
 

 
 

Abstract 

This study investigates how the reliability 

of likelihood ratio (LR)-based forensic text 

comparison (FTC) systems is affected by 

the sampling variability regarding author 

numbers in databases. When 30–40 authors 

(each contributing two 4 kB documents) are 

included in each of the test, reference and 

calibration databases, the experimental 

results demonstrate: 1) the overall 

performance (validity) of the FTC system 

reaches the same level of performance as a 

system with 720 authors, and 2) the 

variability of the system performance 

(reliability) starts to converge. A similar 

trend can be observed regarding the 

magnitude of fluctuation in derived LRs. 

The variability of the overall system 

performance is mostly due to the large 

variability in calibration, not 

discrimination. Furthermore, FTC systems 

are more prone to instability when the 

dimension of the feature vector is high. 

1 Introduction 

Many studies on source-detection systems 

emphasise improving the system’s overall 

performance or system validity. In data-driven 

forensic science, empirical testing of the system, 

demonstrating the system’s validity and reliability, 

is essential for evidence to be accepted in court 

(President’s Council of Advisors on Science and 

Technology [U.S.], 2016). However, studies of 

reliability are limited (Wang et al., 2022). The 

current study analyses the reliability of forensic text 

comparison (FTC) regarding the effect of sampling 

variability and sample size. Sample size is a well-

known factor affecting the system’s validity and 

reliability (Ishihara, 2016, 2020).  

When reporting the system performance in court 

as an expert witness, an astute lawyer may question 

whether the system could achieve the same level of 

performance if it were tested with another set of 

samples from the same population, particularly 

when the sample size is small. Thus, forensic 

scientists must measure reliability to reduce the 

probability of a miscarriage of justice (Brümmer 

and Swart, 2014; Morrison, 2011, 2016). 

FTC typically involves the analysis of two 

documents: the source-known (suspect) document 

and the source-questioned (offender) document. It 

is widely acknowledged that expert opinions 

should be expressed as the strength of evidence, 

quantified as a likelihood ratio (LR) (Robertson et 

al., 2016). The importance of the LR framework, 

long argued as the logically and legally correct 

framework (Aitken, 1995; Aitken and Stoney, 

1991), is now recognised for FTC (Grant, 2022). 

However, FTC studies based on the LR framework 

are limited (cf. Ishihara, 2021; Ishihara and Carne, 

2022). 

The current study investigates the reliability and 

validity of the LR-based FTC system by 

conducting repeated random sampling (50 

iterations) of a given number of authors from a 

large database. The experiments are conducted 

with two different dimensions of feature vectors 

(20 and 500), anticipating some different degrees 

of reliability. Logistic Regression calibration 

(Morrison, 2013) was employed to convert the 

estimated scores with the Dirichlet-Multinomial 

model (Bolck and Stamouli, 2017) to LRs. See 

Subsection 2.4 for the details of calibration as it is 

used in a difference sense from ML/NLP. Word 

unigrams are used to model each document. 

2 Methodology 

2.1 Database and Comparisons 

The present study assessed a database of 

4 kB-sized documents extracted from the dataset 

prepared by Ishihara (2021). This database is based 

on the Amazon Product Data Authorship 

Verification Corpus (Halvani et al., 2017) and 
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includes 4,320 documents (two documents each 

from 2,160 authors. The average document length 

is 830.47 words (standard deviation, 

33.998 words). Ishihara (2021) provided 

justification for the use of product review texts for 

forensic studies. 
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Test Reference Calibration 

In order to test the reliability of the FTC system; 

in other words, the (in)stability of the system, 

arising from the sampling variability and the 

number of authors included in the experiments, k 

(={5,10,20,30,40,60,80,100,125,150,175,200,225,

250}) authors were randomly selected for each of 

the three sub-databases of test, reference and 

calibration 50 times (see Figure 1). Therefore, 50 

random samplings of data for each experiment of k 

authors were conducted. For a small k, a high level 

of fluctuation in system performance across the 50 

iterations of the experiment is predicted. 

From k authors in the test sub-database, k same-

author (SA) and (𝑘
2
)  different-author (DA) 

comparisons are possible. Note that more DA than 

SA comparisons can be made for the same number 

of authors.  

The system is assumed to be unstable if the 

dimension of a feature vector is high because the 

amount of data for the statistical model to be 

appropriately trained exponentially increases as the 

feature dimension increases (Silverman, 1986). As 

such, two different feature numbers (20 and 500) 

are compared to investigate to what extent the 

feature vector dimension influences system 

reliability. 

2.2 Tokenisation and Word Unigrams 

The tokens() function of the quanteda R 

library (Benoit et al., 2018), which recognises 

punctuation marks and special characters as single 

words, was used to perform tokenisation. No 

stemming algorithm was used. Each document was 

modelled with word unigrams. From the entire 

database, the 500 most frequent words (term 

frequency) were identified, and those words, sorted 

in descending order of frequency, were used as the 

elements of a feature vector; i.e. a global feature 

selection was applied. 

Figure 2 illustrates the process of calculating 

LRs. The LRs are calculated for SA and DA 

comparisons generated from the test sub-database. 

Estimating LRs is a two-stage process consisting of 

the score calculation stage, followed by the 

calibration stage. For the score calculation stage, 

the same processes are applied to the test and 

calibration sub-databases. However, the scores of 

the test sub-database were calibrated to LRs, while 

the score of the calibration sub-database were used 

to train the calibration model. The documents 

stored in the reference database are used to obtain 

statistical information for the typicality assessment 

of the documents being compared. 

2.3 Score Calculation 

When the LR interpretive framework is applied to 

FTC, textual evidence (𝐸) is assessed under the two 

competing hypotheses; the SA (𝐻𝑆𝐴) and the DA 

(𝐻𝐷𝐴). These are generally called the prosecution 

and defence hypotheses, respectively. The evidence 

usually includes two types of text samples: the 

source-known text from the suspect (𝑋 ) and the 

source-questioned text from the offender (𝑌). Thus, 

the score is expressed as given in Equation (1). 

𝑆𝑐𝑜𝑟𝑒 =  
𝑓(𝐸|𝐻𝑆𝐴)

𝑓(𝐸|𝐻𝐷𝐴)
 =  

𝑓((𝑋, 𝑌)|𝐻𝑆𝐴)

𝑓((𝑋, 𝑌)|𝐻𝐷𝐴)
 (1) 

Each piece of evidence (𝑋 and 𝑌) are modelled 

with the counts of a given set of unigrams (𝑚 ; 

maximum 𝑚 =   500): 

𝑋 =  {𝑥1, 𝑥2 , ⋯ 𝑥𝑚} and𝑌 =  {𝑦1, 𝑦2,⋯ 𝑦𝑚} . The 

similarity between 𝑋  and 𝑌  is assessed as the 

probability of 𝑋  against the multinomial model 

given 𝑌  of which the parameter is 

𝛱 =  {𝜋1, 𝜋2, ⋯𝜋𝑚}. If a prior is assumed for the 

model parameter, it can be formulated by a 

Dirichlet distribution with a hyperparameter 

(𝐴 =  {𝑎1, 𝑎2,⋯ 𝑎𝑚}). With the multivariate Beta 

function (𝐵 =  (Γ(𝑎1)⋯Γ(𝑎𝑚))/(Γ(𝑎1 +
⋯𝑎𝑚))) , Equation (1) can be rewritten as 

Equation (2). 

Figure 1: Random selections of authors 

Score =  
𝐵(𝐴)𝐵(𝐴 + 𝑋 + 𝑌)

𝐵(𝐴 + 𝑋)𝐵(𝐴 + 𝑌)
 (2) 



 

 
 

LRs 

Training 

The maximum likelihood estimation was 

employed to obtain the parameter values of the 

Dirichlet model using the reference sub-database. 

Note that although the Dirichlet-Multinomial 

model follows Bayesian logic, the parameters of 

the Dirichlet model are fixed in this study instead 

of random variables. See Section 4 for the 

application of a Bayesian statistical approach as a 

future study. Refer to Bolck and Stamouli (2017) 

for a detailed derivational process from Equation 

(1) to (2). 

2.4 Score to Likelihood Ratio Conversion 

The calculated score for each comparison of the test 

sub-database must be converted to a LR, as the 

uncalibrated score alone cannot be interpreted as 

demonstrating the strength of the evidence. 

Logistic regression is most commonly used to 

calculate the LR (Morrison, 2013; Ramos and 

Gonzalez-Rodriguez, 2013). The calculated 

comparison scores from the calibration 

sub-database are used to train the logistic 

regression model. 

2.5 System Evaluations 

For the evaluation of a forensic system of which the 

outcome is used to assist the factfinders’ legal 

decision, those evaluation metrics which are based 

on classification or identification accuracy are not 

appropriate. This is because 1) the category-based 

classification accuracy does not properly assess the 

magnitude of LRs, which is continuous and 2) it 

implicitly refers to the accuracy of the decision 

making: guilty vs not guilty; which is only 

permitted for the factfinders.  

The standard evaluation metric for LR-based 

forensic systems is the log LR cost (𝐶𝑙𝑙𝑟) , 

mathematically expressed in Equation (3). 

𝐶𝑙𝑙𝑟 =  
1

2

(

 
 

1

𝑁𝑆𝐴
∑ 𝑙𝑜𝑔2 (1 +

1

𝐿𝑅𝑆𝐴𝑖
)

𝑁𝑆𝐴

𝑖

+
1

𝑁𝐷𝐴
∑ 𝑙𝑜𝑔2 (1 + 𝐿𝑅𝐷𝐴𝑗)

𝑁𝐷𝐴
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 (3) 

In Equation (3), 𝑁𝑆𝐴 and 𝑁𝐷𝐴 are the number of 

SA and DA comparisons, respectively, and 𝐿𝑅𝑆𝐴𝑖  

and 𝐿𝑅𝐷𝐴𝑗  are the ith SA and jth DA linear LRs, 

respectively. The 𝐶𝑙𝑙𝑟  is the overall average of the 

pooled costs calculated for all LRs. A certain 

amount of cost is computed for each LR, but the 

cost is greater as the value is further away from 

unity (LR = 1), and contrary-to-fact LRs give rise 

to a far greater cost than consistent-with-fact LRs. 

The closer to 𝐶𝑙𝑙𝑟  = 0, the better the performance. 

A 𝐶𝑙𝑙𝑟 ≥1 denotes that the evidence is not 

informative for inference. The 𝐶𝑙𝑙𝑟  can be 

decomposed into 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛  and 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙  to assess the 

discrimination and calibration performance of the 

system, respectively; thus, 𝐶𝑙𝑙𝑟  = 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 + 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙. 

The variability or (in)stability of the 

performance across the 50 random samplings of k 

authors is quantified by the range of the 𝐶𝑙𝑙𝑟  values 

observed across the 50 iterations. 

3 Results: System Performance 

3.1 Reference Performance 

The 2,160 authors of the entire database were 

evenly separated into three sub-databases, with 720 

authors in each. With this maximum number of  
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Figure 2: Process of calculating likelihood ratios (LRs). k = the number of authors in sub-database; 

SA = same-author; DA = different-author; t = test sub-database; comps = comparisons; 

c = calibration sub-database. 
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authors (720) in each sub-database, a set of 

experiments was carried out by gradually 

increasing the number of 

features = {5,10,20,30,40,60,80,100,125,…500}) 

to understand how well the FTC system works with 

the full dataset, but with different feature numbers. 

The 𝐶𝑙𝑙𝑟 , 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 and 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙 were plotted as a function 

of the number of features in Figure 3. 

Regardless of the feature numbers, the 

𝐶𝑙𝑙𝑟
𝑐𝑎𝑙  values were all close to zero, indicating that 

the resultant LRs are very well calibrated. The 

overall performance of the system (𝐶𝑙𝑙𝑟) improves 

as the feature number increases to approximately 

125 features, after which the 𝐶𝑙𝑙𝑟value stays more 

or less unchanged even with the addition of more 

features. The system achieved the best performance 

for 300 features (𝐶𝑙𝑙𝑟  = 0.66469). The 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛values 

exhibit a very similar trend to the 𝐶𝑙𝑙𝑟values. 

3.2 Variability in Performance 

The reliability and validity of the system caused by 

the random sampling of given numbers of authors 

for the sub-databases were analysed. For this, the 

mean and range of the 𝐶𝑙𝑙𝑟  values of the 50 

iterations of experiments were plotted together 

according to the number of authors in Figure 4; 

Panel a) shows the data for 20 features, and Panel 

b) shows the data for 500 features. 

For the mean 𝐶𝑙𝑙𝑟   values, the system does not 

require many authors to achieve the same level of 

performance as systems with the full number of 

authors. Figure 4a and 4b demonstrate that 

regardless of the feature numbers, systems with 10 

authors averaged the same level of performance as 

the systems using the full number of authors. When 

the feature dimension is low (20 features) (see 

Figure 4a), the average system performance is 

similar for any number of authors. However, when 

the feature dimension is high (500 features) 

(Figure 4b), analyses using 5 authors substantially 

worsened the system performance. This indicates 

that system (in)stability is subject to the feature 

dimension. 

As can be seen from Figure 4b, the range of the 

𝐶𝑙𝑙𝑟  values was large for 50 iterations for 5 authors 

but narrowed with an increasing number of 

authors. Although the range appeared to converge 

with the inclusion of 30–40 authors, it continues 

to decrease in very small increments as the 

number of authors further increases. With only 5 

authors, the range of the 𝐶𝑙𝑙𝑟values is far wider for 

500 features (116.292) than for 20 features 

(2.53864). 

To visually compare the levels of (in)stability 

caused by the different feature numbers, the 

ranges of 𝐶𝑙𝑙𝑟values for 20 and 500 features are 

plotted together in Figure 4c. A narrower scale 

(between 0 and 1) is used for the Y-axis of 

Figure 4c to make visual comparison easier. 

However, this scale reduction resulted in some 

𝐶𝑙𝑙𝑟  range values being out of the plot; thus, the 

𝐶𝑙𝑙𝑟  range values are given in Table 1 for 5, 10 and 

20 authors. 

Figure 4c and Table 1 show that the 𝐶𝑙𝑙𝑟  range 

values are higher for 500 features than 20 features. 

However, the ranges are similar for author numbers 

≥150. In contrast, for fewer authors (≤20), the  

 

 

Figure 3: Reference performance of the forensic text comparison system with 720 authors in each sub-database. 

The red dotted horizontal line indicates the best 𝐶𝑙𝑙𝑟value (0.66469), attained with 300 features. 

Author 

number 

Feature number 

 20 500 

5 2.53864 116.292 

10 1.25353 1.80968 

20 0.59871 0.83678 

Table 1: Ranges of the 𝐶𝑙𝑙𝑟values 

with 20 and 500 features. 
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difference in the 𝐶𝑙𝑙𝑟  range between 20 and 500 

features is larger (113.75, 0.55615 and 0.23807, for 

5, 10 and 20 authors, respectively) than for author 

numbers >20. 

The experimental results presented in this 

subsection demonstrate that the performance 

instability caused by the sampling variability is 

evident in FTC. When the author number is very 

small (5 authors), the magnitude of the 

performance instability, measured in terms of the 

range of 𝐶𝑙𝑙𝑟values, is large. Equally, the average 

performance is low compared to the systems with 

the full number of authors. 

However, performance instability is quickly 

reduced as more authors are added. For example, 

with 30–40 authors, the range of 𝐶𝑙𝑙𝑟  values 

becomes substantially moderate and starts to 

converge. With 30–40 authors, the average 

performance of the system is as good as that of a 

system with the full number of authors. 

It appears that the (in)stability of the system is 

interrelated with the number of features. That is, the 

system is prone to instability with a higher feature 

vector dimension. In particular, the instability is 

more sizeable with a small number of authors, but 

becomes negligible when many authors (≥150) are  

 

 

 

 

Figure 4: Mean 𝐶𝑙𝑙𝑟values (circles), plotted as a function of the number of authors with the range of the 

𝐶𝑙𝑙𝑟values (solid curves). Panels a) and b) demonstrate the 𝐶𝑙𝑙𝑟values for 20 and 500 features, respectively. The 

ranges of the 𝐶𝑙𝑙𝑟values are plotted together in Panel c) for better visual comparison. The dotted horizontal lines 

of Panels a) and b) show the 𝐶𝑙𝑙𝑟value for the maximum authors (720). Note that some values extend beyond 

the range of the Y-axis, which is narrower in Panel c). 



 

 
 

included in each sub-database; therefore, there is 

improved stability when the statistical model is 

trained with an appropriate amount of data. 

3.3 Cause of Variability 

Subsection 3.2 investigated to what extent 50 

random samplings of a given set of authors affect 

the reliability and validity of the system by 

assessing the 𝐶𝑙𝑙𝑟values. However, as explained in 

Subsection 2.5, the 𝐶𝑙𝑙𝑟  is an assessment metric for 

the overall performance of a LR-based system, and 

consists of two components: discrimination (𝐶𝑙𝑙𝑟
𝑚𝑖𝑛) 

and calibration ( 𝐶𝑙𝑙𝑟
𝑐𝑎𝑙 ). In this subsection, the 

previously observed variability is further 

investigated from the viewpoints of the 

discrimination and calibration performance. 

Figure 5 shows how the mean and ranges of the 

𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 and 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙 values vary as a function of author 

numbers. Figure 5 shows this variation for 500 

features, and the observation made for 20 features 

is uniform. As can be observed in Figure 5a, the 

mean 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 value stays more or less the same 

regardless of the author numbers (even for 5 

authors). This observation means that, on average, 

the discrimination ability of the system is not 

largely influenced by the number of included 

authors. 

The range of discrimination ability, measured 

using 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛, displays trifling fluctuations even with 

the small numbers of authors (≤40 authors), and the 

degree of fluctuation is far smaller than the ones 

observed for the 𝐶𝑙𝑙𝑟  (see Figure 4). 

In contrast to the discrimination ability of the 

system, the changes in the mean and range of the 

𝐶𝑙𝑙𝑟
𝑐𝑎𝑙 values display a similar trend as observed for 

the 𝐶𝑙𝑙𝑟   counterparts presented in Figure 4. Even 

with as few as 10 authors, a very similar level of 

mean calibration performance (𝐶𝑙𝑙𝑟
𝑐𝑎𝑙  = 0.20338) is 

found in the case with the maximum number of 

authors (𝐶𝑙𝑙𝑟
𝑐𝑎𝑙  = 0.01955). However, with 5 

authors, the mean 𝐶𝑙𝑙𝑟
𝑐𝑎𝑙 value deviates 

(𝐶𝑙𝑙𝑟
𝑐𝑎𝑙  = 3.37324) far from the calibration 

performance achieved with the maximum number 

of authors (𝐶𝑙𝑙𝑟
𝑐𝑎𝑙  = 0.01955). Likewise, the range of 

the 𝐶𝑙𝑙𝑟
𝑐𝑎𝑙 values is large (116.06) with 5 authors. As 

can be observed in Figure 5b, the large range 

observed for 5 authors decreases as the author 

number increases, and the range becomes as 

narrow as 0.16045 with 30 authors. 

 

 

Figure 5: Mean 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 (a) and 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙 (b) values (circles), plotted as a function of author numbers, the curves show 

the range of the 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 and 𝐶𝑙𝑙𝑟

𝑐𝑎𝑙 values (curves). The dotted horizontal lines in a) and b) show the best 𝐶𝑙𝑙𝑟
𝑚𝑖𝑛 and 

𝐶𝑙𝑙𝑟
𝑐𝑎𝑙 values, respectively, for the maximum authors (720). Note that some values extend beyond the range of 

the Y-axis. 



 

 
 

The different characteristics displayed between 

Panels a) and b) of Figure 5 for discrimination 

ability and calibration, respectively, mean that the 

deterioration in mean overall performance and 

wide range of performance fluctuation shown for a 

small number of authors in Figure 4 are largely due 

to poor performance in calibration, not 

discrimination performance. 

 

 

 

 

Figure 6: Range of the 50 mean log10LRs plotted separately for (a) 20 features, (b) 500 features, (c) SA LRs 

and (d) LRs. The Y-axis is narrower for Panels c) and d). Some values are beyond the range of the Y-axis. 



 

 
 

3.4 Variability in Likelihood Ratios 

The variability in performance reported in 

Subsection 3.2 is fundamentally caused by 

variability in the derived LRs. Thus, this subsection 

investigates the characteristics of the derived SA 

and DS LRs. For each number of k authors, 

experiments were repeated 50 times by randomly 

sampling authors from the entire database for each 

sub-database. Therefore, for the same k, each 

iteration of the experiment should return k SA LRs 

and (𝑘
2
) DA LRs. The mean values of the SA and 

DA LRs were calculated for each iteration. Wide 

variation in the mean LR was expected for a small 

k. The range of the mean SA and DA LRs was also 

calculated for each k to assess the degree of 

variability observed in LRs. 

The ranges of the mean LRs for 20 and 500 

features are plotted in Figure 6a and 6b, 

respectively. As for the variability in overall 

performance (see Figure 4), the range of the mean 

LRs observed with 5 authors quickly tapers and 

starts converging for 30–40 authors, regardless of 

the number of features and whether SA or DA 

comparisons are made. 

In Figure 6c and 6d, the range of mean log10LR 

values are plotted against SA or DA LRs, 

respectively, to visually investigate any influences 

arising from the different number of features on the 

(in)stability of the derived LRs. A narrower Y-axis 

range was used in Figures 6c and 6d; the values 

beyond the Y-axis range are given in Table 2. 

Although the data in Figure 6c and 6d and 

Table 2 is not straightforwardly clear for the DA 

LRs, the derived LRs are susceptible to instability 

when the dimension of the feature vector is high. 

However, this difference is negated when 200 or 

more authors are included. 

4 Conclusions 

This study investigated the reliability and validity 

of a LR-based FTC system by varying the sampling 

number and sample size. When only 5 authors were 

included in the test, reference and calibration 

sub-databases (two 4 kB documents from each 

author), the reliability and validity of the system 

were considerably compromised. However, adding 

more authors to the database compensated for this 

deterioration in reliability and validity. When 30–

40 authors were included, the mean performance 

(validity) of the system was nearly equivalent to 

that for as many as 720 authors. Likewise, when 

30–40 authors were included, the fluctuation 

(reliability) of the system performance 

substantially decreases and starts to converge. A 

similar observation was made for the derived LRs; 

the wide range of the mean LR values across 50 

iterations of experiments with 5 authors greatly 

diminishes if 30–40 authors are included in each 

sub-database. 

The experimental results also show: 1) a system 

with a high dimension of feature vector (500 

features) is more prone to instability than a system 

with fewer feature vectors (20 features), and 2) the 

low reliability and poor validity found when a small 

number of authors are included (e.g., 5 and 10 

authors) are largely due to the poor calibration, not 

discrimination ability, of the system. 

The approach that was employed in this study is 

rather primitive; e.g. the number and type of 

features, and there would be considerable potential 

to improve the model, consequently leading to a 

better performance. However, this may 

compromise the stability of the system due to the 

resultant even higher dimensionality of feature 

vector. This needs further investigation, while 

seeking the benefits of feature selection/reduction. 

In the current study, the (in)stability and overall 

performance of the FTC system was measured. 

However, besides the quantification, the instability 

of the system ultimately needs to be minimised to 

prevent the misinterpretation of evidence and 

miscarriage of justice. As such, it is essential to 

apply a Bayesian statistical approach that considers 

the degree of uncertainty to the LRs (Morrison and 

Poh, 2018) with the outcome being Bayes factors. 

Obviously, the application of a Bayesian statistical 

approach to FTC is another step to take as an 

extension of the current study.  
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 Author number Features number 

  20 500 

 5 3.81995  3.83104  

SA 10 0.84000  1.81251  

 20 0.88233 1.00447  

 5 4.35546  8.46658  

DA 10 6.27607  2.26897  

 20 0.84479 1.17478  

Table 2: Ranges of the mean log10LR values with 20 

and 500 features for 5, 10 and 20 authors. 
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