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Abstract

Visual Relationship Detection (VRD) aims to
understand real-world objects’ interactions by
grounding visual concepts to compositional vi-
sual relation triples, written in the form of (sub-
Jject, predicate, object). Previous work explored
the use of contrastive learning to implicitly pre-
dict predicates (representing relations) from the
relevant image regions. However, these mod-
els often directly leverage in-distribution spa-
tial and language co-occurrences biases during
training, preventing the models from general-
izing to out-of-distribution compositions. In
this work, we examined whether contrastive vi-
sion and language models, pre-trained on large-
scale external image and text datasets, can as-
sist the detection of compositional visual rela-
tions. To this end, we propose a contrastive
fine-tuning approach for the VRD task. The
results obtained from this investigation show
that larger models yield better performance
when compared with their smaller counterparts,
while models pre-trained on larger datasets do
not necessarily present the best performance.

1 Introduction

Understanding the visual world is essential for
many modern computer vision tasks, including vi-
sual question answering (VQA) (Agrawal et al.,
2016), image captioning (Hossain et al., 2019), and
human-robot interaction (Goodrich and Schultz,
2007). Given the complexity of real world scenes,
low-level object classification and recognition tasks
are insufficient to solve these problems. Instead,
higher-level visual understanding and reasoning
tasks are often required. Visual Relationship Detec-
tion (VRD) aims to facilitate such understanding
by bridging the gap between low-level visual in-
formation and high-level symbolic visual relation.
Previous work (Lu et al., 2016) on VRD empha-
sized the use of spatial priors in the form of overlap-
ping bounding boxes and language co-occurrence

bias during training to achieve higher benchmark
results. However, such explicit incorporation of pri-
ors during training often leads to biases that might
not transfer to new visual relationship (Zhu et al.,
2022).

To address these issues, current research lever-
age external linguistic commonsense knowledge
from structured knowledge bases (Zareian et al.,
2020) or unstructured natural language corpora (Ye
and Kovashka, 2021) by distilling the information
down into low-dimensional distributed vector em-
beddings. These embeddings indirectly benefit the
visual relationship detection task as they preserve
the relevant topological structure from the knowl-
edge base or the linguistic contextual information
from raw language corpora. In this work, we focus
on the later and examine whether contrastive em-
bedding models learned from the abundant amount
of unstructured image and text pairs from the web
(see Table 1) can contribute to the VRD task.

To this end, we examined the promise of robust-
ness in the large pre-trained image and text deep
neural encoders (Radford et al., 2021), focusing on
learning joint visual and language embeddings for
VRD. The present paper investigates the applica-
tion of contrastive learning in this context. Con-
trastive learning aims to learn representations by
pulling together the matching (or positive) vector
pairs, while pushing apart non-matching (or nega-
tive) vector pairs. We believe that such a contrastive
approach, when paired with learning (Oliver et al.,
2018), will improve the joint representations and
indirectly benefit the VRD task. Thus, this work
proposes a fine-tuning framework that extends ex-
isting vision and text encoders to classify predi-
cates from the given ground truth object regions
and object labels. The results obtained show that
the amount of data used in the pre-training process
do not necessarily impact the final performance of
the VRD predicate classification (VRD-PredCls)



Dataset
LAION400M
LAION2B-en

No. unique image and pairs
413 millions
2.32 billions

Table 1: Number of unique image-text pairs for two
different datasets used in pre-training.

task when evaluated on models of the same size.

2 Related Work

This section presents a review of the work related
to compositional grounding of visual concepts on
language (Krishna et al., 2017), with an emphasis
on visual relationship detection through the use of
contrastive learning.

Visual Relationship Detection aims to construct a
symbolic representation from an unstructured scene
by representing it as a set of visual relationship
triples in the form of (subject, predicate, object)
(e.g (person, riding, horse)). Here, the subject and
object are labels grounded to the salient image re-
gions through bounding boxes, and the predicate is
defined as a real-world interaction between these
object pairs. However, due to the large number
of potential real-world interactions, existing visual
relation datasets including VRD (Lu et al., 2016)
and Visual Genome (Krishna et al., 2017) are of-
ten sparse and unbalanced, where common rela-
tions occur more frequently than rarer but plausible
ones. To tackle this problem, existing work seek
to incorporate linguistic knowledge as additional
training features to the learning model. For exam-
ple, Lu et al. (2016) have shown that leveraging
pre-trained word embeddings can help the models
learn linguistic statistical priors; similarly, Yu et al.
(2017) show that distilling knowledge from exter-
nal Wikipedia datasets can improve the model’s
performance. Other work have also directly tar-
geted the bias nature of the benchmark by incor-
porating spatial information (Peyre et al., 2019),
and (subject, object) co-occurrence priors as learn-
ing features for the classifiers (Chen et al., 2019),
improving the model’s performance significantly.
Recent approaches have also tackled the effect of
bias by using model-agnostic counterfactual pre-
diction during inference such as Total Direct Effect
(TDE) (Tang et al., 2020) or by experimenting with
different sampling strategies (Desai et al., 2021).
In contrast, the present work does not use any pre-
defined co-occurrence statistics, or spatial informa-
tion, as learning features at the same time that it

does not learn a neural discriminative classifier that
directly predicts the predicate label from the in-
put features. Instead, we apply existing contrastive
encoder-encoder architecture to construct visual
and text embeddings that can be ranked using a
cosine similarity scoring metric.

Datasets: Visual Genome (Krishna et al., 2017)
is the most used dataset for VRD. It is composed
of 108K images that have been labeled with 150
object and 50 predicate classes. The labeling strat-
egy of Visual Genome is simple: first, volunteers
were asked to provide captions for regions in im-
ages; then, these captions were transformed into
(subject, predicate, object) triples. This strategy al-
lowed to build a large-scale dataset with an average
of 21 relations per image but at the cost of intro-
ducing various biases such as asymmetric relations
(e.g. (hair, on, man) versus (man, has, hair)) or
confusion between predicates (e.g. (man, wearing,
shirt) and (man, wears, shirt)). Visual Genome and
other datasets used for Visual Relationships Detec-
tion such as VRD (Lu et al., 2016), suffer from
a long-tail distribution of the predicates, as recur-
rently stated in previous work (Zellers et al., 2018;
Tang et al., 2020; Chen et al., 2019). Nonetheless,
Visual Genome has become the most used bench-
mark for VRD, mainly because of the large scale
and diversity of its annotated data.

Contrastive Learning aims to minimize a defined
distance metric between the matching or positive
embedding vector pairs while maximizing the dis-
tance between non-matching or negative embed-
ding vector pairs. Recent work on contrastive learn-
ing have shown that such discriminative learning
approaches can (i) learn to ignore invariant features
and spurious correlations through data augmenta-
tion and automatic negative sampling technique
(Chen et al., 2020a), and (i1) learn joint visual and
language embeddings that can be used to perform
zero-shot triple detection on a wide variety of tasks
(Peyre et al., 2019; Tran et al., 2022). In this work,
we focus on use case (ii) which aims to transfer pre-
trained image and text embeddings to the visual
relationship detection task. To this end, we built
on top of an existing body of work on zero-shot
transfer and multi-modal representational learning,
with an emphasis on CLIP (Radford et al., 2021), a
contrastive learning model that encodes image and
text using abundant (image, caption) pairs from the
internet. We believe that such contrastive encoder-



encoder model gives a clearer separation of the
visual embeddings and language embeddings com-
pared to the traditional black-box neural fusion
approaches (Su et al., 2019; Chen et al., 2020b),
giving us more control over both the triples input
and the final output embedding spaces.

Multi-modal Representational Pre-training. Vi-
sual relations consist of both textual tokens from
the (subject, predicate, object) triples and the vi-
sual information from the objects’ salient features
and bounding boxes. As a result, it is essential to
leverage pre-trained embeddings that capture not
only the uni-modal information from image or text
but also the interactions between both modalities.
Still, most existing approaches use uni-modal ar-
chitecture such as Faster-RCNN (Ren et al., 2015)
or BERT (Devlin et al., 2018) that were pre-trained
on uni-modal tasks such as object detection, object
recognition, masked language modeling, or next
sentence prediction, etc. In this work, we focus on
applying encoder models that are pre-trained on
both language and vision tasks, where each modal-
ity can contribute positively to the other, facilitating
a more complete set of concepts. More specifically,
we apply vision Transformers and language Trans-
formers that were pre-trained using the discrim-
inative contrastive learning framework (Radford
et al., 2021). For fair comparisons with previous
work and baseline experiments, we also evaluated
our approach against CNN vision encoders and
language Transformer encoders pre-trained on the
contrastive learning framework.

3 Contrastive Image and Text Matching

This section describes the proposed architecture
and outlines the details of the current implemen-
tation. The general architecture consists of three
modules: (1) the Visual Module generates visual
embeddings based on the extracted features from
the (subject, object) union image regions, (2) the
Language Module generates text embeddings of
the concatenated (subject, predicate, object) string,
and (3) the Contrastive Loss Module that consists
of the visual-language contrastive losses ensuring
the consistency between the matching (visual, lan-
guage) embedding pairs, while pushing apart the
non-matching (visual, language) embedding pairs.
Here, we use the cosine similarity metric as the
distance metric and the cross entropy loss as our
main loss objective.

model image encoder no. params

CLIP ResNet50 25.6M
CLIP ResNet101 44.5M
OpenCLIP VIT-B-16 86M
OpenCLIP VIT-B-32 86M
OpenCLIP VIT-L-14 307M
OpenCLIP VIT-H-14 632M

Table 2: Number of parameters used in CLIP and Open-
CLIP pre-trained image encoder.

3.1 Visual Module

Visual Encoder: One of the main sub-tasks of vi-
sual relationship detection is to detect subjects and
objects from a given image and extract their visual
features. Given the success of CNN-based architec-
ture and Transformer-based architecture in learning
image representations from large-scale datasets, we
applied two different types of pre-trained backbone
as our encoders: (i) the ResNet50 CNN-based vi-
sual backbone, and (ii) the ViT Transformer-based
image backbone. We used the OpenCLIP pre-
trained image encoder and language encoders (sec-
tion 3.2) on either the LAION 400m or LAION
2b-en datasets to evaluate the impact of scaling up
the size of the model and dataset on the final per-
formance of the VRD task. OpenCLIP is the open-
source version of CLIP with released pre-trained
models. A comparison of CLIP and OpenCLIP
image encoder is displayed in Table 2.

Image Preprocessing: Given the ground truth
bounding boxes from an input image, we enumer-
ated all n possible union bounding boxes and ex-
tracted ;¢ (o ) embedding vectors using one of the
image encoders. It is worth noting that most of
the encoder parameters were frozen during the fine-
tuning process due to the limited resource setting.

3.2 Language Module

Language Encoder: Similar to the Vision Trans-
former (ViT) used in the Visual Encoder, the lan-
guage encoder used in this work is a 12-layer
512-wide Transformer architecture (Vaswani et al.,
2017) with 8 attention heads that can leverage the
contextualized information from the entire input
sentence. We believe that such transformer-based
contextualized encoders are beneficial for the vi-
sual relationship detection task because the same
predicate can have different meanings under dis-
tinct (subject, object) pairs.
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Figure 1: Overview of the proposed contrastive fine-tuning approach. Visualization is partially adapted from

Radford et al. (2021).

Language Preprocessing: For each triple in the
set of k£ ground truth triples, we first enumerated
p (subject, predicate;c o ), object) triples where
p is the number of predicates. We then concate-
nated each of these triples into ‘subject predicate
object® string format, resulting in m = k * p sen-
tences. We also added a 'null relation’ string as a
matched pair with union image regions or (subject,
object) pairs that have no visual relationship.

3.3 Contrastive Loss Module

Inspired by (Radford et al., 2021), we also used a
dual cross entropy loss function for our contrastive
visual and language consistency loss. Here, cosine
similarity was used as a distance metric d for the
loss function.

Negative Sampling: We performed negative
sampling during the image and language enumera-
tion and preprocessing step, where embeddings of
each modality were paired against multiple nega-
tive embeddings of the other modality. This pro-
cess resulted in a non-symmetric table as shown
in Figure 1, where the row represents the n image
embedding vectors and the column represents the
m text embedding vectors. Using this table mask
of positive and negative examples, we constructed
the labels y for both image and text.

Visual and Language Consistency Loss: Sim-
ilarly to the CLIP Loss, we computed a cross en-
tropy loss along the table’s rows and a cross entropy
loss along the table’s columns. Thus, given the set
Sy containing all possible image embeddings I and
the set .S; containing all possible text embeddings
T, the cross entropy loss equation for all visual
embeddings is:

LA(I,T)
d(1,T) )

[v—CE__1 Z Z _1y —y -log(
1Sl &5, 15,  TTT =

Tes, ©

Similarly, the cross entropy loss equation for all
language embeddings is:

LCP_ L s S 1, og( Ld(I,T) )
151 TES, IESy =i res, 40T
where,
1 1, if(LT) is positive
yI=yr — .
= 0, otherwise

The final visual and language consistency loss can
be defined as:

Lvl—CE — L’U—CE +LZ—CE

!The relationship detection head of these models was re-
trained using the settings provided in (Han et al., 2021).
2We were unable to train the model and replicate the results



Model Visual Encoder Finetuned MLP Finetuned Attention
CLIP-ResNet50-laion400m ResNet50 53.2 -
CLIP-ResNet101-laion400m ResNet101 47.7 -
OpenCLIP-VIT-B/16-laion400m VIT-B/16 42.2 59.1
OpenCLIP-VIT-B/32-1aion400m VIT-B/32 57.0 59.8
OpenCLIP-VIT-B/32-laion2b-en VIT-B/32 50.35 60.0
OpenCLIP-VIT-L/14-laion400m VIT-L/14 55.6 61.8
OpenCLIP-VIT-L/14-laion2b-en VIT-L/14 54.8 62.0
OpenCLIP-VIT-H/14-laion2b-en VIT-H/14 514 63.1

Table 3: Predicate Prediction Results using the Recall metrics for different contrastive models on the Visual Genome
dataset. Here, we examined two different strategies for fine-tuning these models: (i) Finetuned MLP and (ii)
Finetuned Attention. In the approach (i), MLPs were attached on top of the frozen visual and language encoders,
whereas in the approach (ii), the last two encoder layers of the Transformer were unfrozen.

Model

Visual Encoder PredCls

IMP' (Xu et al., 2017)
MSDN! (Li et al., 2017)
G-RCNN! (Yang et al., 2018)
RelDN? (Zhang et al., 2019)

Neural Motif' (Zellers et al., 2018)

GPS-Net 2 (Lin et al., 2020)
ITS+RTS ? (Tian et al., 2021)
OpenCLIP-VIT-H/14-laion2b-en

ResNet50 57.6
ResNet50 59.6
ResNet50 59.94
ResNet50 60.9
ResNet50 63.0
ResNet50 66.9
ResNet101 67.3
VIT-H/14 63.1

Table 4: Comparing Predicate Prediction Results on Visual Genome dataset with other work using the recall metrics
on the PredCls task. The replicated results are slightly different from those in Han et al. (2021)

Test-Time inference: At test time, given a set
of ground truth (subject, object) class pairs and a
set of objects’ bounding box regions, the evalua-
tion algorithm first enumerates all possible (subject,
predicate, object) triples and union image regions.
These relation triples are then preprocessed into
‘subject predicate object’ sentences as described
in Section 3.2, yielding p textual embeddings for
each pair, where p is the number of predicates.
Similarly, the union bounding boxes and the im-
age were preprocessed and encoded according to
the method described in Section 3.1, yielding n
possible embeddings.

For each image embedding ;¢ (1 ), the evalua-
tion code measured the similarity scores between
the given image embedding and all possible cor-
responding textual embeddings in Tj¢(1 ). The
evaluation algorithm then ranks n * p scores and
selects the top result to compare against the ground
truth using the Recall metrics based on Han et al.
(2021).

in these references. Instead, we used the results provided by
either Han et al. (2021) or the original paper referenced in the
table.

4 Results

This section presents an evaluation of the perfor-
mance of different fine-tuned OpenCLIP (Worts-
man et al., 2022) models on the Visual Genome
dataset, from which 60,784 images were used for
training and 26,466 images for testing. Results
marked with ! have been computed by retraining
the models using the PyTorch implementation from
(Han et al., 2021). Since the commonly used Recall
metric gives a biased view toward common rela-
tionships, we also present a visualization of how
models of different sizes perform on individual
predicate classes in Figure 2.

4.1 Evaluation

All evaluation results were computed using the re-
call metric on the top 1 ranked item for the predi-
cate classification task (PredCLS). The Recall met-
ric was used here to facilitate a comparison with
previous work. Table 4 shows that the largest fine-
tuned model achieved competitive results with re-
spect to state-of-the-art approaches. It should also
be noted that the majority of the other approaches
use debiasing or balancing techniques to counteract
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Figure 2: Predicate Prediction Results on Visual Genome dataset by individual relationship class. The blue line

represents the prevalence of the class labels.

the long-tail nature of the training dataset. Table 3
indicates that fine-tuning these Transformer-based
models without unfreezing the attention layers did
not lead to better performance as the model size
was increased. On the contrary, when fine tuned
with unfrozen attention layers, we observed a con-
sistent improvement in the model’s performance as
the model size increases. Here, ViT-B/32 is smaller
than ViT-L/14, and ViT-L/14 is smaller than ViT-
H/14. From Table 3, no significant improvement
in performance was observed between models pre-
trained on laion400m dataset and those pre-trained
on the larger laion2b-en dataset. For Transformer-
based models, an input image can be split into
either 16 patches (ViT-B/16) or 32 patches (ViT-
B/32). By comparing the ViT-B/16 encoder with
theViT-B/32 encoder trained on the laion400m, we
observe that having more patches can improve the
performance in both fine-tuning approaches.

4.2 Ablation Studies

To better analyze the performance of the differ-
ent model sizes on rare predicates classification,
we compared the distribution of each predicate
category with the recall performance obtained by
the 4 OpenCLIP models. Figure 2 shows that the
largest model VIT-H/14 trained on laion2b-en per-
formed better on rare predicates classes such as
carrying, sitting on or eating while maintaining
competitive performance on more common predi-

cates such as on, has or wearing. Still, these mod-
els were biased towards common relationships and
underperformed when evaluated on rare relation-
ships. It is also unknown how much of the perfor-
mance was due to a direct causal effect rather than
chance using solely the Recall metric. Thus, future
work should incorporate other evaluation metrics
to have a more holistic measure of the model’s
performance.

5 Conclusion

Visual Relationship Detection is the cornerstone of
many modern machine learning tasks that require a
comprehensive understanding of the visual scene.
In this work, we investigated whether large neural
encoders pre-trained on a large set of data could
capture the natural web image-text pair distribution
(Radford et al., 2021) and assist the detection of
visual relations. To this end, we proposed a con-
trastive fine-tuning technique that leverages this
capability to perform Visual Relationship Detec-
tion. While the results in Table 4 show that the
fine-tuned model achieved competitive results, the
model still suffered from biases that stemmed from
the long-tailed data distribution.

Moreover, based on results of the tests reported
in this work, the success of contrastive learning
techniques was highly dependent on the quality of
the positive and negative sampling examples, and
there was a limit to what automated sampling tech-



niques can do without human intervention. With-
out high-quality samples, these deep neural net-
works still learned spurious correlations and pat-
terns, making it difficult for the models to gener-
alize beyond the given domain. Thus, future work
may further explore better negative sampling and
data augmentation techniques that incorporate ex-
ternal taxonomies or knowledge bases to avoid bi-
ases and spurious correlations stemming from the
skewed training data distribution.

Finally, the test-time inference algorithm in this
work becomes more expensive as the number of
predicates p increases since the evaluation tech-
nique used measures the distance between the
given image embedding and all textual embeddings
(subject, predicate;c(y ), object). However, this
effect can be mitigated by pre-computing all sen-
tence embeddings from the dataset and storing
them in memory or in the file system. Still, such
approach may suffer from the I/O bottleneck where
the embeddings have to be loaded into memory
prior to computation. Future work may also ex-
plore alternative strategies to leverage the gener-
ated embeddings in predicate prediction tasks.
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