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Abstract

We present a deep learning based information
extraction system that can extract the design
and results of a published abstract describing
a Randomized Controlled Trial (RCT). In con-
trast to other approaches, our system does not
regard the PICO elements as flat objects or la-
bels but as structured objects. We thus model
the task as the one of filling a set of templates
and slots; our two-step approach recognizes
relevant slot candidates as a first step and as-
signs them to a corresponding template as sec-
ond step, relying on a learned pairwise scor-
ing function that models the compatibility of
the different slot values. We evaluate the ap-
proach on a dataset of 211 manually annotated
abstracts for Type 2 Diabetes and Glaucoma,
showing the positive impact of modelling intra-
template entity compatibility. As main bene-
fit, our approach yields a structured object for
every RCT abstract that supports the aggrega-
tion and summarization of clinical trial results
across published studies and can facilitate the
task of creating a systematic review or meta-
analysis.

1 Introduction

The evidence based medicine (EBM) paradigm
(Sackett et al., 1996) propagates that individual
medical decisions are taken on the basis of the best
available clinical evidence. The activity of sum-
marizing the existing body of evidence is a core
activity to support EBM and its most prominent
instrument is the systematic review. Creating a
systematic review involves a high effort, involv-
ing on average 67.3 weeks and involving 5 authors
per review on average (Borah et al., 2017). Keep-
ing systematic reviews up to date involves an even
much higher and continuous effort (Koch, 2006;
Beller et al., 2013).

Thus, there is increased interest in partially
automatizing the creation of systematic reviews
(O’Connor et al., 2019). A significant hindrance

for the automation of systematic reviews is that
data needs to be extracted by hand from published
studies. This problem could be alleviated if publi-
cations were machine readable, or could be turned
into a structured, machine readable form by infor-
mation extraction methods (Liu et al., 2016; Wu
et al., 2020).

The methods that so far have been applied to
the automatic extraction of information from clini-
cal trial publications follow the PICO framework
and attempt to extract the Population, Interven-
tion, Comparator and Outcomes from a publication.
Most approaches formalize the task as a tagging
or classification problem. Some approaches for
instance attempt to tag spans in the text and label
them with the PICO elements (e.g. (Trenta et al.,
2015)). Others classify complete text segments into
these classes (Boudin et al., 2010; Jin and Szolovits,
2018).

However, the PICO elements denote structured
objects rather than plain tags or classes. An in-
tervention is described by a drug, frequency of
administration, administration route, dose, etc. An
outcome is described by a certain increase or de-
crease of a value from a baseline condition, refers
to a certain primary or secondary endpoint, and
there are outcomes for each arm of a trial that need
to be compared to each other. In spite of being
structured objects, most previous work treats these
elements as flat and unstructured. Treating them as
such makes the automatic aggregation and summa-
rization of results challenging if not impossible.

Towards treating information extraction from
clinical publications as a problem of predicting
structured elements, we model the task as a tem-
plate extraction task in which each template con-
sists of a number of slots to be extracted. In Table
1 we provide an overview of all the templates we
consider in this work and the number and types of
slots they have.

Towards extracting these templates and thus a
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structured representation of a clinical trial and its
results, we present a novel deep learning architec-
ture. The architecture first labels spans of text as
candidate slot fillers of a particular slot in a first
step. In a second step, the filler is assigned to an
instance of a template. With this two-step architec-
ture, we can transform each clinical trial abstract
into a structured representation that supports down-
stream aggregation of results.

As there can be multiple interventions, arms
and outcomes in a given study, an important chal-
lenge is to predict how many instances of each
template occur in a given clinical trial publication.
We leave this subpart of the problem for future
work and assume that the number of interventions,
arms and outcomes is known a priori. This assump-
tion is reasonable as this information is typically
contained in existing registries for trials such as
https://www.clinicaltrials.gov/.

When assigning slot fillers to templates, it is
important to model the dependencies between the
different slots as some values might be compatible
while others not. We model this compatibility by a
trained function that predicts a compatibility score.

In summary our contributions are as follows:

• We propose a new approach to extracting evi-
dence from clinical trial publications that con-
sists in instantiating a set of pre-defined tem-
plates. As a result, the key findings of a clini-
cal trial can be represented in a fully struc-
tured and machine-readable form that sup-
ports down-stream aggregation. To the best of
out knowledge, we present the first template-
filling IE approach in the clinical trial domain.

• We present a novel two-step deep learning
based architecture that first recognizes slot
candidates and then assigns these candidates
to instances of templates. At a second step,
candidates for slot fillers are assigned to a
template instance.

• We show that it is possible to extract fine
grained candidates of slot fillers from 37
classes yielding very good results of micro
F1 = 76.21% on the Glaucoma and F1 =
76.49% the Type 2 Diabetes Mellitus (T2DM)
dataset (Sanchez-Graillet et al., 2021), respec-
tively.

• We introduce an intra-template entity compat-
ibility optimization procedure for distributing

entities to template instance of the same type.
We show the impact of including a function
for scoring the compatibility of slot assign-
ments, and show that it improves extraction
results in terms of F-Measure by 6.34% and
3.95% on the Glaucoma and T2DM dataset,
respectively.

2 Related Work

The template extraction and slot filling task we
address is related to the field of event extraction
(Frisoni et al., 2021) where the goal is to extract
so called event triggers and the arguments of the
events. Our templates can be seen as complex
events and our slots as arguments thereof.

Wang et al. (2020) adopt the question answering
paradigm to extract events from biomedical texts.
They introduce two different types of questions
for extracting event triggers and event arguments.
However, in their approach the extraction of event
arguments also relies on the extraction of event
triggers.

Adel et al. (2018) introduce a framework for task-
independent template-based information extraction.
Their approach first identifies text spans represent-
ing slot-fillers as in our approach. However, their
system relies on the successful identification of an-
chor spans representing template instances as they
cast the assignment of slot-fillers to template in-
stances as a binary classification between anchor
spans and other text spans. The slot filling system
proposed by Zhang et al. (2017) is a neural architec-
ture that can exploit the combination of semantic
similarity-based attention and position-based atten-
tion. The authors address a relation extraction task
and develop a large corpus of annotated relations,
TACRED (Zhang et al., 2017).

More recent work has framed the task of rela-
tion extraction in the biomedical field as a slot
filling task as well (Papanikolaou and Bennett,
2021). However, the work is limited to extracting
binary relationships (drug-drug, compound-drug
and compound-disease).

Early work on extracting information from text
describing clinical trials has focused on the clas-
sification of sentences into sections of papers de-
scribing Randomized Controlled Trials (RCTs), e.g.
Methods, Results, etc. (McKnight and Srinivasan,
2003; Hirohata et al., 2008; Chung, 2009). Such
systems tackle a very coarse-grained information

https://www.clinicaltrials.gov/
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Template Name #Slots Slots
Arm 7 AdverseEffect, FinalNumPatientsArm, Intervention, NumPatientsLeftArm, Num-

berPatientsArm, Outcome, RelFinalNumPatientsArm,
ClinicalTrial 15 analysesHealthCondition, AllocationRatio, AnalysisApproach, Arm, CTDesign,

CTduration, ConclusionComment, DiffBetweenGroups, EvidQualityIndicator, Fi-
nalNumberPatientsCT, NumPatientsLeftCT, NumberPatientsCT, ObjectiveDescrip-
tion, Population, RelNumPatientsLeftCT

DiffBetweenGroups 8 ConfIntervalDiff, DiffGroupAbsValue, DiffGroupRelValue, Outcome1, Outcome2,
PvalueDiff, StandardDevDiff, StandardErrorDiff

Endpoint 4 AggregationMethod, BaselineUnit, EndPointDescription, MeasurementDevice
Intervention 5 Duration, Frequency, Interval, Medication, RelativeFreqTime
Medication 6 ApplicationCondition, DeliveryMethod, DoseDescription, DoseUnit, DoseValue,

Drug
Outcome 26 BaselineValue, ChangeValue, ConfIntervalBL, ConfIntervalChangeValue, Con-

fIntervalNumAffected, ConfIntervalResValue, Endpoint, NumberAffected, Ob-
servedResult, PValueBL, PValueChangeValue, PValueNumAffected, PValueRes-
Value, PercentageAffected, RelativeChangeValue, ResultMeasuredValue, SdDe-
vBL, SdDevChangeValue, SdDevNumAffected, SdDevResValue, SdErrorBL, SdEr-
rorChangeValue, SdErrorNumAffected, SdErrorResValue, SubGroupDescription,
TimePoint

Population 7 in AvgAge, Country, Ethnicity, Gender, MaxAge, MinAge, Precondition
Publication 6 describes, Author, Journal, PMID, PublicationYear, Title

Table 1: Template types and corresponding slots

extraction task as they do not extract the actual con-
tent or results of a published RCT, but only extract
correspondences between content and the standard
sections used to describe a clinical trial in a pub-
lication. Such a sentence classification task can
support the indexation and thus retrieval of infor-
mation from a published RCT, but does not support
the use case we consider, i.e. the aggregation of
evidence across published trials.

Beyond the classification of sentences into sec-
tions of an article, other authors have considered
the classification of sentences into PICO elements,
that is classifying a sentence in a published clinical
trial with respect to whether it describes the Pop-
ulation, Intervention, Comparator or an Outcome
(Demner-Fushman and Lin, 2007; Chung, 2009;
Boudin et al., 2010; Jin and Szolovits, 2018). Such
approaches are able to extract information at a more
detailed granularity, but they still do not support
aggregation of evidence across studies as the mere
classification of sentences with respect to PICO
elements does not provide a semantic structure that
can be used to describe the key results of a study.

The work by Trenta et al. (2015) goes one step
further in that it tags spans of text in an RCT ab-
stract into the PICO classes, considering the fol-
lowing classes: patient group, intervention, arm,
control arm, measured outcome, etc. Trenta et al.
(2015) rely on maximum entropy models and use
integer linear programming to define constraints
on the classified tokens, e.g., such that Results can
not occur in the Methods section. They show that

their approach is able to extract evidence tables
from RCT abstracts. Yet, the different spans ex-
tracted are only indirectly related to each other
in the model of Trenta et al. (2015). This gap is
addressed by the approach of Nye et al. (2020),
which beyond extracting PICO elements (interven-
tion arms, outcome measures, results) also relates
the different snippets to each other, yielding a rela-
tional structure.

Inspired by the work of Trenta et al. (2015) as
well as Nye et al. (2020) we go one step further
in extracting a complete structured object from an
RCT abstract comprising of nine main template
types with overall 85 slots. To our knowledge,
this is thus the most fine-grained representation
that so far has been considered by an information
extraction system in the clinical domain.

3 Model

As already mentioned in the introduction, our pro-
posed model consists of a two-step architecture.
The first component, the entity extraction (EE)
module, identifies spans of slot filler candidates
(SFCs). We assume that we have a set of tem-
plate types T = t1, ..., t|L| which correspond to
the template types depicted in Table 1, where L
denotes the number of template types. We refer to
the slot j of template ti as si,j . The set of all slots
is S =

⋃
i,j{si,j} and the set of slots of template

type t is St =
⋃

j{st,j}.
The set of all SFCs extracted within an abstract

is denoted by E . Formally speaking, the entity
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extraction module implements a function fEE that
maps each slot filler candidate into a slot type, i.e.
fEE : E → S.

The second component, the template assignment
(TA) module, maps each slot filler to a particular in-
stance of a template. Hereby, we can have multiple
instances of a given template type. For instance, in
the general case a clinical study might describe mul-
tiple interventions, multiple endpoints and multiple
outcomes. We denote the i-th instance of template
t by T

(t)
i . The set of all template instances is thus

θ =
⋃
{T (t)

i } and the number of template instances
of template type t is denoted by mt. The second
component thus realizes a function fTA : E → θ.
We denote the template type to which SFC ej has
been assigned to as yej .

Take the following sentence as an example:
Mean 24-h IOP with BTFC was significantly lower
than with latanoprost (18.9 vs 21.2 mmHg; p <
0.001). The first component would recognize the
spans 18.9 and 21.2 and map them both to the slot
type ResultMeasuredValue. Then the TA
module assignes these identifies SFCs to template
instances of type Outcome, together with other
SCFs extracted from other sentences.

Note that both modules fully specify a mapping
from entities detected in the clinical trial abstract
to fully instantiated templates, where fEE iden-
tifies and classifies text spans into slots and fEA

identifies the appropriate instance of a template.
We describe both modules in more detail sub-

sequently. In particular, as the assignment of text
spans to slots and template instances should not be
modelled completely independently, we introduce
an additional component that computes an overall
score for a given template instance that quantifies
the compatibility of the assigned text spans to all of
the slots of the template instance. These scores can
be regarded as factors as used in factor graph mod-
els (Kschischang et al., 2001). In order to reduce
the complexity, we model the interaction between
different slots in a pairwise fashion, limiting the
scope of these factors to two slots.

3.1 Entity Extraction Module

The entity extraction module identifies token spans
in the input document which either represent named
entities or literals. The extracted token spans are
later assigned to slots by the module described
in section 3.2. We represent documents D by a
sequence of sentences (s1, . . . , snS ) where each

sentence si in turn is represented by a sequence of
tokens (w

(si)
1 , . . . , w

(si)
nsi

) , where nS denotes the
number of sentences in document D and nsi de-
notes the number of tokens of sentence si. We
adopt the Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019)
architecture for computing contextualized token
representations within the input document. A
BERT layer is a stack of K identical Transform-
ers (Vaswani et al., 2017) which captures pairwise
token dependencies via an attention mechanism.
Since most BERT implementations limit the length
of input sequences by kmax, we split the sequence
of sentences of the input document into nC subse-
quences (chunks) if the number of tokens of the
document exceeds this upper bound. We use the
special token [SEP ] to separate sentences within
a given chunk ci and prepend the special token
[CLS] to each chunk which allows for capturing
global context information for each chunk. The
output for chunk ci of the K-th Transformer of the
BERT layer is a sequence of contextualized vectors
h
(ci)
1 , . . . ,h

(ci)
nci

∈ Rdbert , where the vector h
(ci)
j

represents the j-th token of chunk ci, dbert denotes
the dimension of the BERT model and nci denotes
the number of tokens in chunk ci.

Entity extraction is implemented through two
dense layers which independently predict which
tokens are start and/or end positions of entities
which are referenced by a slot. This is achieved
by using the set of slots S as entity types. Then
the predicted entity type indirectly specifies the
type of the template the entity has to be assigned to
since no pair of template types shares the same set
of slots. More formally, the two dense layers are
given by

ŷ
(ci)
j,start = softmax(Wstarth

(ci)
j + bstart) (1)

ŷ
(ci)
j,end = softmax(Wendh

(ci)
j + bend) (2)

where Wstart,Wend ∈ R(|S|+1)×dbert ,
bstart,bend,∈ Rdbert .

The prediction of the slot is performed as fol-
lows:

ŷ
(ci)
j,start = argmax ŷ

(ci)
j,start

ŷ
(ci)
j,end = argmax ŷ

(ci)
j,end

At inference time we join the predicted start and
end positions by assigning the closest predicted end
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position pend of type t within the same sentence to
each predicted start position pstart of type t under
the constraint pstart <= pend.

Finally we compute a vector representation ek
for each extracted SFC ek by summing the vectors
hci
j of the corresponding start and end tokens of

the SFC, followed by a dense layer with a ReLu
activation function (Agarap, 2018).

3.2 Template Assignment Module
The TA module described in this section assigns
each SFC ej ∈ E extracted by the entity extraction
module to a template in θ. As we know the slot yej
that ej has been assigned to, the template type t of
yej determines the subset θt of template instances
in the set θ that ej can be assigned to. This reduces
the search space considerably and essentially al-
lows us to model the template assignment task as
the one of inducing a partition.

Let’s assume that SFCs are grouped into |L|
disjoint subsets E1, . . . , E|L| according to their type
t, that is:

Et = {ej ∈ E | yej ∈ St}, t ∈ L (3)

The task of template assignment can be reduced
to the task of partitioning each set Et into a partition
Pt = {T (t)

1 , . . . , T (t)
mt } of Et where each set T (t)

i

contains the SFCs assigned to template instance
T
(t)
i .
We call a partition Pt of the set Et valid if each

SFC ej ∈ Et is assigned to exactly one partition
T (t)
i ∈ Pt and we denote the set of all valid parti-

tions for the set Et as Ut.
We propose a pairwise intra-template entity com-

patibility optimization objective which measures
the joint compatibility of the SFCs within the sets
T (t)
i of a partition. Let q : E × E → [0, 1] de-

note the function which measures the compatibility
between two SFCs ej , ek, where q(ej , ek) = 1
means maximal compatibility and q(ej , ek) = 0
means minimal compatibility. Note that we as-
sume that q is symmetric in its arguments, i.e.,
q(ej , ek) = q(ek, ej). Then the mean pairwise en-
tity compatibility score h(T (t)

i ) for the set T (t)
i is

given by

h(T (t)
i ) =

1
mt!

2(mt−2)!

∑
ej ,ek∈T

(t)
i ,j<k

q(ej , ek) (4)

and the compatibility score for partition Pt is the
sum of the mean pairwise compatibility scores of

each template set T (t)
i ∈ Pt:∑

T (t)
i ∈Pt

h(T (t)
i ) (5)

Given these definitions, we seek the partition P̂t ∈
Ut which maximizes the compatibility score de-
fined by Eq. (5). Hence the optimization problem
proposed by our approach is given by

P̂t = arg max
Pt∈Ut

∑
T (t)
i ∈Pt

h(T (t)
i ) (6)

for all template types t ∈ L. For arbitrary large
entity sets Et, the sets Ut of valid partitions can
become very large because of the combinatorial
explosion, and hence finding the exact solution
of the optimization problem defined by Eq. (6)
can become intractable. Therefore we propose an
approximate optimization method based on beam
search which maintains a set B(z)

t of nB candidate
solutions in each iteration z which are gradually re-
fined. We define a candidate solution i for template
type t as a pair (E(i)

t ,P(i)
t ), where P(i)

t denotes the
candidate partition and E(i)

t ⊆ Et denotes the set of
entities of that candidate solution which are not yet
assigned to any template set T (t)

i ∈ P(i)
t . In each

iteration z, we compute all successors of all can-
didate solutions (E(i)

t ,P(i)
t ) ∈ B(z)

t by assigning
an entity ej ∈ E(i)

t to a template set T (t)
i ∈ P(i)

t ,
which yields a set of new candidate solutions B̃(z)

t .
Next we rank all candidate solutions in B̃(z)

t by
computing the mean intra-template entity compat-
ibility score defined by Eq (5) for each candidate
partition of the respective candidate solutions and
keep only the best nB ones, which yields the new
beam B(z+1)

t for the next iteration. After all entities
for template type t have been assigned to a tem-
plate after Z iterations, the partition P(i)

t of the best
ranked final candidate solution (E(i)

t ,P(i)
t ) ∈ B(Z)

t

is returned. The initial seed sets B(0)
t of candidate

solutions for each template type t are given by

B(0)
t = {(Et, {T (t)

i }mt
i=1)}, T (t)

i = {} (7)

More details of the optimization procedure can be
found in algorithm 1.

We implement the pairwise entity compatibility
function q(ei, ej) through summing the vector rep-
resentations ei and ej of the corresponding entities
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Data: Set of SFCs E ; entity compatibility function g;
beam size nB

Result: Partitions Pi, . . . ,P|L|
for t ∈ L do

Compute set of SFCs Et for template type t by
Eq. (3)

Compute beam seed set B(0)
t defined by Eq. (7)

z ← 0
for i ∈ {1, . . . , |Et|} do

Initialize set of successor candidate
solutions B̃(z)

t as empty set
for (E(i)t ,P(i)

t ) ∈ B(z)
t do

for ek ∈ E(i)t do
for T (t)

j ∈ P(i)
t do

Remove ek from E(i)t which
yields the set Ẽ(i)t

Add ek to set T (t)
j which

yields T̃ (t)
j

Replace T (t)
j in P(i)

t by T̃ (t)
j

which yields P̃(i)
t

Add new candidate solution
(Ẽ(i)t , P̃(i)

t ) to set B̃(z)
t

end
end

end
Rank all candidate solutions in B̃(z)

t by Eq.
(5)

Keep the best ranked nB candidate solutions
from B̃(z)

t which yields new batch B̃(z)
t

z ← z + 1
end
Get best ranked candidate solution (Ê(i)t , P̂(i)

t )

from B(|Et|)
t

Pt ← P̂(i)
t

end
Algorithm 1: Pseudo-code of our proposed ap-
proximate optimization method for maximizing
the mean intra-template entity compatibility
when assigning the extracted entities to tem-
plates

followed by a dense layer with sigmoid activation
function. More formally:

q̂(ei, ej) = σ(wcomp ⊙ (ei + ej) + bcomp) (8)

where wcomp ∈ Rdbert , bcomp ∈ R and ⊙ denotes
the scalar product of two vectors.

3.3 Model Training

We train the model in end-to-end fashion by jointly
minimizing the loss of the EE module and the TA
module. The loss LEE of the EE module is given
by the cross entropy between the predicted SFC
start position ŷ

(ci)
j,start and ground truth SFC start

position y
(ci)
j,start plus the cross entropy between

predicted SFC end positions ŷ(ci)
j,end and the ground

truth SFC end positions y(ci)
j,end.

The loss LTA of the TA module is given by the
cross entropy between the ground truth compatibil-
ity scores q∗(ei, ej) and the predicted compatibility
scores q̂(ei, ej) for all pairs of SFCs (ei, ej) in a
given training set. If two SFCs ei are assigned
to the same template instance in the gold standard,
then q∗(ei, ej) = 1, otherwise q∗(ei, ej) = 0, Note
that we only consider pairs of slot-filler candidates
which are assigned to the same template type.

The complete model is trained by minimizing the
loss LEE +LTA with respect to model parameters
which are given by the parameters of the BERT
encoder, the parameters of the dense layers defined
by (1), (2), (8) and the parameters of the layer
which is used to compute the vector representation
ek of the SFCs.

4 Experiments

We conduct experiments on two public datasets
(Sanchez-Graillet et al., 2021) which contain RCT
abstracts from the Glaucoma and Type 2 Diabetes
Mellitus (T2DM) domain, respectively. The cor-
pora of both datasets are annotated at two levels: At
the first level, salient entities which describe com-
ponents of the PICO elements are annotated. The
second level comprises template-based annotations
of complex PICO elements and their interactions.

4.1 Experimental Setting

In all our experiments, we use a BERT model pre-
trained on biomedical and life sciences literature
abstracts 1. We use the same train/validation/test
split as in (Sanchez-Graillet et al., 2021), Table 2
shows the number of abstracts included in the train,
validation and test sets of the respective datasets.
All models are trained with the AdamW optimizer
(Loshchilov and Hutter, 2017) for 30 epochs with
an inital learning rate of 3 ∗ 10−5 and with a lin-
ear warm-up phase over the first 10% of training
steps. Further, we use batches of exactly one ab-
stract and set the beam size of the intra-template
compatibility optimization algorithm depicted in 1
to 50.

We score a predicted SFC as correct if there is
a SFC in the corresponding sentence in the test set
with the same label, start and end position. Further,
we use the Hungarian algorithm (Kuhn, 1955) for
aligning predicted and ground truth templates for

1https://tfhub.dev/google/experts/bert/pubmed/2
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Table 2: Number of abstracts in the train, validation and test sets

# Abstracts training set # Abstracts validation set # Abstracts test set
Glaucoma 69 17 21
T2DM 68 16 20

each template class, using the pairwise micro F1 as
optimization objective.

As a baseline, we implement a greedy assign-
ment approach to assign SFCs to template in-
stances: Given the set Et of extracted SFCs for
template type t, we repeatedly loop over the tem-
plate instances T k

t , randomly pick a SFC from ET ,
assign this entity to T k

t and remove it from Et. This
is repeated until the set Et is empty, i.e., all SFCs
for template type t have been assigned.

4.2 Results

Extraction of slot filler candidates: Our ap-
proach can extract 37 types of slot filler candi-
dates (see Table 1). The results in terms of Pre-
cision, Recall and F-Measure for all slot types are
given in Table 8 in the Appendix. Overall, the
model yields a micro-averaged F-Measure of 0.80
(P=0.80, R=0.73) on the Glaucoma dataset as well
as F=0.76 (P=0.80, R=0.73) on the T2DM dataset.
Table 3 shows the top 10 slot types with the best
extraction results. Similarly, table 4 shows the five
slot types with the worst prediction results.

Template extraction: Table 8 in the Appendix
shows the prediction results of the SFCs on the
Glaucoma and T2DM test sets. The entries "-" in-
dicate that the corresponding slots are not used in
the respective data set. Table 5 shows the aggre-
gated results over each template type by averaging
the F-values for all slots of the corresponding tem-
plate. Note that Table 5 only contains template
types which could have more than one instance,
whereas Table 1 shows all template types. Over-
all, our proposed model yields a micro F1 score of
62.27% on the Glaucoma corpus and 64.38% on
the T2DM corpus, with a gain of 6,34% in micro-
averaged F1 compared to greedy assignment on
the Glaucoma dataset and 3,95% on the T2DM
dataset, showing the superiority of our proposed
intra-template entity compatibility (ITC) algorithm.
For both datasets, the instances of template Arm are
extracted best with mean F1 of 91% and 93% on
the Glaucoma and T2DM dataset, respectively. The
templates types that have the worst performance are
Endpoint for the Glaucoma dataset (mean F=48%)

Table 3: Top 10 slot types for the Glaucoma and T2DM
datasets

Slot Name F1

Glaucoma
PMID 1.00
PublicationYear 1.00
RelativeChangeValue 1.00
SdErrorChangeValue 1.00
Title 0.94
SdDevResValue 0.94
NumberPatientsCT 0.93
ChangeValue 0.92
HealthCondition 0.91
NumberPatientsArm 0.91

T2DM
NumberAffected 1.00
PMID 1.00
PublicationYear 1.00
Journal 0.97
PercentageAffected 0.95
Author 0.94
NumberPatientsArm 0.93
NumberPatientsCT 0.93
ChangeValue 0.90
CTDesign 0.88

Table 4: Slot types with the worst prediction results for
the Glaucoma and T2DM datasets

Slot Name F1

Glaucoma
ObservedResult 0.00
Drug 0.27
Precondition 0.28
PointDescription 0.32
ObjectiveDescrip- 0.49

T2DM
ConfIntervalDiff 0.00
ObservedResult 0.00
SdDevChangeValue 0.25
SdDevBL 0.38
Precondition 0.41
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h

Table 5: Aggregated slot-filling results (mean F1 and overall micro F1) (ITC=Intra-Template Compatibility)
Glaucoma T2DM

Greedy Assignment ITC Greedy assignment ITC
DiffBetweenGroups 0.58 0.64 0.47 0.48
Arm 0.85 0.91 0.93 0.93
Intervention 0.53 0.73 0.68 0.58
Medication 0.89 0.89 0.57 0.77
Outcome 0.41 0.61 0.47 0.44
Endpoint 0.51 0.48 0.56 0.60
Micro Average 0.56 0.62 0.60 0.64

and Outcome for the T2DM dataset (mean F=44%).
On the Glaucoma dataset, for four out of six

template types, our proposed ITC algorithm yields
better performance than the greedy assignment in
terms of mean F1, for one template type (Medi-
cation) the performance is equal and for one out
of six template types the performance is worse.
On the T2DM dataset, for three out of six tem-
plate types our ITC algorithm performs better than
greedy assignment, for one template type (Arm)
the performance is equal and and for two out out
six template types the performance is worse.

We also conducted a study simulating perfect en-
tity extraction by performing the second step with
gold standard SFCs. The results in Table 6 show
that results are significantly better with perfect SFC
identification, yielding an increase of more than
0.20 points in micro averaged F-Measure for the
Glaucoma dataset and more than 0.15 points on the
T2DM dataset. This shows the importance of good
entity recognition and extraction models.

Table 7 shows the effect of the beam size on the
template extraction results. Overall, we see that the
beam size has a negligible effect on the results.

Case study: As a case study, we compare the
predicted structure to the gold standard structure
for one published clinical trial in the test set of the
T2DM corpus. We cherry pick the study with the
best results in terms of micro-averaged F1, that is
F1 = 0.85. The selected paper is the publication
by Shankar et al. (2017). Table 10 contrasts the in-
stances of templates specified in the gold standard
vs. the instances of templates extracted by our ap-
proach. Overall, the results are very good, clearly
showing the potential of our approach and hinting
at the fact that the task can be solved to a satisfac-
tory extent. Regarding the Population studied in
the paper, our method can extract a corresponding

condition, but is not able to explicitly extract the
countries in which the population was recruited
(USA, Australia). With except of the health condi-
tion (type 2 diabetes mellitus), all other elements
describing the characteristics of the Clinical Trial
are extracted correctly. Most of the relevant end-
points are extracted correctly, albeit not always the
correct units are extracted. Two endpoints are con-
flated into one: fasting plasma glucose and 2 - h
post - meal glucose with the result that one end-
point has a unit (mg/dl) but no endpoint description.
The medications for the two arms (sinagliptin vs.
placebo) are extracted correctly. The dose value
of sinagliptin is mistaken for the dose value of the
placebo unfortunately. Most of the outcome val-
ues are extracted correctly, but the percentage of
patients affected is not extracted. The p values re-
porting significance of results when comparing the
two arms / groups are extracted perfectly.

Table 11 shows the instances of templates speci-
fied in the gold standard vs. the instances of tem-
plates extracted by our approach for the abstract
from the T2DM test set with the worst prediction
result in terms of micro F1 = 0.57. The corre-
sponding publication can be found in (Klein et al.,
2014). Although our system gets the Publication
metadata, the Clinical Trial design, Arms and Med-
ications right to a great extent, it makes a number
of important errors in the categories Endpoints and
Outcomes.

5 Conclusion

We have presented a twp-step neural architecture
based on a transformer model that can induce a
structured representation from an abstract describ-
ing a Randomized Controlled Trial (RCT). The
architecture performs extraction of candidate slot
fillers as a first step by identifying spans of 37
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Table 6: Aggregated slot-filling results comparing the settings with perfect entity recognition using gold standard
entity annotations and entity recognition by our model (mean F1 and overall micro F1)

Glaucoma T2DM
Ground Truth SFCs Predicted SFCs Ground Truth SFCs Predicted SFCs

DiffBetweenGroups 0.87 0.64 0.77 0.48
Arm 1.00 0.91 1.00 0.93
Intervention 0.83 0.73 1.00 0.58
Medication 0.92 0.89 0.93 0.77
Outcome 0.69 0.61 0.59 0.44
Endpoint 0.90 0.48 0.82 0.60
Micro Average 0.83 0.62 0.81 0.64

Table 7: Effect of the beam size on template extraction results (mean F1 and overall micro F1)

Glaucoma T2DM
10 20 30 40 50 10 20 30 40 50

DiffBetweenGroups 0.64 0.60 0.60 0.60 0.64 0.50 0.48 0.48 0.47 0.48
Arm 0.91 0.91 0.91 0.91 0.91 0.93 0.93 0.93 0.93 0.93
Intervention 0.73 0.73 0.73 0.73 0.72 0.58 0.58 0.58 0.58 0.58
Medication 0.89 0.89 0.89 0.89 0.77 0.77 0.79 0.79 0.77 0.77
Outcome 0.58 0.61 0.57 0.56 0.61 0.42 0.43 0.42 0.43 0.44
Enpoint 0.48 0.48 0.48 0.48 0.48 0.62 0.61 0.60 0.62 0.60
Micro Average 0.62 0.62 0.62 0.62 0.62 0.64 0.64 0.64 0.64 0.64

different classes. At a second step, it assigns the
extracted candidate slot fillers into nine main tem-
plates. We have shown that our approach can ex-
tract candidate slot fillers reliably, yielding micro
F-Measures of 76.21% and 76.49% on our Glau-
coma and T2DM dataset, respectively. In terms
of extraction of templates, our approach yields mi-
cro F-measures of 62.27% and 64.38% averaged
over all slots on our Glaucoma and T2DM dataset,
respectively. The structure of our templates is in-
spired by the C-TrO ontology (Sanchez-Graillet
et al., 2019) and induces the most fine-grained and
accurate representation of a published RCT that
has been considered so far by any information ex-
traction system. In future work we intend to show
that our information extraction approach indeed
supports the aggregation of results across clinical
trials. Further, we plan to use the intra-template
compatibility scores to infer the number of tem-
plate instance for template types which could have
several instances. This can be regarded as an ad-
ditional layer on top of our proposed optimization
algorithm. In addition, we plan to predict links
between template instances.
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A Supplementary Material

Table 8: Results of the slot-filler candidate extraction on the Glaucoma and T2DM test sets

Glaucoma T2DM
Slot Name Precision Recall F1 Precision Recall F1

analysesHealthCondition 0.97 0.86 0.91 0.64 0.58 0.61
Author 1.00 1.00 1.00 0.88 1.00 0.94
BaselineUnit 0.62 0.48 0.54 0.81 0.81 0.81
BaselineValue 0.90 0.67 0.77 0.80 0.60 0.69
CTDesign 0.76 0.83 0.79 0.85 0.91 0.88
CTduration 0.84 0.94 0.89 0.80 0.84 0.82
ChangeValue 0.97 0.88 0.92 0.90 0.90 0.90
ConclusionComment 0.85 0.79 0.81 0.83 0.31 0.45
ConfIntervalDiff - - - 0.00 0.00 0.00
Country 0.81 0.89 0.85 0.89 0.44 0.59
DiffGroupAbsValue 0.75 0.67 0.71 0.84 0.70 0.76
DoseUnit 0.61 0.82 0.70 0.84 0.80 0.82
DoseValue 0.72 0.68 0.70 0.87 0.73 0.80
Drug 0.40 0.21 0.27 0.84 0.76 0.80
EndPointDescription 0.32 0.33 0.32 0.68 0.80 0.74
Frequency 0.89 0.71 0.79 0.71 0.57 0.63
Journal 0.76 0.76 0.76 1.00 0.95 0.97
NumberAffected 0.63 1.00 0.77 1.00 1.00 1.00
NumberPatientsArm 0.88 0.94 0.91 1.00 0.87 0.93
NumberPatientsCT 0.93 0.93 0.93 0.93 0.93 0.93
ObjectiveDescription 0.56 0.43 0.49 0.50 0.44 0.47
ObservedResult 0.00 0.00 0.00 0.00 0.00 0.00
PMID 1.00 1.00 1.00 1.00 1.00 1.00
PValueChangeValue 0.50 0.75 0.60 0.83 0.45 0.59
PercentageAffected 0.82 0.95 0.88 0.96 0.94 0.95
Precondition 0.42 0.22 0.29 0.57 0.32 0.41
PublicationYear 1.00 1.00 1.00 1.00 1.00 1.00
PvalueDiff 0.49 0.68 0.57 0.82 0.94 0.88
RelativeChangeValue 1.00 1.00 1.00 - - -
RelativeFreqTime 0.44 0.67 0.53 - - -
ResultMeasuredValue 0.85 0.79 0.82 0.75 0.95 0.84
SdDevBL 1.00 0.67 0.80 0.60 0.27 0.38
SdDevChangeValue 0.89 0.67 0.76 0.22 0.29 0.25
SdDevResValue 0.87 1.00 0.93 0.41 1.00 0.58
SdErrorChangeValue 1.00 1.00 1.00 - - -
TimePoint 0.60 0.71 0.65 0.63 0.57 0.60
Title 1.00 0.88 0.94 0.77 0.77 0.77
micro average: 0.80 0.73 0.76 0.80 0.73 0.77



190

Table 9: F1 scores of the assignment of slot-filler candidates to template instances on the Glaucoma and T2DM test
sets. The ITC (Intra-Template Compatibility) columns show the results of our proposed method

Glaucoma T2DM
Slot Name Greedy Assignment ITC Greedy Assignment ITC

DiffBetweenGroups
ConfIntervalDiff - - 0.00 0.00
PvalueDiff 0.57 0.57 0.83 0.83
DiffGroupAbsValue 0.59 0.71 0.58 0.62
mean 0.58 0.64 0.47 0.48

Arm
NumberPatientsArm 0.85 0.91 0.93 0.92
mean 0.85 0.91 0.93 0.93

Intervention
Frequency 0.79 0.79 0.68 0.58
RelativeFreqTime 0.27 0.67 - -
mean 0.53 0.73 0.68 0.58

Medication
Drug 0.37 0.34 0.73 0.83
DoseValue 0.70 0.65 0.46 0.63
DoseUnit 0.71 0.79 0.49 0.87
mean 0.89 0.89 0.57 0.77

Outcome
ResultMeasuredValue 0.44 0.41 0.61 0.56
TimePoint 0.55 0.50 0.55 0.35
PValueChangeValue 0.40 0.42 0.59 0.59
PercentageAffected 0.65 0.65 0.72 0.89
SdErrorChangeValue 0.29 1.00 - -
BaselineValue 0.39 0.69 0.34 0.46
SdDevBL 0.56 0.80 0.25 0.13
RelativeChangeValue 0.00 1.00 - -
ChangeValue 0.79 0.73 0.73 0.71
SdDevResValue 0.37 0.74 0.42 0.42
NumberAffected 0.46 0.46 0.88 0.50
SdDevChangeValue 0.48 0.57 0.13 0.25
ObservedResult 0.00 0.00 0.00 0.00
mean 0.41 0.61 0.47 0.44

Endpoint
EndPointDescription 0.29 0.28 0.56 0.63
BaselineUnit 0.73 0.68 0.55 0.57
mean 0.51 0.48 0.60 0.64
micro average 0.56 0.62 0.60 0.64
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Gold Standard Predicted
Population

Country usa, australia
Precondition chinese patients with type 2 diabetes

mellitus receiving stable insulin therapy
alone or in combination with metformin

patients with inadequate glycemic con-
trol on insulin ( glycated hemoglobin
(hba1c) at 7.5% and at 11% )

Publication
Author shankar rr | bao y | han p | hu j | ma j |

peng y | wu f | xu l | engel ss | jia w
engel ss | shankar rr | bao y | han p | hu j
| ma j | peng y | wu f | xu l | jia w

Journal j diabetes investig j diabetes invest ig .
PMID 27740719 27740719
PublicationYear 2017 2017
Tile sitagliptin added to stable insulin ther-

apy with or without metformin in chi-
nese patients with type 2 diabetes .

sitagliptin added to stable insulin ther-
apy with or without metformin in chi-
nese patients with type 2 diabetes .

Clinical Trial
healthCondition type 2 diabetes mellitus
Design randomized randomized
Duration 24 weeks 24 weeks
NumberPatients 467 467
ObjectiveDescription we evaluated the tolerability and efficacy

of the addition of sitagliptin in chinese
patients with type 2 diabetes mellitus
receiving stable insulin therapy alone or
in combination with metformin.

we evaluated the tolerability and efficacy
of the addition of sitagliptin in chinese
patients with type 2 diabetes mellitus
receiving stable insulin therapy alone or
in combination with metformin .

Endpoints
BaselineUnit: %
EndPointDescription hba1c hba1c
EndPointDescription hba1c of < 7.0% hba1c of < 7.0%
BaselineUnit mg / dl mg / dl
EndPointDescription 2 - h post - meal glucose fasting plasma glucose, 2 - h post - meal

glucose
BaselineUnit mg / dl mg/dl
EndPointDescription fasting plasma glucose
BaselineUnit mg / dl
EndPointDescription hypoglycemia ( symptomatic or asymp-

tomatic)
hypoglycemia

BaselineUnit:
EndPointDescription bodyweight bodyweight

Medications
DoseUnit mg mg
DoseValue 100
Drug sitagliptin sitagliptin
DoseUnit 100
DoseValue
Drug placebo placebo

Outcomes
ChangeValue 0.7
ChangeValue 0.3 0.3
PercentageAffected 16
TimePoint week 24 week 24
PercentageAffected 8
ChangeValue 26.5 26.5
ChangeValue 14.4 14.4
ChangeValue 10.7 10.7
NumberAffected 64
PercentageAffected 27.4 27.4
NumberAffected 51
PercentageAffected 21.9 21.9, 8
ObservedResult neither group had a significant change

from baseline in bodyweight.
Differences between groups

PvalueDiff p < 0.001 p < 0.001
PvalueDiff p = 0.013 p = 0.013
PvalueDiff p < 0.001 p < 0.001

Table 10: Predicted and gold standard structures for the abstract of the clinical trial described in Shankar, R Ravi et
al. “Sitagliptin added to stable insulin therapy with or without metformin in Chinese patients with type 2 diabetes.”
Journal of diabetes investigation vol. 8,3 (2017): 321-329. doi:10.1111/jdi.12585; within one template type,
horizontal lines separate different instances of the same template type
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Gold Standard Predicted
Population

AvgAge 14 . 8
Country ohio
MaxAge 17
MinAge 10
Precondition youth treated with diet / exercise alone

or with metformin and having a hemoglo
bin a1c ( hba1c ) level of 6 . 5 - 11 %;
youth

Publication
Author battelino t; arslanian s; jacobsen lv; chat-

terjee dj; klein dj; hale pm
lopez x; neufeld n; battelino t; blumer j;
arslanian s; bone m; randell t; jacobsen
lv; chatterjee dj; hazan l; ferry r; chris-
tensen m; tsalikian e; toltzis p; de schep-
per j; wadwa rp; wintergerst k; klein dj;
barrett t; hale pm

Journal diabetes technol ther . diabetes technol ther .
PMID 25036533 25036533
PublicationYear 2014 2014

Clinical Trial
analysesHealthCondition type 2 diabetes type 2 diabetes
CTDesign randomized | double - blind randomized
CTduration 5 weeks 5 weeks

Arms
NumberPatientsArm 14 14
NumberPatientsArm 7 7

Endpoints
EndPointDescription severe hypoglycemia hba1c
EndPointDescription gastrointestinal aes
EndPointDescription hba1c
BaselineUnit % %
EndPointDescription body weight
BaselineUnit kg kg

Medications
DoseUnit mg mg
Drug liraglutide placebo | liraglutide

Outcomes
ObservedResult no serious adverse events
hasSdDevBL 35 . 6
ObservedResult were most common at lower liraglutide

doses during dose escalation .
TimePoint 5 weeks
ResultMeasuredValue 12
BaselineValue 113 . 2
ResultMeasuredValue 1 . 7 1 . 7 | 0 . 3
ChangeValue 0 . 86 0 . 86
TimePoint 5 weeks
ChangeValue 0 . 04 0 . 50 | 0 . 04
ChangeValue 0 . 50
BaselineValue 8 . 1
ChangeValue 0 . 54 0 . 54

Differences between groups
hasPvalueDiff p = 0 . 9703 p = 0 . 9703
hasPvalueDiff p = 0 . 0007 p = 0 . 0007

Table 11: Predicted and gold standard structures for the abstract of the clinical trial described in Klein, David J
et al. "Liraglutide’s safety, tolerability, pharmacokinetics, and pharmacodynamics "pediatric type 2 diabetes: a
randomized, double-blind, placebo-controlled trial" Diabetes technology & therapeutics vol. 16,19 (2014): 679-687.
doi:10.1089/dia.2013.0366; within one template type, horizontal lines separate different instances of the same
template type; "|" separates SFCs
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