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Abstract

A supportive environment is vital for overall
cognitive development in children. Challenges
with direct observation and limitations of ac-
cess to data driven approaches often hinder
teachers or practitioners in early childhood re-
search to modify or enhance classroom struc-
tures. Deploying sensor based tools in natu-
ralistic preschool classrooms will thereby help
teachers/practitioners to make informed deci-
sions and better support student learning needs.
In this study, two elements of eco-behavioral
assessment: conversational speech and real-
time location are fused together. While vari-
ous challenges remain in developing Automatic
Speech Recognition systems for spontaneous
preschool children speech, efforts are made to
develop a hybrid ASR engine reporting an ef-
fective Word-Error-Rate of 40%. The ASR
engine further supports recognition of spoken
words, WH-words, and verbs in various activ-
ity learning zones in a naturalistic preschool
classroom scenario. Activity areas represent
various locations within the physical ecology
of an early childhood setting, each of which is
suited for knowledge and skill enhancement in
young children. Capturing children’s commu-
nication engagement in such areas could help
teachers/practitioners fine-tune their daily ac-
tivities, without the need for direct observation.
This investigation provides evidence of the use
of speech technology in educational settings to
better support such early childhood interven-
tion.

1 Introduction

The preschool classroom is a viable space for cap-
turing young children’s interactions with teachers
and peers. The quality and number of interactions
children experience is a key factor in child language
development (Hart and Risley, 1995). However, for
supporting teachers working with young children

with or without developmental delays, the use of
direct observations or manual video recording and
coding is not a scalable endeavor (Tapp et al., 1995).
Sensor-based monitoring tools in classrooms can
assist teachers in creating and maintaining a rich
learning environment for all children. Feedback
from these tools could allow teachers to better iden-
tify children who could benefit from further sup-
port. Rich and frequently available data can not
only help in creating better classroom structure, but
also create opportunities to maximize children’s
communication and interaction (Diamond et al.,
2013).

Eco-behavioral observational assessment has of-
ten been used to measure moment-to-moment ef-
fects with multiple environmental events on spe-
cific behaviors and interactions that occur in an
early childhood inclusive classroom (Greenwood
et al., 1994; Watson et al., 2011). These assess-
ment samples are centered around teacher and child
behavior, and overall classroom learning context
(e.g., the interactions between them) by adding
situational or contextual factors. Specifically for
inclusive classrooms, a child’s daily interaction can
influence their development and by using an eco-
behavioral assessment, conclusions can be drawn
between environmental contexts and the interac-
tions that occur within them (Brown et al., 1999).
These findings can inform practitioners how to ar-
range their inclusive environments to best support
language development of all children. The variety
of spontaneous language in an inclusive preschool
classroom comes from a variety of speakers and
includes both adults and children. Although the
Language Environment Analysis (LENA) frame-
work is used extensively by the early childhood
research community for a digital measurement sys-
tem that is automatic (Soderstrom and Wittebolle,
2013; Dykstra et al., 2013; Burgess et al., 2013;
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Irvin et al., 2017; Greenwood et al., 2018), LENA
does not possess an Automatic Speech Recognition
(ASR) engine to convert the child speech-to-text,
nor does it capture location in the classroom. Apart
from conversational speech, children’s coordinated
movement and location within classrooms also act
as an acquisition context driver for critically im-
portant skills including language, cognition, and
social communication (Eliot, 2000; Council et al.,
2000; Piek et al., 2008). Therefore, automatic loca-
tion tracking within the classroom can provide the
ability to monitor interventions while maximizing
learning opportunities (Irvin et al., 2018).

Our multi-disciplinary educational research
project focuses on quantifying “learning" based
on social engagement for use in classroom settings
by teachers - and thus we are building a tool that
captures the granularity of eco-behavioral observa-
tional assessment. It is based on spontaneous in-
teractions between multiple teachers and preschool
children (3 to 5 years) with and without develop-
mental delays within naturalistic noisy preschool
classroom environments. In this study, we present
a translational framework to automatically track
conversational speech of preschool children in var-
ious activity areas supported by speech technology
based on ASR which is fine-tuned specifically for
preschool children taking into account their devel-
oping nature and developmental delays.

2 Speech and language development in
young children

Right from their first babbles, children start devel-
oping various speech sounds (Shriberg, 1993) until
mid-elementary school. Typically-developing chil-
dren are expected to progressively acquire various
speech sounds throughout early childhood (birth
to 8 years). These development occurs primar-
ily in three stages: (i) ‘Early’ stage from 1 to 3
years, (ii) ‘Middle’ stage from 3 to 61

2 , and (iii)
‘Late’ stage from 5 to 71

2 . In the ‘Early’ stage,
speech sounds like M (nasal; "mama"), B (stop;
"baby"), Y (semivowel; "you"), N (nasal; "no"),
W (semivowel; "we"), D (stop; "Daddy"), P (stop;
"Pop"), HH (aspirate; "hi") are expected to be de-
veloped. While sounds like T (stop; “two”), NG
(nasal; “running”), K (stop; “cup”), G (stop; “go”),
F (fricative; “fish”), V (fricative, “van”), CH (af-
fricate, “chew”), and JH (affricate, “jump”) are ex-
pected to be acquired in the ‘Middle’ stage. Finally,
in the ‘late’ stage, children develop slightly harder

sounds like SH (fricative; “sheep”), S (fricative;
“see”), TH (fricative; “think,that", R (liquid; “red”),
Z (fricative; “zoo”), L (liquid; “like”) and ZH (frica-
tive; “measure”). Children may omit, substitute or
have inconsistency in production of speech sounds
while they are learning. Apart from speech, lan-
guage planning is also evolving, so word selection
and grammar may have issues. Not all children ac-
quire these skills at a similar pace, especially those
with developmental delays.

3 Challenges of developing Automatic
Speech Recognition systems for young
children

Various developmental factors like articula-
tion/pronunciation, motor skills, vocabulary, etc.,
makes the task of developing ASR systems for chil-
dren challenging than that for adults (Gerosa et al.,
2007). Also, children in early childhood (birth
to 8 years) have significantly different speech and
language skills as compared to their older peers.
Prior research from the Speech Technology com-
munity on Children ASR (Stemmer et al., 2003;
Shivakumar et al., 2014; Tong et al., 2017; Wu
et al., 2019; Shivakumar and Georgiou, 2020; Ye-
ung et al., 2021; Rumberg et al., 2021; Gretter
et al., 2021) is captivating. But these focused
on: (i) older children, including kindergarten (6-15
yrs), (ii) data collected using head-mounted micro-
phones or close-proximity handheld smartphones
in clean/controlled settings under adult supervision,
and (iii) with just one speaker using prompts or
read stimuli, and limited spontaneous (not scripted)
speech. Limited focus and data is available for pro-
cessing of adult-child interactions in naturalistic
preschool settings (3-5 yrs) while they are involved
in various activities throughout the day. There is
lack of publicly available young child speech cor-
pora (primarily due to privacy/regulations). How-
ever, a recent study (Yeung and Alwan, 2018)
described various challenges in developing ASR
systems for single-word utterances read aloud by
kindergarten (5-6 yrs) children achieving a Word
Error Rate (WER) of 25%. Therefore, all these
factors make the task of developing ASR systems
for spontaneous preschool children speech in natu-
ralistic educational settings extremely challenging.
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Figure 1: Speech and location data collection in preschool.

4 Data and Collection

4.1 Participants & Procedure

A total of 33 children aged 3 to 5 years with and
without developmental delays, and 8 adults teach-
ers participated in this study. The data was col-
lected in preschool classrooms (refer Fig.1(b)) in
a large urban community in a Southern state in
US, and in multiple sessions over several days in
different classrooms with different groups of par-
ticipants. Data from each participant was linked
to an anonymous id for privacy. All participants
consented to the use of de-identified data for anal-
ysis. This study was approved by the Institutional
Review Board of both KU and UTD for analysis.

4.2 Conversational Speech

Conversational speech was collected using a light
weight compact digital audio recorder (LENA1) at-
tached to participants (refer Fig.1(a)). The LENA
Language ENvironmental Analysis system consists
of an audio recorder and audio processing software

1https://www.lena.org/

(Ford et al., 2008). The recorder uses an omnidirec-
tional microphone and the final audio is obtained
by a computer or laptop running the software to
which the recorder is plugged in. The final audio
has a sampling frequency of 16 kHz, with a record-
ing unit having a capacity of 16 hours. Although
LENA provides adult word counts, conversational
turns, and child and peer vocalizations; it does not
provide the speech-to-text output. The LENA unit
data can be considered as individual audio stream
and was tagged into three speaker (Fig.1(c)) cat-
egories: Primary child (speech initiated by child
wearing that LENA unit), Secondary child (speech
originated by any other children within close prox-
imity of primary child), and Adult (speech origi-
nated by any adult in close proximity). It is noted
that for each LENA audio stream, there is only 1
Primary child and multiple Secondary Children and
Adults (e.g., each LENA stream is associated with
anonymous child id).
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4.3 Real-time Location

Ubisense 2, a Real-Time Location Tracking Sys-
tem (RTLS) based on Ultra-Wideband (UWB), is
deployed in this study. Ubisense is capable of pro-
viding 3D location for every second simultaneously
for up to 100 individuals both indoors and outdoors.
The RTLS data can also provide information on
movement patterns and direction apart from loca-
tion. This system is established by the combina-
tion of receiver sensors and wearable light-weight
transponder tags (refer Fig.1(a,b)), both of which
broadcast live location co-ordinates to a laptop or
computer in network running the Ubisense Loca-
tion Engine software. With proper calibration, the
accuracy of Ubisense is ±15 cm under ideal mea-
surement conditions, and ±30 cm in challenging
measurement conditions. Ubisense has been previ-
ously deployed in various clinical research studies
for individuals at risk for dementia (Kearns et al.,
2008; Vuong et al., 2014). Sensors are placed in
four corners of the space to ensure maximum cover-
age and connected to a laptop computer via cords.
Then the dimensions of the classroom are estab-
lished based on the Ubisense measurements, fol-
lowed by calibrating the real-time location system
sensors to their 3-D (x, y, z) locations. Measures to
minimize electronic interference caused by other
devices (i.e., Wi-Fi routers) was considered. Real-
time location was not recorded when the children
went outside of the classroom dimension set by
Ubisense sensors (like playground).

4.4 Mapping activity area with real-time
location information and speech

Activity areas represent information about the loca-
tion (permanent or temporary) of the child within
the physical ecology of an early childhood setting.
For this study, various individual literacy areas in
the classroom were outlined in consultation with
the preschool teachers. These areas are outlined
in Table 1. This is followed by setting up bound-
aries around the individual literacy areas in the
classroom using the Geometry feature of Ubisense.
This subsequently helped to identify when children
wearing a transponder tag were in these areas (refer
Fig.1(b)). Ubisense scanning rate was set to 1 Hz.
Human-transcriptions of conversational speech, the
actual start time of the Ubisense location tracking
system, and the actual recording start time of every
individual LENA unit (worn by different children)

2https://ubisense.com/

were used for the mapping between the activity
areas and spoken text.

Table 1: Activity Area Codes and their significance.

Area Code Significance
Art Area for painting, drawing,

coloring, writing, or sculpting
Snack Area for snack/food breaks
Block Areas with large building or

construction materials, on floor
Cozy/Book Areas with books for reading

alone or in groups
Computer Areas for computer activity
Dramatic Areas for dress up clothes,

play kitchen utensils, dollhouse, etc.
or that support activities with

other children that contain
make-believe roles or themes

like fireperson, doctor, etc.
Manipulative Areas for small motor movements

of the hand, fingers, wrists,
and hand-eye coordination

Story Areas for reading, listening
and telling stories

5 Developing Preschool Children
Automatic Speech Recognition System

5.1 Acoustic and Language Modelling
Acoustic model training and decoding experiments
were performed using Kaldi (Povey et al., 2011), N-
gram language models were trained using SRILM
toolkit (Stolcke, 2002) and the RNN-based using
PyTorch. Care was taken to avoid overlap of the
same group of children between train/test. Ground-
truth was based on human transcriptions and only
the segments spoken by both primary and sec-
ondary children were considered for ASR assess-
ment. The GMM-HMM systems were trained to
provide frame-to-phone alignments for the DNN
based systems. For the GMM-HMM systems, Mel-
frequency cepstral coefficients (MFCCs) (Young,
1996) were extracted for every 25 ms window and
10 ms overlap. 13 MFCCs along with their Δ and
ΔΔ features were used as front-end features. The
input features to the DNN-HMM models included a
40-D high resolution MFCCs of current and neigh-
bouring frames and a 100-D i-vector(Hansen and
Hasan, 2015) of the current frame. The i-vectors
were calculated by generating speed-perturbed
training data with 3 (0.9,1.0,1.1) speed factors. In
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Table 2: Child ASR Performance.

# Features Acoustic Model Acoustic Model Language Model Language WER (%) of
♣ Training Data♠ Training Data♠ Model Preschool Test

1 MΔ PS GMM-Tri3 LibriSpeech 3-gram 90.28
2 MΔ + I3 PS TDNN-F(11) LibriSpeech 3-gram 63.66
3 MΔ + I3 PS TDNN-F(11) PS 3-gram 49.02
4 E + I3 PS TDNN-F(17) PS 3-gram 47.02
5 ES + I3 PS CNN(6) + TDNN-F(9) PS 3-gram 43.03
6 ES + I3 PS CNN(6) + TDNN-F(9) + Attn(1) PS 3-gram 42.00
7 ES + I3 PS CNN(6) + TDNN-F(9) + Attn(1) PS LSTM 40.67
8 ES + I3 PS + CMU + OGI CNN(6) + TDNN-F(9) + Attn(1) PS + CMU + OGI 3-gram 43.57

♣ MΔ → MFCC & Δ & ΔΔ, E/ES → Filter-Bank Energy (/with SpecAugment), I3 → 3* Speed pert. i-vector
♠ PS → Preschool, CMU → CMU Kids Corpora, OS → OGI Kids Corpora

addition, these high-resolution MFCCs were also
replaced with 40-dimensional Mel-frequency Fil-
ter Banks Energies (MFBE) (Paliwal, 1999) by
Inverse Discrete Cosine Transform. Factorized
time-delay neural networks (TDNN-F)(Povey et al.,
2018a), originally proposed as a data-efficient al-
ternative to TDNN for enhancing ASR perfor-
mance of low-resource languages with less than
100 hours of data, were primarily used as hidden
layers for the hybrid DNN-HMM acoustic models.
Apart from TDNN-F layers, CNN layers were de-
ployed. A time-restricted self-attention (Vaswani
et al., 2017; Povey et al., 2018b) mechanism (with
multiple heads) was also deployed. Another data
augmentation approach called SpecAugment(Park
et al., 2019) was applied directly to MFBEs. For
the RNN-based LMs, we used 2-layer LSTMs of
650 embedding size and 650 hidden dimension.
Dropout was considered to overcome overfitting.
Lattice rescoring(Li et al., 2021) was used to de-
code the RNN-based LM. CMU Pronouncing Dic-
tionary3 was used. Various non-linguistic mark-
ers included: laugh, cough, scream, gasp, breath,
babble, cry, loud music, crowd and play noise,
and other noise. Data-augmentation using publicly
available corpora like OGI Kids corpus (Shobaki
et al., 2000) (≈ 60 hours; Kindergarten to Grade
10) and CMU Kids corpus (Eskenazi et al., 1997)
(≈ 9 hours; Grade 3 to 5) was also considered.

5.2 ASR Model Performance & Discussions

Child ASR performance results are summarized in
Table 2. A triphone GMM-HMM Acoustic model
trained on Preschool speech generate a very high
WER of 90.28% (#1) for pre-trained 3-gram Lib-
riSpeech LM. As shown in #2, using an 11-layer
TDNN-F based Acoustic model, 40 MFCC fea-
tures and speed-perturbed i-vector (of factor 3), a

3http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/

much lower WER of 63.66% was achieved using
the same language model. Now in #3, we notice
a significant drop of WER to 49.02% by training
the language model using our Preschool data. Us-
ing a language model trained on in-domain shows
much benefit in our study than using pre-trained
LibriSpeech language model, as compared to pre-
vious studies (Wu et al., 2019; Yeung et al., 2021)
for older children speech where Librispeech just
worked fine. This signifies that young children
do not follow the same language patterns in spo-
ken English or that of adults. In #4, #5, and #6,
shows various acoustic model enhancements based
on TDNN-F, CNN, and Attention layers with #6
reporting a WER of 42.00%. Finally, in #7 by re-
placing the 3-gram language model with an RNN-
based one, with LSTM layers (see Section 5.1) we
reach a WER of 40.67%. As shown in #8, data
augmentation does not enhance the performance of
the ASR model.

6 Activity-area based Child Speech
Recognition and Discussions

All experiment results for this section are summa-
rized in Table 3. The results here are shown for
3 preschool children who were typically develop-
ing (without delays) and were present in the same
classroom. From a child ASR perspective, these
3 children belong to the test split of the Preschool
data and were tagged as primary children (speak-
ers wearing the LENA units). The ASR model
used here is the best model as reported in Section
5.2. The results are primarily subdivided into three
categories: (i) all words spoken, (ii) WH-words
(who, what, where, etc.), and (iii) Verbs; followed
by the child IDs: Primary Child #1, #2 and #3.
Average WER (irrespective of activity areas) for
Primary Child #1, #2 and #3 are 28.49%, 36.13%,
and 47.59% respectively. Number of words in sen-
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Table 3: Activity-area based child Speech Recognition results.

Table 3(A)
Primary Child #1 Primary Child #2 Primary Child #3

Activity Time WER Words Time WER Words Time WER Words
Area (min) (%) spoken (min) (%) spoken (min) (%) spoken

Art/Snack 18.6 17.39 307 32.3 53.11 270 21.8 56.03 112
Block <1 13.79 29 1.8 36.36 44 14.7 46.39 217

Computer 4.3 37.5 83 3.3 38.18 55 3.7 23.33 30
Cozy/Book 2.1 NA 0 4 47.61 20 1.9 NA 0

Dramatic Play 4.1 27.1 96 12.4 24.93 384 25.2 43.03 851
Manipulative <1 12.5 7 9.8 26.62 342 2.1 32.25 31

Story <1 25 13 1 58.33 12 <1 50 6

Table 3(B)
Primary Child #1 Primary Child #2 Primary Child #3

Activity Time WH-words Verbs Time WH-words Verbs Time WH-words Verbs
Area (min) (%) (%) (min) (%) (%) (min) (%) (%)

Art/Snack 18.6 83.33 83.33 32.3 66.67 72.72 21.8 50 50
Block <1 100 100 1.8 NA 100 14.7 50 71.48

Computer 4.3 100 57.14 3.3 100 60 3.7 NA 50
Cozy/Book 2.1 NA NA 4 NA 50 1.9 NA NA

Dramatic Play 4.1 100 66.67 12.4 83.33 84.61 25.2 66.67 68.22
Manipulative <1 NA 100 9.8 100 82.22 2.1 0 100

Story <1 100 50 1 NA 66.67 <1 NA NA

Time (min) = Total time spent by each child in that specific activity area
WER (%) = Word error rate of the ASR model for all words spoken in that specific activity area

Words spoken = Total number of words spoken by each child in that specific activity area
WH-words (%) = Total % of WH-words correctly predicted by the ASR model spoken in that specific activity area

Verbs (%) = Total % of Verbs correctly predicted by the ASR model spoken in that specific activity area
NA = Not applicable; primarily due to no words spoken

tences, WH-words and verbs are a few of the promi-
nent language learning milestones established by
the American Speech–Language–Hearing Associa-
tion 4, outlined by the American Academy of Pe-
diatrics (Gerber et al., 2010; Zubler et al., 2022),
and adopted as CDC’s (Centers for Disease Con-
trol and Prevention) Developmental Milestones5

program "Learn the Signs. Act Early." Table 3(A)
shows the time spent by each child in an activ-
ity area, followed by WER and all words count
spoken in that area. Table 3(B) shows the time
spent by each child in an activity area, followed
by % of total WH-words and verbs spoken those
were predicted correctly in that area by the ASR
engine. The "Time Spent" factor is important to
better normalize the results across multiple sub-
jects. Primary Child #1 spends the most quality
time in ‘Art/Snack’ area (WER: 17.39%), followed
by close to 5 mins in ‘Computer’(WER: 37.5%)
and ‘Dramatic Play’(WER: 27.1%) areas. The
amount of spoken words is relatively much higher
in ‘Art/Snack’ area. Child #1 spends less than
a minute in ‘Block’, ‘Manipulative’, and ‘Story’
areas, which is also reflected in the word spo-

4https://www.asha.org/public/speech/development/chart
5https://www.cdc.gov/ncbddd/actearly/milestones

ken count. Overall across all activity areas, Pri-
mary Child #1 spends much less time and spoke
less as compared to Child #2 and #3. Primary
Child #2 and #3 spent more time in the classroom
boundary, and therefore word counts spoken were
much higher. Primary Child #2 spends quality
time in ‘Art/Snack’ (WER: 53.11%), ‘Dramatic
play’ (24.93%), ‘Manipulative’ (26.62%), and
close to 4 mins in ‘Computer’(WER: 38.18%) and
‘Cozy/Book’(WER: 47.61) areas. Primary Child #3
spends quality time in ‘Art/Snack’ (WER: 56.03%),
‘Block’ (46.39%), ‘Dramatic Play’ (43.03%), and
close to 4 mins in ‘Computer’(WER: 23.33%) ar-
eas. Irrespective of the child, performance of the
ASR engine in detecting WH-words and verbs
across all activity areas is quite good, given the
naturalistic noisy dynamic learning environment.
While areas like ‘Cozy/Book’ are more personal
learning spaces. Areas like ‘Dramatic Play’, ‘Ma-
nipulative’, ‘Block’, ‘Art/Snack’ alternatively en-
courage group activity. ‘Computer’ and ‘Story’ ar-
eas are more focused on listening or seeing. Some
observations here can be: (i) Primary Child #1
did not engage much in areas of group activity -
signifying difficulty to engage in groups, (ii) Pri-
mary Child #1 and #3 produced higher WH-word
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counts (not shown in the Table) in ‘Computer’ and
‘Dramatic Play’ areas - signifying more curiosity.
Longitudinal data of the same group of children
over a significant time period should help in bet-
ter informed decisions. However, amendments to
classroom structure and plan will be at the discre-
tion of teachers. Performance of the ASR engine
can help to monitor/track such elements in a natu-
ralistic preschool classrooms.

7 Towards Data-Based Inclusion
Planning in Classrooms

Non-segregated or inclusive educational set-
tings possess a design best suited to prepare
young children with disabilities for kindergarten
(US Dept. Health, 2015; Barton and Smith, 2015).
Careful considerations regarding environmental
factors are imperative for meaningful interactions
between children in inclusive classrooms (Ganz,
2007). High-quality inclusive classrooms can also
foster and support friendship development between
children with and without disabilities (Buysse et al.,
2008). Through communication skills and so-
cial interactions, individuals can begin to form
meaningful social relationships and friendships,
which could promote positive psychological states
(e.g., happiness and self-efficacy; Umberson and
Karas Montez, 2010). Teachers and peers as com-
municators can play important roles for inclusive
classrooms to support communication skills of chil-
dren with disabilities and facilitating social inter-
actions between one another. The quantity and
quality of interactions significantly influence the
language environment and communication oppor-
tunities for young children with disabilities (W Ver-
non et al., 2018). Also, it may be more important
for a child with Autism Spectrum Disorder (ASD)
to spend quality time in activity areas that promote
language and social engagament because of the
social-communication and play limitations that ac-
company ASD. Using audio recorded by LENA
and real-time location using Ubisense supported by
advanced speech processing algorithms could pro-
vide teachers with information about “what" and
“where" child interactions are taking place so that
they may be better able to discern when to provide
additional support.

8 Conclusion

This study has provided evidence and lays the foun-
dation of deploying sensor-based monitoring tools

to acquire and interpret eco-behavioral data (speech
and location) in naturalistic early childhood set-
tings to better support teachers and child learning.
This work tends to address a major challenge faced
by early childhood educators in supporting children
(with and without developmental delays) due to a
lack of real-time data to inform daily practices and
that lead to longer-term school readiness outcomes.
Another component in this study has addressed the
development of ASR systems for preschool chil-
dren, which is a very low-resource scenario. Both
collection and transcription of such data is a ma-
jor challenge, especially due to both noisy data
and speech intelligibility of young children. Future
work will focus on analyzing more children with
and without developmental delays, and also col-
lection of such naturalistic data. Future work will
also consider speaker group classification (adult vs.
child) using speaker-group diarization as compared
to human transcriptions.
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