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Abstract

Event extraction is an important but challenging
task. Many existing techniques decompose
it into subtasks of event and argument de-
tection/classification, which are themselves
complex structured prediction problems.
Generation-based extraction techniques lessen
the complexity of the problem formulation and
are able to leverage the reasoning capabilities
of large pre-trained language models. However,
the large diversity of available event types
makes it hard for generative models to effec-
tively select the correct corresponding templates
to predict the structured sequence. In this paper,
we propose a task-conditioned generation-
based event extraction model, TCG-Event, that
addresses these challenges. A key contribution
of TCG-Event is a novel task conditioning
technique that injects event name information
as prefixes into each layer of an encoder-
decoder-based language model, thus enabling
effective supervised learning. Our experiments
on two benchmark datasets demonstrate the
strong performance of our TCG-Event model.

1 Introduction

Event extraction (Li et al., 2021a) aims at extracting
structured event records from unstructured text. For
example, as shown in Figure 1, event extraction
aims to map the sentence “Two homemade
pressure-cooker bombs are detonated remotely,
killing three and injuring some 260 others” to four
predefined event types, e.g., <event type: explosion,
trigger word: detonated, role:bomber: Tsarnaevs,
..., role:bomb: homemade pressure-cooker bombs,
role:place: Boston Marathon>, as well as other
events that are triggered by words killing, injuring
and lost limbs.

Event extraction is challenging because of the
diversity of natural language expressions and the
complexity of event structures. These challenges
become even more severe in sentences in which the
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Figure 1: An illustration of the event extraction as a
structured generation, with introducing the event type
as the task-conditioning to prefix, the decoder can
selectively generate sequentialized event representation,
which is mentioned in the input text.

text generally contains more events. Currently, most
event extraction methods employ a decomposition-
based approach (Xu et al., 2021), i.e., decomposing
the structured prediction problem of a complex
event into classification over substructures, such as
trigger detection, entity recognition, and argument
classification. Many of these methods tackle the
subproblems separately, which requires additional
annotations for each stage (Paolini et al., 2021).
Furthermore, designing an optimal composition ar-

chitecture of different subtasks is very challenging.
Natural language generation techniques have

been successfully applied to several NLP tasks (Raf-
fel et al., 2020; Li et al., 2021b; Hsu et al., 2022).
They have inspired the use of controlled event
generation to tackle event extraction. These ap-
proaches use manually designed templates to wrap
input sentences and train a model for cloze-style
filling. The study by Lu et al. (2021) proposes to
generate linearised event records via a pretrained
encoder-decoder architecture combined with a
constrained decoding mechanism that alleviates the
complexity associated with template combination
when extracting multiple events. The advantage
of the approach of extraction-as-generation is the
removal of the need for fine-grained token-level
annotations, which are typically utilised in previous
event extraction approaches (Nguyen and Nguyen,



2019), thus enjoying greater feasibility.

Structured prediction problems such as event
extraction usually assume an external schema to
format the output. In contrast, natural language
generation problems do not make this assumption.
Motivated by this distinction, we propose a novel
task conditioning technique that injects event type
information as prefixes on layers of the underlying
pretrained language model.

Our main contributions are as follows.

* We propose a novel task conditioning tech-
nique that dynamically injects event-type
information to both the encoder and decoder
of a pretrained language model.

* We carefully design a prefix-based injection
mechanism that incorporates cross-attention
to improve event extraction.

* We conducted extensive experiments in the
fully supervised setting on two benchmark
datasets. Our evaluation consistently shows
strong performance.

2 Related Work

Event extraction is the task of extracting structured
event records from unstructured text (Li et al.,
2021b; Shiri et al., 2021). Many approaches have
been proposed for sentence-level event extrac-
tion (Christopher Walker and Maeda, 2006), varies
from hand-designed features (Shen et al., 2021) and
neural-learned features (Zhang et al., 2021; Huang
and Peng, 2021). Yet many real-world applications
need event extraction (Frisoni et al., 2021; He et al.,
2021; Verspoor et al., 2016; Nguyen and Verspoor,
2019; Yang et al., 2021; Zhang et al., 2021; Huang
and Peng, 2021), in which the information of an
event may be mentioned in multi-sentences (Ebner
et al., 2019; Li et al., 2021¢). Moreover, most of
works adopt decomposition strategies in event
extraction (Xu et al., 2021), which employ trigger
detection (Shen et al., 2021), entity recognition (Li-
son et al., 2020; Du et al., 2021), and argument
classification (Zhang et al., 2020). These decom-
position strategies showed high performance while
introducing more detailed annotation to model
training (Lu et al., 2021; Li et al., 2021b). Inspired
by the success of pretrained language models and
the corresponding natural language generation-
based paradigm for various NLP tasks (Raffel et al.,
2020; Lietal., 2021b; Hsu et al., 2022) tackle event
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Figure 2: The event extraction task.

extraction as controlled event generation. (Hsu
etal., 2022) is an end-to-end conditional generation
method with manually designed discrete prompts
for each event type, which needs more human
effort to find the optimal prompt. To remove the
complexity of template combination in extracting
multiple events, Lu et al. (2021) proposed to
generate the event records directly with a pretrained
encoder-decoder architecture and a constrained de-
coding mechanism. This extraction-as-generation
approach does not require fine-grained token-level
annotations that are typically needed by previous
event extraction methods (Huang et al., 2021; Li
etal., 2021b). Liu et al. (2022) proposed a gener-
ative template-based event extraction method with
dynamic prefixes by integrating context information
with type-specific prefixes only to the encoder to
learn a context-specific prefix for each context. In
contrast, we inject event-type information into both
the encoder and the decoder. Particularly, we use
interactions between the event type information and
the context and inject it into the decoder.

3 Generation-based Event Extraction

Problem Definition. We denote £ and R as the set
of predefined event types and role categories, respec-
tively. An input sequence & := {1,...,7|y } com-
prises tokens x;, where || denotes the sequence
length. Given an input sequence, an event extraction
model aims to extract one or more structured events,
where each event is specified by (i) the event type
e € & filled with the trigger word ¢ from the sequence,
and (ii) the roles R C R filled with the correspond-
ing arguments from the sequence (see Figure 2).

Event Extraction as Generation. Given £ and
‘R in the predefined event schema, generation-based
event extraction models generate a structured
sequence based on an input sequence constrained
by the schema (Lu et al., 2021).

The generated sequence is a linearised repre-
sentation of events mentioned in the sequence.
Specifically, given a text with token sequence x as



input, a generation-based extraction model such as
TCG-Event outputs the linearised events represen-
tations y = (y1,42,---,Yy|)» Where each event y; is
denoted by <€i,ti, <Ti71 ,ai,1>,... R <Ti,|r| ,ai,|r|>>. The
angled brackets (-) are special tokens indicating
the sequence structure. The e € £ and ¢ are the
event type and the trigger words (a subspan of the
sequence x); furthermore, r; € R and a; denote
roles and arguments (subspans of the sequence x).

Architecture. Our TCG-Event model adopts a
Transformer-based encoder-decoder architecture
for event structure generation. TCG-Event outputs
the linearised event representation y for an input
sequence x. It first computes the hidden represen-
tation Hy = (hy,ha,...,hyz) € RI**? for each
token in the sequence via a multi-layer Transformer
encoder:

H, =Encoder(x), (1)

where each layer of Encoder(-) is a Transformer
block (Vaswani et al., 2017) with the multi-head
self-attention mechanism.

Given the encoding H,, the decoder generates
each token sequentially to produce the sequence of
events. At step t, the Transformer-based decoder
generates the token y; and hidden state h; as:

y¢,hy =Decoder(y;—1;Hy_, , Hz), 2

<t?

where each layer of Decoder(-) is a Transformer
block, with both the self-attention to past hidden
states Hy_, € R(¢=1*4 quring decoding and the
cross-attention to the encoding H.. The conditional
probability of the output sequence p(y|x) is then,

|yl
po(yle) =] [po(wily<s.), 3)
t=1

where 6 denotes the parameters of the Transformer-
based encoder-decoder model.

4 Task Conditioning in Event Generation

In this paper, we investigate how to best leverage
pre-trained large language models (LLMs) as the
backbone encoder-decoder model for event extrac-
tion.! Using LLMs is nowadays part of standard
practice in NLP, as they lead to strong performance.

Given a labeled training dataset D, we investigate
how to best specialise the pre-trained LLLM to the

"In our experiments, we make use of TS5 (Raffel et al.,
2020), but our methods are applicable to other large pre-trained
encoder-decoder models as well.
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Figure 3: A high-level illustration of three candidate task-
conditioning injection paradigm for encoder-decoder
models: fine-tuning, adapter-tuning, and prefix-tuning.
For each tuning type, each block represents a transformer
block in the pretrained language model, and the blue
blocks indicate the new-added parameters in the
pretrained model.

event extraction task via prefix-tuning (Li and
Liang, 2021). In this section, we show how to
effectively condition the generation process on the
event extraction task as well as the given sequence.
One may specialise the underlying LLM to the
event extraction task through other methods as well,
e.g. fine-tuning of the LLM parameters or adapters
injected to the encoder and/or decoder of the LLM
(see Figure 3). We show in our experiments that
prefix-tuning is more effective than those methods.

Our desiderata for prefix-conditioning of a
pre-trained LLM for event extraction are as follows.
It should enable the model to be aware of (i) the
candidate event schemas in the task, (ii) the specific
input sequence, and (iii) flexible schema modifica-
tions that may happen after the model is trained in
the real-world settings. In what follows, we explain
how we achieve these desiderata by producing
prefixes for the encoder and the decoder based on
the events of the task and the input sequence. See
Figure 4 for an overview of the framework.

Encoder Conditioning. We condition the
encoder on the event types of the underlying
event extraction task. Given the event types e =
{e1,e2,...,€)¢) } €& for atask, we use the encoder to
get the encoding representation for the event types
H, € Rl®/*4 We then combine these events repre-
sentations through a function fe,. : RI¥/*4 — R
to create the events conditioning context, i.e.

H,. :EHCOdCI'(€>; he,enc:fenc(HE) “)

Since we assume each event type is equally
probable a priori, we use the pooling average
operator as fepe. The vector e epc is used by
a prefix generation network gen. to produce the
prefix. As shown in Figure 4, by & in f.nc(.), we
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Figure 4: An illustration of our end-to-end framework TCG-Event, where the main architecture in the central is
a transformer-based encoder-decoder, the lower blocks represent the task-conditioning construction modules for
encoder and decoder respectively and the upper blocks represent the task-conditioning injection modules for encoder

and decoder respectively.

suggest that it is flexible to add or remove an event
type representation from task conditioning.

Decoder Conditioning. It is expected that the
representation of the instance could help the
downstream generation in the decoder. Hence we
use the representation of both the task and the input
sequence to create a prefix for the decoder.

Specifically, let H, denote the representation
of the tokens of the input sequence . We
combine the sequence representation H, and
the task representation H, through the function
Faee :RIEXd  Rlelxd, s Rd" R a5 follows,

he,decth,dec:fdec(HeaHm) (5)

where fg.. is based on dot product-based cross-
attention, and h¢ ge. € RY, hy dec € R? are the
resulting fixed-dimensional vector summaries for
decoder conditioning.

Prefix Generation. We create the encoder prefix
Z,, and decoder prefix Z ;.. as follows,

Zenc =Jenc (he,enc)

(6)
Zdec = gdec( [hm,dec;hm,dec] )

where Jene and gg4.. are both mapping function
g : R2xd" s REXIHil where k is the length of
injected prefix and |Hj; | is the number of parameters

of the ith injected prefix maintained in the Trans-
former architecture. With the injection of Z.,,. and
Z 4., the encoder and the decoder in Equations 1
and 2 are modified as follows:

H, =Encoder(x;Zecn.) @)
ytah’t - DeCOder(yt—l §Hy<t 7ZdecaHaS)a (8)
where Z.,. and Zg4.. can be thought as pseudo-

prefix tokens impacting the generation process (Li
and Liang, 2021).

Training and Inference We train the model by
minimising the negative log-likelihood loss:

0* = i
argmin Y logm(ylze) ()
(x,y)eD

where D is the training set, and

[yl

Do (y|$78) = Hpe (yt |y<t,w,e).
t=1

(10)

For inference, we use constrained decoding (Lu
etal., 2021).

5 Experiments

We evaluate our TCG-Event model against a
number of recent strong models. In particular, we



Dataset Event Type Argument Type Train Dev Test Instance Events per Instance
ACEO5-EN 33 22 17,172 923 832 I-sent. Single/Multiple
RAMS 38 65 7,329 924 871 S-sent. Single

Table 1: Statistics of the event extraction datasets used in the paper, including the numbers of event types, argument
types, the type of instances, events per instance and number of instances in different splits.

evaluate it in the supervised learning setting for
both sentence-level and paragraph-level extraction
tasks to demonstrate the greater effectiveness of our
model in these challenging scenarios.

5.1 Evaluation setup

Datasets. We carry out experiments on two event
extraction datasets, including the sentence-level
dataset Automatic Content Extraction 2005
(ACEOQO5-EN) (Christopher Walker and Maeda,
2006); as well as a paragraph-level dataset: Roles
Across Multiple Sentences (RAMS) (Ebner et al.,
2019). Statistics of the two datasets can be found
in Table 1. Note that we use the official splits of the
two datasets for better reproducibility. It is worth
noting that these datasets are challenging due to
three factors. (1) Context length: each instance in
ACEO5-EN contains only one sentence, while in
RAMS, instances are paragraphs (five sentences).
(2) Event density: each instance in RAMS contains
only one event, while multiple events could be
present in one instance in ACEO5-EN. (3) Data
scarcity: the amount of training data in ACEQ5-EN
is more than two times that in RAMS.

Evaluation Metrics. We employ the same
evaluation metrics used in previous work (Lu et al.,
2021; Lin et al., 2020), i.e. F1, precision and recall,
for both trigger extraction (Trig-C) and arguments
extraction (Arg-C).

Since TCG-Event is a text generation model, to
reconstruct the offset of predicted trigger mentions,
we consider the input sequence one by one to find
the matched utterance. Moreover, in the case of
argument mentions, we identify the trigger offset
as the nearest matched utterance to the predicted
trigger mention.

Baselines. We evaluate TCG-Event against three
groups of baselines which use different levels
of annotations of decreasing granularity: Both
token-level and entity-level annotation, Token-level
annotation, and Parallel text-record annotation.
Some methods utilize token annotations, in which
each token in an instance is annotated with event
labels, along with golden entity annotation to facili-

tate event extraction. Joint3EE (Lin et al., 2020)is a
multi-task model that jointly performs entity, trigger,
and argument extraction by shared Bi-GRU hidden
representations. DY GIE++ (Nguyen and Nguyen,
2019) is a BERT-based extraction framework that
models text spans and captures within-sentence and
cross-sentence context. GAIL (Zhang et al., 2019)
is an ELMo-based model that proposes a joint entity
and event extraction framework based on generative
adversarial imitation learning, which is an inverse
reinforcement learning method. OnelE (Lin et al.,
2020) introduces a classification-based information
extraction system that employs global features and
beam search to extract event structures.

Some other methods use token-level annota-
tion. TANL (Paolini et al., 2021), a sequence
generation-based method, tackles event extraction
in a trigger-argument pipeline. Multi-task TANL
is the extended version of TANL which transfers
structure knowledge from other tasks. BERT-QA
(Du and Cardie, 2020) and MQAEE (Li et al., 2020)
consider event extraction as a sequence of extractive
question answering problems.

Similar to Text2Event (Lu et al., 2021), we
use Parallel text-record annotation, which only
requires (instance, event) pairs without expensive,
fine-grained token-level or entity-level annotations.
As can be seen in an instance of such an annotation,
(“His two brothers were executed.”, {Type:
Injure, Trigger: tortured, ...}), parallel text-record
annotation is the least demanding and thus more
practical annotation level. We compare our method
with Text2Event (Lu et al., 2021), which introduces
a sequence-to-structure generation model that
addresses the missing event structure issue via
constrained decoding.

Implementation Details We build our TCG-
Event method on the T5-base pretraind language
model and train it for 120 epochs with a learning
rate of 1e-4 and batch size of 8 for the supervised
setting. We also optimized TCG-Event using label
smoothing Szegedy et al. (2016) and AdamW
Loshchilov and Hutter (2017). The prefix length
is set to 20 for all experiments in Section 5.2.



Arg-C

Trig-C

Models Annotation PLM

F1 P R F1 P R
Joint3EE (Nguyen and Nguyen, 2019)  Token+Entity 52.1 52.1 52.1 698 68 71.8 -
DYGIE++ (Wadden et al., 2019) Token+Entity  48.8 - - 69.7 - - BERT-large
GAIL(Zhang et al., 2019) Token+Entity 524 61.6 457 720 74.8 69.4 ELMo
OnelE (Lin et al., 2020) Token+Entity 56.8 - - 74.7 - - BERT-large
BERT-QA (Du and Cardie, 2020) Token 533 56.8 502 724 71.1 73.7 2xBERT-base
MQAEE (Li et al., 2020) Token 534 - - 71.7 - - 3 x BERT-large
TANL (Paolini et al., 2021) Token 47.6 - - 68.4 - - T5-base
Multi-Task TANL (Paolini et al., 2021) Token 48.5 - - 68.5 - - T5-base
Text2Event (Lu et al., 2021) Text-record 49.8 46.7 534 692 67.5 712 T5-base
TCG-Eventrine tuning+Prefix Text-record 49.0 47.3 50.7 693 69.1 69.5 T5-base
TCG-Eventgy Text-record 51.5 48.1 55.6 70.1 66.7 73.9 T5-base

Table 2: Experiment results for the fully supervised event extraction on ACEOS-EN. PLM represents the pre-trained
language model used by each model. We use text-record annotation, which only provides (instance, event) pairs
without expensive, fine-grained token-level or entity-level annotations.

5.2 Main Results

We compare our TCG-Event model in the fully
supervised setting. The model evaluation is
organised by dataset characteristics: sentence-level
(ACEOS5-EN) and paragraph-level (RAMS).

Supervised Setting. In this setting, each model
is trained on the full training data of the respective
dataset. Table 2 presents the sentence-level event ex-
traction results on ACEO5-EN. Note that except for
the last block, performance numbers of all baselines
are taken directly from Text2Event (Lu et al., 2021).

It can be observed from the table that our
TCG-Event model outperforms Text2Event on
F1 for both argument extraction and trigger
extraction. Moreover, our model surpasses the
generation-based baselines using token annotation
and achieves competitive performance with SOTA.

Sentence-level performance. As discussed
above, among all compared models, our TCG-Event
model, together with Text2Event (Lu et al., 2021),
is trained on parallel text-record annotations, the
weakest form of supervision. In contrast, the other
baseline models require token-level annotations
and entity annotations, which are more fine-grained
and expensive to collect. As expected, more
extensive training data induces stronger model
performance. The last column also shows that
the better-performing models make use of larger
pretrained language models (PLMs), such as
BERT-large. The larger capacity of these PLMs

also contributes to model performance.
Paragraph-level performance. Table 3 shows

the performance of the baseline (Text2Event), our

model TCG-Event and its different variants for
paragraph-level event extraction on the RAMS
dataset. The other models in Table 2 are sentence-
level and do not support this task. The majority of
baselines focus only on event argument extraction
from RAMS dataset, which did not handle triggers
(Lietal., 2021c; Liu et al., 2021; Lin et al., 2021).
Our model supports the joint extraction of both event
triggers and arguments from the RAMS dataset.

We can observe from the table that our full model
achieves the best F1 values for both argument
extraction (Arg-C) and trigger detection (Trig-C) on
RAMS. It is especially noteworthy that TCG-Event
achieves better performance advantages over
Text2Event.

The superiority can be attributed to a model
design. Our cross-attention mechanism filters
event-type tokens and argument tokens, allowing
the model to better handle long context. Detailed
analysis on the contributions of each model
component will be presented below.

5.3 Ablation Study

This section analyzes the effects of prefix encoder
conditioning, prefix decoder conditioning, prefix
cross-attention, and constrained decoding in
TCG-Event. We designed five ablated variants
based on T5-base:
* “W/0_encoder conditioning - indicates TCG-Event
without prefix encoder conditioning.
* “W/0_decoder conditioning . indicates TCG-Event
without prefix decoder conditioning.
* “W/0_poth conditioning  1ndicates TCG-Event
without both prefix encoder and prefix decoder



Arg-C Trig-C
Models F1 P R F1 P R
Text2Event (Luetal.,2021) 29.81 2898 30.69 67.13 67.09 67.16
TCG-Eventyy; 30.88 31.07 30.70 68.42 68.31 68.54
TCG-Eventagyper 23.11 2134 2521 6228 62.10 62.46
TCG-Eventeine uningsadapier~ 30.00 2995 30.05 67.62 67.27 67.97
TCG-Eventpygiy 960 18.18 653 2451 2073 2997
TCG-Eventeine uningspreix ~ 30.53  30.19  30.89 6587 65.17 66.59

Table 3: Results for supervised learning on the paragraph-level event extraction dataset RAMS.

Arg-C Trig-C

F1 P R F1 P R
4691 44.60 49.48 6880 6591 71.96
4559 42.02 49.83 68.79 6589 71.94
49.41 4744 5156 6835 6635 7047
48.06 45.83 50.52 67.92 6472 71.46
49.10 45.01 5399 68.77 64.84 73.20
51.5 481 556 701 66.7 739

Models

Wloiencnder conditioning
w/o _decoder conditioning
w/o _both conditioning
W/O_constraint decoding

W/O_cross attention

TCG-Event-full

Table 4: The ablation study in the supervised learning
setting on the ACEOS-EN dataset based on T5-base.

conditioning.

* “W/0_constraint decoding . discards the constrained
decoding during inference and generates event
structures as an unconstrained generation
model.

* “W/0 _crossatiention indicates  TCG-Event

without prefix cross-attention.

Table 4 shows the results of the test set of ACEO5-EN

for the supervised learning setting. We observe that:

* constrained decoding helps, but not too much;

* prefix encoder and decoder conditioning are
the most effective module id we use both of
them together.

Furthermore, as constraint decoding limits the argu-

ment and trigger words generated by the model, our

method does not suffer from hallucination problems.

5.4 Analysis

In this section, we conduct comprehensive studies
to analyze the design of our method from prefix
length perspectives.

Longer prefixes provide more task-conditioning
information to the model. Table 5 summarizes
the result of model performance of different prefix
lengths on the ACEQS5-EN dataset. As can be seen,
longer prefixes improve model performance on
Arg-C, while performance on Trig-C improves with
increases in prefix length until 20, after which F1
value plateaus. As longer prefixes demand more
model parameters, we set the prefix length to 20

Prefix Arg-C Trig-C

length F1 P R F1 P R

5 45.67 41.79 5035 68.74 6621 71.46
10 46.58 4296 50.87 69.50 66.37 72.95
20 51.51 48.08 55.55 70.12 66.71 73.89
50 51.50 48.00 55.56 70.19 66.94 73.77
100 51.80 4831 55.83 68.64 662 7295

Table 5: Results for supervised learning on ACEQ5-EN
with different prefix lengths.

as a trade-off between model performance and
computational efficiency.

6 Conclusion

In this paper, we formulate the problem of event
extraction as a natural-language generation task.
We propose TCG-Event, a generation-based event
extraction technique that leverages large pre-trained
language models. A key component in TCG-Event
is a novel task conditioning technique that injects
event-type information into the model as prefixes.
The cross-attention mechanism in the prefix gen-
erator also facilitates effective long-text handling.
Extensive experiments on two benchmark datasets
demonstrate the effectiveness of TCG-Event, which
achieves state-of-the-art performance in event
extraction. On the challenging RAMS dataset,
TCG-Event outperforms the current best model.
For future work, we plan to further investigate new
mechanisms of injecting task-specific information.
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