unsupervised methods (1: |Artetxe et al. (2018)), 2: |Grave et al. (2019)), 3: Mohiuddin and Joty|

(2019)) and semi-supervised VecMap with different initial lexicons: MUSE set, identical pairs dataset (ID), our
romanized only sets (Rom.), and the union of identical and romanized pairs (ID++). We show both forward (—)
and backward (+—) directions. In bold the best result for each pair of languages, for “Baselines” and “Our”.

Scores from Mohiuddin et al. (2020) are marked with ©.
*Kannada is not supported by MUSE, so we use the dictionary provided by (Anzer et al., 2020).
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Baselines Our

Unsup | Semi-sup. Semi-supervised
MUSE ID Rom. ID++
| enth 0.00 27.21 | 2713 2635 26.11
— 0.00 18.93 | 19.83 1825 19.83
2 enda — 0.71 46.15 | 45.04 4631 46.39
— 0.56 39.14 | 38.86 40.73 39.52
3 enkn 0.00 23.78%| 22.03 2290 24.23
— 0.00 41.25%| 43.04 4250 41.79
4 enta 0.08 20.12 | 19.35 1897 1943
— 0.08 24.60 | 24.60 23.71 25.00
S engh 0.07 37.34 | 38.14 0.07 35.74
— 0.00 3248 | 3483 0.00 3248
6 enar 35.44 39.70 | 40.23 39.24 40.15
«— | 49.75 53.61 | 53.46 53.61 53.82
7 enhi 42.49 4242 | 42779 4211 4257
— | 5246 52.62 | 51.99 52.07 52.23
8 enru 45.64 45.64 | 46.40 45.64 46.70
— | 64.35 64.13 | 64.57 64.35 64.72
9 enel 48.90 49.35 | 48.97 49.43 49.58
— | 63.87 63.80 | 63.87 64.56 63.72
10 enfa 34.18 37.51 | 37.35 3658 37.59
— | 41.78 43.59 | 44.06 4335 43.82
11 enhe 42.22 42.60 | 42.29 42.14 42.29
— | 55.92 55.70 | 56.00 55.62 56.08
— | 20.44 22.74 | 21.59 20.52 20.98

12 en-bn
— | 25.80 30.22 | 30.30 30.30 30.96
13 enko 20.30 26.57 | 25.63 26.02 26.49
26.52 3237 | 32.21 31.80 32.13

Table 8: acc@1 on MUSE test sets without proper nouns. Results are reported for unsupervised and semi-supervised
Vecmap |Artetxe et al. (2018)) with different initial lexicons: MUSE set, identical pairs dataset (ID), our romanized
only sets (Rom.), and the union of identical and romanized pairs (ID++). We show both forward (—) and backward
(+—) directions. In bold the best result for each pair of languages, for “Baselines” and “Our”.

*Kannada is not supported by MUSE, so we use the dictionary provided by (Anzer et al., 2020).
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