
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022), pages 101 - 106
July 15, 2022 c©2022 Association for Computational Linguistics

Structural information in mathematical formulas for exercise difficulty
prediction: a comparison of NLP representations

Ekaterina Loginova
Ghent University

ekaterina.loginova@ugent.be

Dries F. Benoit
Ghent University

dries.benoit@ugent.be

Abstract
To tailor a learning system to the student’s
level and needs, we must consider the charac-
teristics of the learning content, such as its dif-
ficulty. While natural language processing al-
lows us to represent text efficiently, the mean-
ingful representation of mathematical formu-
las in an educational context is still understud-
ied. This paper adopts structural embeddings
as a possible way to bridge this gap. Our
experiments validate the approach using pub-
licly available datasets to show that incorporat-
ing syntactic information can improve perfor-
mance in predicting the exercise difficulty.

1 Introduction

Online learning platforms aim to provide person-
alised tutoring at scale using data-driven personali-
sation (Romero and Ventura, 2010). A key compo-
nent of a personalised system is a recommendation
algorithm that suggests the next learning activity.
To ensure that the recommendation is tailored to
the student’s level and learning needs, not only
should the student’s ability level model be consid-
ered, but also the learning content characteristics,
such as its difficulty. Learning content can contain
multiple media types (images, text, formulas), each
of which must be converted to a numeric format
compatible with machine learning models. While
natural language processing (NLP) and computer
vision allow us to efficiently represent texts and
images, the meaningful representation of formulas
in an educational context is still understudied. This
paper proposes a method for representing mathe-
matical expressions (considered as a form of text)
based on an structural embeddings and investigates
its effectiveness in predicting exercise difficulty.

2 Related work

Research directions in mathematics can be broadly
categorised into three branches: generation, assess-

ment and solving. In each task, we need to rep-
resent a mathematical exercise that may include
a text description, a formula, and a picture. The
majority of works in this area focuses on word prob-
lems that can be represented as bag-of-words (John
et al., 2015) (optionally with binary indicators of
whether the word is a mathematical term). Such
a representation allows the use of rich semantic
taggers that provide additional information about
lexical units, such as their degree of concreteness or
associated emotions (Slater et al., 2016). However,
semantic taggers are usually developed for general
language use rather than for a specialised domain
such as mathematics with its large variety of spe-
cial characters. Previous work accommodated this
by manually introducing additional mathematical
symbols to be parsed (Slater et al., 2016) or by con-
sidering entire mathematical expressions as tokens,
an approach called bag-of-expressions (Lan et al.,
2015). However, such an approach ignores the or-
der of mathematical symbols. A possible extension
is to use n-grams to represent chunks of symbols,
thus preserving partial information about their or-
der (Jurafsky and Martin, 2009). Its downside is
that it is limited by the chosen length of the n-gram
and thus cannot fully account for deeply nested
expressions. In short, these approaches to repre-
senting content tend to be simplistic and do not
allow syntactic or semantic information to be fully
exploited. Therefore, previous research suggests
that hierarchical representations should be used to
capture deep features and generate higher quality
content features (Li et al., 2013), an observation
that motivates our study.

In natural language processing, the next level
of representation after n-grams is a parse tree of
a sentence. It captures syntactic information by
representing words as nodes connected by syntac-
tic dependencies: for example, an adjective used
as a modifier of a noun. Similar to a natural lan-

101

S

NP VP

He V A

is kind

+

1 *

2x

Figure 1: Left: a parse (constituency) tree for the sen-
tence “He is kind” (simplified). Right: a parse tree for
the mathematical expression 1 + 2*x. Leaf nodes
are in bold.

guage utterance, a mathematical formula can be
represented by such a parse tree (Li et al., 2012).
Algebraic trees have been successfully used to au-
tomatically solve algebra problems with template
approaches (Roy and Roth, 2017; Huang et al.,
2017). More recent approaches aim at generalis-
able solutions, for example, by using knowledge
graphs (Zhao et al., 2019). Hierarchic represen-
tations have rarely been used for the task of pre-
dicting exercise difficulty. The approach closest to
ours is using AST parse trees to analyse Python pro-
grams (Paaßen et al., 2021). However, mathemati-
cal formulas present their own unique challenges:
for example, different formats for writing formu-
las, which can vary across datasets, even when the
same typesetting system (e.g., LaTeX) is used. In
addition, formulas use domain-specific alphabet
and are much shorter than typical coding exercises.

This paper compares possible ways to encode
syntactic information in mathematical exercises
and adopts the structural embeddings approach to
represent mathematical formulas (Liu et al., 2017).
Each sentence is represented as a constituency
parse tree. In such a tree for a natural language
utterance, the non-terminal nodes correspond to
grammatical relations (for example, NP stands for
“noun phrase”), while the leaf nodes contain words.
Each word is then represented as a sequence of
nodes in a parse tree from its leaf to the root of
the sentence. For example, if we want to represent
the word “kind” in the sentence “He is kind”, we
construct the parse tree (Figure 1) and obtain the
corresponding syntactic sequence [S, VP, A].
A representation obtained this way captures hierar-
chical information while facilitating the use of stan-
dard neural network models, e.g., an LSTM (Long-
Short Term Memory) (Hochreiter and Schmidhu-

ber, 1997). We refer the reader to the original paper
for architectural details and intuition behind them.
Generally speaking, it encodes a variable-length
syntactic sequence into a fixed-length vector rep-
resentation — the syntactic-semantic embeddings
— and the final hidden state serves as input to a
decision-making model.

3 Data

The experiments are conducted on two datasets: a
recently released MATH (Hendrycks et al., 2021)1

and a synthethic DeepMind Mathematics(Saxton
et al., 2019)2, one of the largest publicly available
datasets for mathematics in educational data min-
ing.

The DeepMind dataset consists of question and
answer pairs, and each pair has a label correspond-
ing to the difficult level, easy or hard. An advantage
of this dataset is its clear and unified formatting: ex-
ercise often have a consistent phrasing that mostly
differs on a formula step, which allows us to have
a clearer comparison of how effective different for-
mula representations are. For our experiments, we
used a subset of 37 244 problems, covering a broad
range of topics: algebra, arithmetic, calculus, com-
parison, numbers, polynomials. 18 608 problems
are of high level and 18 636 are of low. Word
descriptions are in English and formulas are not
specifically separated but can be extracted using
regex-based approach due to limited variability of
the rest of the sequence.

The MATH dataset contains 12 498 problems
from mathematics competitions in the US. Prob-
lems are labelled with five levels of difficulty (1001,
2242, 2723, 2904 and 3628 problems, respectively)
and cover the following topics: Algebra, Count-
ing & Probability, Geometry, Intermediate Algebra,
Number Theory, Prealgebra, Precalculus. Word de-
scriptions are in English and formulas are written
in LaTeX and defined by $ operators.

4 Methodology

4.1 Data representation
As mentioned above, each exercise contains a tex-
tual description and a formula. For example, it can
be the following task: Calculate sqrt(121)
- sqrt(36). In our case, a parse tree can be
extracted with open-source libraries, such as AST

1https://github.com/hendrycks/math
2https://github.com/deepmind/

mathematics_dataset

102

https://github.com/hendrycks/math
https://github.com/deepmind/mathematics_dataset
https://github.com/deepmind/mathematics_dataset

and SymPy3. A notable challenge at this step is
the wide variety of notation conventions that ren-
ders converting a formula without errors a non-
trivial problem. For example, differentiation can be
written using f\ˆ{\prime}(x) or $f’(x)$.
Quite often, multiplication symbols are omitted or
individual symbols are encoded; there might be sev-
eral pieces of formula expressions per exercise. As
a result, running a popular converter latex2sympy4

on the MATH dataset results in only 1673 correctly
parsed formulas out of 12500 (13% success rate).
While natural language processing tasks such as
tokenisation are well-explored and a plethora of
high-quality public solutions exist, there appears
to be no robust package. Thus we have developed
processing scripts for mathematics.

A formula is pre-processed so that all num-
bers are replaced with a special NUM token (al-
ternative per digit replacement did not seem to
alter the results). It is important to consider
differences in input types, as it prompts adjust-
ments to the tokenisation procedure: for exam-
ple, for AST parses and formulas, we need to
consider a broader range of special symbols as
separators (e.g., (=)*/+-.\’ˆ{}) to avoid con-
taminating the vocabulary with too complex to-
kens that are actually sub-pieces of large expres-
sions. log and power are transformed using
regular expressions to act as functions accepting
multiple arguments: (a-1)\ˆ\{3\} becomes
power(a-1, 3). Decorative commands like
mathbb are removed. Operators are also con-
verted into their programming language equivalent
(e.g., \\neq is replaced with !=) and a rule-based
processing script unifies the notation by for exam-
ple transforming different fraction encodings such
as LaTeX’s \\frac{}{} into ()/(). Some
tasks also include systems of formulas — while
it is possible to try and represent them with special
joining operators, in this study, we opted to use
the longest correctly parsed formula. As a result,
we obtain a more programmatic representation of a
formula that drastically improves parsing correct-
ness (7298 correct out of 12 498, 58%). We then
construct a parse tree of mathematical expression
and represent leaf nodes with their syntactic se-
quences (paths to the root). Parsing is done by
either 1) using AST parser and NodeVisitor; or

3https://www.sympy.org/en/
4https://github.com/augustt198/

latex2sympy

2) using topological sorting on networkx5 graph
— and subsequently finding the shortest path with
built-in library functions. As an example output, x
from an algebraic expression 1 + 2*x would be
represented as [*, +].

In resulting nested sequences, each formula term
is represented as a syntactic sequence of nodes to
the root of the syntax parse tree, and an entire for-
mula then comprises a sequence of terms: [[Add,
Integer], [Add, Integer]]. It is possi-
ble to simplify this representation by flattening
sequences and concatenating them into a single
string with an arbitrary separator as follows: Add
Integer . Add Integer. A flattened se-
quence is a simplified representation of syntax in-
formation for which we can use more traditional
methods, such as bag-of-words or vanilla LSTM.

In the end, we work with four types of exercise
content: textual description (Calculate), raw
formula text (sqrt(121) - sqrt(36)), and
formula syntactic sequences (nested or flattened).
They can be used independently as the only input to
the classification model or combined. More details
are provided in the following subsection.

4.2 Prediction models

We investigate the effectiveness of the proposed
content representation by using them to estimate
the difficulty of exercises. For the DeepMind
dataset, it is a binary classification problem since
the model must predict whether the exercise comes
from an easy or hard level. For MATH, it is a mul-
ticlass classification problem with five classes (a
range of levels from 1 to 5).

Our first model type is a vanilla LSTM that
uses only one input source at a time, e.g., only
the textual description. If we want to add syn-
tax information to this model, it must be a string
and can then be concatenated with the rest directly
with an arbitrary separator (a space in our case).
The second type is a multi-input modification that
processes two different input types in a more nu-
anced manner similar to an idea of Siamese archi-
tectures in automated question answering domain:
it passes them to individual submodels, and con-
catenates the output representations to feed into
a feed-forward layer with softmax output for the
final classification decision. This is motivated by
different alphabet and structure of the sources: we
hypothesise that it might be easier for the network

5https://networkx.org/

103

https://www.sympy.org/en/
https://github.com/augustt198/latex2sympy
https://github.com/augustt198/latex2sympy
https://networkx.org/

Model 1: single input DeepMind MATH Model 2: multiple input DeepMind MATH

Description 0.66 0.71 Formula & Description 0.66 0.72
Description

+ Formula
0.69 0.73

AST parse

& Description
0.66 0.72

Formula 0.58 0.68
AST rootpaths (flat)

& Description
0.66 0.72

AST parse 0.56 0.67
Sympy rootpaths (flat)

& Description
0.66 0.72

AST rootpaths (flat) 0.58 0.66
Model 3: single input

with structural embeddings
DeepMind MATH

Sympy rootpaths (flat) 0.64 0.66 AST rootpaths 0.58 0.65
Description

+ AST rootpaths (flat)
0.72 0.72 Sympy rootpaths 0.6 0.65

Description

+ Sympy rootpaths (flat)
0.71 0.72

Model 4: multiple input

with structural embeddings
DeepMind MATH

Description

+ AST pars
0.7 0.72 AST rootpaths & Description 0.72 0.73

Sympy rootpaths & Descriptions 0.73 0.73

Table 1: 10-fold cross-validated ROC AUC. + corresponds to concatenating the input strings, & to adding a separate
input layer to the network. Best results are highlighted in bold. We can see that adding syntax sequences improves
the performance on DeepMind dataset.

to learn if mathematical expressions and the natural
language representation are disentangled. While
the described models operate on 2-dimensional
data, the third type of model works with nested
root path sequences as described above to obtain
syntactic formula embeddings and therefore uses
3-dimensional input. It includes time-distributed
wrappers to apply identical embedding and feature
engineering layers to each term. Again, we can
add another input that can work with conventional
flat sequences and concatenate the resulting embed-
dings to make a classification decision, leading to
the fourth and final model type.

5 Experiments

Neural networks were implemented in Tensorflow
with Keras (Chollet et al., 2015) and trained on
Google Colab Pro GPUs. We used early stopping,
monitoring validation loss with the patience of 3
epochs.

5.1 Results

We compare data representations to investigate
whether adding syntactic sequences improves clas-
sification performance. Performance was evaluated
using 10-fold stratified cross-validation ROC AUC
and is shown in Table 1. Regarding the baselines,
majority and random baselines produce ROC AUC

of 0.5 on a single run, and the best results of logis-
tic regression models trained on the length of input
sequences are 0.57 for MATH (on descriptions)
and 0.66 for DeepMind (on formula), respectively.

Regarding other possible neural approaches
to feature engineering, using word2vec algo-
rithm (Mikolov et al., 2013) to produce pre-
trained embeddings, contrary to our expectations,
did not improve our results. We have also ex-
perimented with the graph embedding method
node2vec (Grover and Leskovec, 2016), but the in-
dividual formulas prove to be too shallow for the ap-
proach to produce a meaningful representation. A
promising direction is to use graph neural networks.
Preliminary experiments with Graph Convolutional
Networks (Kipf and Welling, 2017) using Spektral6

on DeepMind dataset led to an improvement from
0.79 to 0.81 of a single-run accuracy score, but in
this study for the rest of this section we continue
to focus on structural embeddings extracted with
LSTMs. Considering individual inputs, the parse
tree representation alone, whether flat or nested,
could not outperform the other models because the
word description dominates it. Interestingly, the
AST root paths are on par with the raw formula, and
the SymPy root paths outperform it on the Deep-
Mind dataset. Using nested syntactic sequences

6https://graphneural.network/

104

Exercise topic D F SRP-F D + F D + SRP-F

numbers is factor composed 0.64 0.53 0.54 0.63 0.68
algebra linear 1d composed 0.77 0.50 0.52 0.82 0.81
numbers is prime composed 0.59 0.54 0.56 0.65 0.63
numbers list prime factors composed 0.68 0.53 0.57 0.66 0.73
arithmetic add sub multiple 0.46 0.77 0.69 0.77 0.75
polynomials simplify power 0.51 0.86 0.78 0.86 0.84
polynomials collect 0.50 0.56 0.64 0.59 0.69
numbers round number composed 0.53 0.53 0.59 0.52 0.53
numbers place value composed 0.80 0.56 0.58 0.76 0.81
calculus differentiate 0.83 0.54 0.52 0.86 0.86
comparison pair composed 0.77 0.58 0.61 0.73 0.78
polynomials coefficient named 0.48 0.56 0.57 0.53 0.57
algebra linear 2d 0.49 0.59 0.56 0.62 0.63
comparison sort composed 0.75 0.54 0.55 0.71 0.70
polynomials expand 0.50 0.50 0.53 0.49 0.52
comparison closest composed 0.74 0.46 0.60 0.63 0.74
arithmetic simplify surd 0.47 0.94 0.84 0.94 0.87
algebra linear 2d composed 0.83 0.53 0.55 0.79 0.81
algebra linear 1d 0.52 0.71 0.71 0.73 0.78
arithmetic mixed 0.49 0.75 0.59 0.75 0.63
comparison kth biggest composed 0.73 0.54 0.56 0.66 0.71

Average 0.62 0.60 0.60 0.70 0.72

Table 2: Per-topic single-run accuracy results on DeepMind dataset (test subset). D = description, F = formula,
SRP-F = Sympy root paths, flat (were chosen for this comparison because of better individual results). Cases
when using only root paths outperforms using only formula are highlighted in italic; similarly when descrip-
tion is added. We can see that the largest improvement is on numbers list prime factors composed,
polynomials collect and comparison closest composed exercise topics.

instead of flat sequences leads to comparable or
slightly worse results. Nevertheless, adding syntac-
tic sequences to descriptions noticeably increases
performance on the DeepMind dataset, from 0.69
to 0.73 ROC AUC. Per topic accuracy scores for a
single run are given in Table 2. Thus, we argue that
structural embeddings have the potential to inform
predictive models, especially when formula is an
essential differentiating part of a task.

6 Conclusion & Future work

We proposed an adaptation of an NLP tech-
nique (Liu et al., 2017) from the field of machine
comprehension to the area of mathematical educa-
tional data mining. We enrich the content represen-
tation by parsing mathematical formulas into syn-
tax trees and embedding them with neural networks.
Our experiments validate the approach using pub-
licly available datasets and show that incorporating
syntactic information can improve performance in

predicting the difficulty of an exercise. These re-
sults suggest that the method may be of interest for
personalised learning solutions. We hypothesise
that the advantage of structural embeddings will be
more evident for more advanced tasks. Therefore,
as a next step, we plan to apply our approach to
more complex state exams. Data have been col-
lected and OCR-processed for initial experiments,
and we intend to make the dataset publicly avail-
able. Our future research will also focus on pre-
dicting the similarity of mathematical formulas by
comparing their syntax trees.

References
François Chollet et al. 2015. Keras. https://keras.

io.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,

105

https://keras.io
https://keras.io
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754

San Francisco, CA, USA, August 13-17, 2016, pages
855–864. ACM.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. CoRR,
abs/2103.03874.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Danqing Huang, Shuming Shi, Chin-Yew Lin, and Jian
Yin. 2017. Learning fine-grained expressions to
solve math word problems. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen,
Denmark, September 9-11, 2017, pages 805–814.
Association for Computational Linguistics.

Rogers Jeffrey Leo John, Thomas S. McTavish, and
Rebecca J. Passonneau. 2015. Semantic graphs for
mathematics word problems based on mathematics
terminology. In Workshops Proceedings of EDM
2015 8th International Conference on Educational
Data Mining, EDM 2015, Madrid, Spain, June 26-
29, 2015, volume 1446 of CEUR Workshop Proceed-
ings. CEUR-WS.org.

Dan Jurafsky and James H. Martin. 2009. Speech
and language processing: an introduction to natural
language processing, computational linguistics, and
speech recognition, 2nd Edition. Prentice Hall se-
ries in artificial intelligence. Prentice Hall, Pearson
Education International.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Andrew S. Lan, Divyanshu Vats, Andrew E. Waters,
and Richard G. Baraniuk. 2015. Mathematical lan-
guage processing: Automatic grading and feedback
for open response mathematical questions. In Pro-
ceedings of the Second ACM Conference on Learn-
ing @ Scale, L@S 2015, Vancouver, BC, Canada,
March 14 - 18, 2015, pages 167–176. ACM.

Nan Li, William W. Cohen, and Kenneth R. Koedinger.
2012. Efficient cross-domain learning of complex
skills. In Intelligent Tutoring Systems - 11th Interna-
tional Conference, ITS 2012, Chania, Crete, Greece,
June 14-18, 2012. Proceedings, volume 7315 of Lec-
ture Notes in Computer Science, pages 493–498.
Springer.

Nan Li, William W. Cohen, and Kenneth R. Koedinger.
2013. Discovering student models with a clustering
algorithm using problem content. In Proceedings
of the 6th International Conference on Educational
Data Mining, Memphis, Tennessee, USA, July 6-9,

2013, pages 98–105. International Educational Data
Mining Society.

Rui Liu, Junjie Hu, Wei Wei, Zi Yang, and Eric Nyberg.
2017. Structural embedding of syntactic trees for
machine comprehension. pages 815–824.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, pages 3111–
3119.

Benjamin Paaßen, Jessica McBroom, Bryn Jeffries,
Irena Koprinska, and Kalina Yacef. 2021. ast2vec:
Utilizing recursive neural encodings of python pro-
grams. In Proceedings of the 14th International
Conference on Educational Data Mining, EDM
2021, virtual, June 29 - July 2, 2021. International
Educational Data Mining Society.

Cristóbal Romero and Sebastián Ventura. 2010. Educa-
tional data mining: A review of the state of the art.
IEEE Trans. Systems, Man, and Cybernetics, Part C,
40(6):601–618.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 3082–
3088. AAAI Press.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical
reasoning abilities of neural models. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Stefan Slater, Jaclyn Ocumpaugh, Ryan S. Baker, Peter
Scupelli, Paul Salvador Inventado, and Neil T. Hef-
fernan. 2016. Semantic features of math problems:
Relationships to student learning and engagement.
pages 223–230.

Tianyu Zhao, Chengliang Chai, Yuyu Luo, Jianhua
Feng, Yan Huang, Songfan Yang, Haitao Yuan,
Haoda Li, Kaiyu Li, Fu Zhu, and Kang Pan. 2019.
Towards automatic mathematical exercise solving.
Data Science and Engineering, 4(3):179–192.

106

http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/d17-1084
https://doi.org/10.18653/v1/d17-1084
http://ceur-ws.org/Vol-1446/GEDM_2015_Submission_11.pdf
http://ceur-ws.org/Vol-1446/GEDM_2015_Submission_11.pdf
http://ceur-ws.org/Vol-1446/GEDM_2015_Submission_11.pdf
http://www.worldcat.org/oclc/315913020
http://www.worldcat.org/oclc/315913020
http://www.worldcat.org/oclc/315913020
http://www.worldcat.org/oclc/315913020
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/2724660.2724664
https://doi.org/10.1145/2724660.2724664
https://doi.org/10.1145/2724660.2724664
https://doi.org/10.1007/978-3-642-30950-2_63
https://doi.org/10.1007/978-3-642-30950-2_63
http://www.educationaldatamining.org/EDM2013/papers/rn_paper_16.pdf
http://www.educationaldatamining.org/EDM2013/papers/rn_paper_16.pdf
https://doi.org/10.18653/v1/d17-1085
https://doi.org/10.18653/v1/d17-1085
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://doi.org/10.1109/TSMCC.2010.2053532
https://doi.org/10.1109/TSMCC.2010.2053532
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14764
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14764
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14764
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=H1gR5iR5FX
http://www.educationaldatamining.org/EDM2016/proceedings/paper_140.pdf
http://www.educationaldatamining.org/EDM2016/proceedings/paper_140.pdf
https://doi.org/10.1007/s41019-019-00098-w

