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Abstract

Effective methods for multiword expressions
detection are important for many technologies
related to Natural Language Processing. Most
contemporary methods are based on the se-
quence labeling scheme applied to an annotated
corpus, while traditional methods use statistical
measures. In our approach, we want to inte-
grate the concepts of those two approaches. We
present a novel weakly supervised multiword
expressions extraction method which focuses
on their behaviour in various contexts. Our
method uses a lexicon of English multiword lex-
ical units acquired from The Oxford Dictionary
of English as a reference knowledge base and
leverages neural language modelling with deep
learning architectures. In our approach, we do
not need a corpus annotated specifically for the
task. The only required components are: a lex-
icon of multiword units, a large corpus, and
a general contextual embeddings model. We
propose a method for building a silver dataset
by spotting multiword expression occurrences
and acquiring statistical collocations as nega-
tive samples. Sample representation has been
inspired by representations used in Natural Lan-
guage Inference and relation recognition. Very
good results (F1=0.8) were obtained with CNN
network applied to individual occurrences fol-
lowed by weighted voting used to combine re-
sults from the whole corpus. The proposed
method can be quite easily applied to other lan-
guages.

1 Introduction

Multiword expressions (henceforth MWEs) have
been studied for decades, defined in different ways
in literature with different denotations of this term,
e.g. see the overview in (Ramisch, 2015). Probably,
the most genuine, but the least operational, defini-
tion is multiword lexemes stored as single lexical
units in the mental lexicon ready to be retrieved. In
the spirit of this fundamental property, we consider
MWEs from the lexicographic point of view as

lexical units that “has to be listed in a lexicon” (Ev-
ert, 2004) and we seek for methods of automated
extraction of MWEs from text corpora to expand
a large semantic lexicon with multi-word lexical
units. Summarising a longer definition given in
(Ramisch, 2015), MWEs are “lexical items decom-
posable into multiple lexemes”, “present idiomatic
behaviour at some level of linguistic analysis” and
“must be treated as a unit” and, thus, should be
described in a semantic lexicon, e.g. from (Steven-
son, 2010) air corridor (an agreement between
two countries), slow food (“traditional food and
ways of producing, cooking and eating it”), fast
food, fire door, first lady etc. A similar defini-
tion was adopted in the PARSEME Shared Task
resource (Ramisch et al., 2018, 2020a). As we tar-
get the construction of a general lexicon expressing
good coverage for lexical units occurring frequently
enough in a very large corpus, we need also to take
into account multiword terms, i.e. (Ramisch, 2015)
“specialised lexical units composed of two or more
lexemes, and whose properties cannot be directly
inferred by a non-expert from its parts because they
depend on the specialised domain”.

Several MWE characteristics or identifying
properties have been postulated, e.g.: arbitrari-
ness, institutionalisation, limited semantic vari-
ability (especially non-compositionality and non-
substitutability), domain specificity, and limited
syntactic variability (Ramisch, 2015). Among
them, semantic non-compositionality seems to be
one of the strongest identifying factors. However,
the challenge is to trace them using some corpus-
based evidence and guide the extraction process.
In addition, MWEs should be some how corre-
lated with higher or more prominent frequency in
language use in order to be worth inclusion in a
lexicon.

Extraction of MWEs and their description in a
semantic lexicon (e.g. as a reference resource) is
important for many NLP applications like semantic
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indexing, knowledge graph extraction, vector mod-
els, topic modelling etc. Due to the specific prop-
erties of MWEs as whole units, their automated
description by the distributional semantics method,
e.g. embeddings, is not guaranteed, especially in
the case of MWEs of lower frequency.

Traditionally, MWEs extraction is preceded by
finding collocations (frequent word combinations)
by statistical or heuristic association measures and
filtering them by syntactic patterns. However, in
this way mainly the frequency-related aspect is
covered. The peculiar behaviour of MWEs as a lan-
guage unit may be observed in linguistic contexts,
and methods based on the well-known sequence la-
belling scheme try to do that. They explore MWE
specific behaviour of as a language expressions
across text contexts, where the contexts are repre-
sented by contextual embeddings (neural language
models). However, such approaches require a lot of
hard manual work on text annotation. In addition,
due to the corpus size limitation, most potential
MWEs are observed only in a few, if not singu-
lar uses, while a lexicon element by a definition
is a ready-to-use unit to be included in different
contexts and, as such, should be studied.

Thus, we want to fully explore the expected
MWE characteristic aspects, including frequency,
and to reduce the amount of manual work required.
MWE annotated corpora are very rare and small,
e.g. PARSEME (Ramisch et al., 2020b), but MWEs
are listed in dictionaries and lexical resources. We
propose a weakly supervised approach in which a
lexicon of MWEs is used to build a kind of silver
data on the basis of general text corpus. Concern-
ing negative examples, i.e. language expressions
rejected to be MWEs, that are hardly listed in any
lexical resources, we use association measures (fre-
quency aspect) to find collocations very likely not
being MWEs. Next we feed a system combining
contextual embeddings, deep neural learning and
weighted voting scheme across individual MWE
occurrences with the silver data. As a result, the
system can be next used to filter potential MWEs
extracted from a corpus with association measures
(the frequency aspect in a positive role). In con-
trast to many methods from literature, we neither
need a corpus laboriously annotated with MWE
occurrences, nor language models specially trained
for this task. In addition we aim at jointly encom-
pass most of the MWE characteristic aspects with
the majority of them recognised in a kind of over-

lap of MWE contextual embeddings across their
different occurrences. The proposed approach is
illustrated with good results achieved on English
MWEs coming from several dictionaries and the
British National Corpus. However, our method can
be quite easily adapted to any language, the only re-
quired elements are: a corpus and an initial lexicon
of MWEs, and a general contextual embeddings
model.

2 Related Work

Initially statistical association measures calculated
on the basis of word co-occurrence statistics in
corpora were used for discovering and ranking col-
locations as potential MWEs (Evert, 2004). Single
measures can be also combined into complex ones,
e.g. by a neural network (Pečina, 2010). Syntac-
tic information from parsing (Seretan, 2011) or
from lexico-syntactic constraints based on morpho-
syntactic tagging (Broda et al., 2008) were used in
counting statistics and post-filtering collocations.
Several systems for MWE extraction were pro-
posed, combining different techniques, e.g. mwe-
toolkit by Ramisch (Ramisch, 2015) combines sta-
tistical extraction and morpho-syntactic filtering,
but also describes collocations with feature vectors
to train Machine Learning (ML) classifiers. Lexico-
syntactic patterns, measures, length and frequency
are used as features in ML-based MWE extraction
(Spasić et al., 2019). Linguistic patterns were used
to extract MWEs and post-filter the outcome of as-
sociation measures (Agrawal et al., 2018). MWEs
were also detected by tree substitution grammars
(Green et al., 2013) or finite state transducers (Han-
dler et al., 2016).

Recently, attention was shifted to MWE extrac-
tion perceived as a sequence labelling problem,
e.g. (Chakraborty et al., 2020), where corpora are
annotated on the level of words, typically, BIO an-
notation format (Ramshaw and Marcus, 1995): B –
a word begins an MWE, I is inside, O – outside. Se-
quence labelling approaches can also be combined
with heuristic rules (Scholivet and Ramisch, 2017)
or supersenses of nouns or verbs (Hosseini et al.,
2016). Such heuristics are applied to extract lin-
guistic features from texts for training a Bayesian
network model (Buljan and Šnajder, 2017). Con-
volutional graph networks and self-attention mech-
anisms can be used to extract additional features
(Rohanian et al., 2019). There are many challenges
related to the nature of the MWEs, e.g.: disconti-
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nuity – another token occurs between the MWE
components or overlapping – another MWE oc-
curs between the components of the given MWEs.
To counteract this, a model based on LSTM, the
long short-term memory networks and CRF is pro-
posed (Berk et al., 2018). The model from (Taslim-
ipoor et al., 2020) combines two learning tasks:
MWE recognition and dependency parsing in par-
allel. The approach in (Kurfalı, 2020) leverages
feature-independent models with standard BERT
embeddings. mBERT was also tested, but with
lower results. An LSTM-CRF architecture com-
bined with a rich set of features: word embedding,
its POS tag, dependency relation, and its head word
is proposed in (Yirmibeşoğlu and Güngör, 2020).

MWEs can be also represented as subgraphs en-
riched with morphological features (Boros and Bur-
tica, 2018). Graphs can be next combined with the
word2vec (Mikolov et al., 2013) embeddings to rep-
resent word relations in the vector space and then
used to predict MWEs on the basis of linguistic
functions (Anke et al., 2019). Morphological and
syntactic information can be also delivered to a re-
current neural network (Klyueva et al., 2017). Two
approaches to MWE recognition within a transition
system were compared in (Saied et al., 2019): one
based on a multilayer perceptron and the second
on a linear SVM. Both utilise only lemmas and
morphosyntactic annotations from the corpus and
were trained and tested on PARSEME Shared Task
1.1 data (Ramisch et al., 2018).

However, such sequence labeling approaches fo-
cus on word positions and orders in sentences, and
seem to pay less attention to the semantic incom-
patibility of MWEs or semantic relations between
their components. Furthermore, sequence labeling
methods do not emphasize the semantic diversity
of MWE occurrence contexts. Thus, they over-
look one of the most characteristic MWE factors:
components of a potential MWE co-occur together
regardless of the context. It allows us to distinguish
a lexicalised MWE from a mere collocation or even
a term strictly related to one domain. To the best of
our knowledge, the concept of using deep neural
contextual embeddings to describe the semantics of
the MWEs components and the semantic relations
between them in a detection task has not been suf-
ficiently studied, yet. Moreover, due to the sparsity
of the MWEs occurrences in the corpus, the corpus
annotation process is very time consuming and can
lead to many errors and low inter-annotator agree-

ment. For this reason, we propose a lexicon-based
corpus annotation method. We assume that the vast
majority of MWEs are monosemous, automatically
extract the sentences containing the MWE occur-
rences, and treat all sentences including a given
MWE (as a word sequence) as representing the
same multiword lexical unit.

3 Datasets

The conducted analysis of the existing resources
has shown that it is difficult to find a large anno-
tated dataset for the multiword expressions detec-
tion task. PARSEME shared task and multilingual
corpus (Ramisch et al., 2020b) is a very valuable
initiative, but focused mainly on verbal MWEs and
quite small, especially its English part. Moreover,
dictionaries containing MWEs follow different def-
initions and lexicographic practices, which makes
it difficult to unambiguously determine whether a
given multiword entity is a valid MWE. Therefore,
in order to obtain a large dataset, we followed our
idea of silver dataset and selected The Oxford Dic-
tionary of English (ODE) (Stevenson, 2010) as a
reference point to obtain the list of correct MWEs.
The proposed method is in some way parameterised
by a selected reference dictionary.

Concerning language expressions that are not
MWEs, i.e. negative samples from the ML perspec-
tive, they are not listed or mentioned in the dictio-
naries. Having a corpus annotated with MWE oc-
currences we could extract expressions that are not
as negative samples. However genuine MWEs are
more frequent or statistically specific. Thus, ‘nor-
mal’ language expressions would be too obviously
different. Instead, we noticed that statistical associ-
ation measures produce very long ranking lists of
collocations. Further down the ranking, MWE oc-
currences are quickly dwindling away. In addition,
we are interested only in specific structural types of
collocations that match structural types of MWEs
acquired from a dictionary.

To generate the list of incorrect MWEs, we se-
lected three popular association measures1: (1) the
Pointwise Mutual Information (PMI) (Church and
Hanks, 1990), (2) the Sørensen–Dice coefficient
(Dice) (Dice, 1945), and (3) Pearson’s chi-square
(Chi2) (Manning and Schutze, 1999) and used them

1A combined association measure could produced a better
ranking, but only moderately better and would require opti-
misation on the given dictionary and corpus. Moreover, our
dictionary seems to be too small, with too small coverage for
the optimisation.
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to extract collocation ranking list from the British
National Corpus (BNC) (Burnard, 1995). In order
to find relevant examples of multiword units, we
decided to select those collocations that were in the
third quartile of the list sorted in descending order
based on the value of the selected measure. We
quickly skimmed the list in order to ensure that it is
hard to spot anything looking as a MWE (but we do
not exclude the possibility that some MWEs may
occur, perfect precision does not seem to be neces-
sary). We combined the list of the correct MWEs
(from the dictionary) separately with the lists of
collocations obtained via each of the three selected
measures. In all experiments we concentrated on
two word MWEs and collocations, as the statisti-
cal association measures we applied are naturally
defined for two word combinations. However, as
it will be presented later, some of the MWE rep-
resentation we propose can be easily expanded to
k-word cases. Moreover, two word MWEs form
the vast majority of all in the dictionaries. Colloca-
tions extracted from the corpus were restricted only
to those that represent structural types of MWEs
from the dictionary.

We then used the three resulting lists to search
for sentences including collocation or MWE occur-
rences in the BNC corpus. The searched expres-
sions were simply recognised by comparing lemma
sequences. Some recognition error may appear, but
the potential error ration seems to be very small
(single percents). If multiple MWE/collocation
lemma sequences were detected among the sen-
tence lemmas, then their occurrences were consid-
ered as separate training samples (positive or nega-
tive), see Alg. 1. In order to evaluate our method
of detecting sentences containing MWEs, we ex-
tracted 4 randomly selected samples containing
100 found sentences each. A linguist conducted
the analysis and found that 99% of the sentences
contained correct MWE occurrences. The analysis
was performed only on sentences corresponding
to positive samples – MWEs from the dictionary,
but similar results can be expected for collocations
from the lists. Our work resulted in the creation of
three datasets of MWE and collocation occurrences,
named on the basis of the sources of knowledge:

• ODE–PMI dataset – dataset containing oc-
currences of correct MWEs from the ODE
dictionary and the incorrect ones obtained via
the PMI measure,

• ODE–Dice dataset – dataset containing oc-

currences of correct MWEs from the ODE
dictionary and the incorrect ones obtained via
the Dice measure,

• ODE–Chi2 dataset – dataset containing oc-
currences of correct MWEs from the ODE
dictionary and the incorrect ones obtained via
the Chi2 measure.

Algorithm 1 Procedure of obtaining sentences (s)
containing MWEs from the corpus (C) by compar-
ing sentence word lemmas (li ∈ [l0, l1, . . . , ln])
to the list (M ) of lemmatised MWEs (mj ∈
[m0,m1, . . . ,mk])

1: sentence_list← [ ]
2: for s ∈ C do
3: for li ∈ s do
4: for mj ∈M do
5: if li ∈ mj then
6: sentence_list.insert(s)
7: end if
8: end for
9: end for

10: end for
11: return sentence_list

4 Deep Neural Representations for MWE
Detection

4.1 Baseline

As our baseline, we decided to use a concatenation
of vectors consisting of:

1. a component embedding (−−→csent),

2. an MWE embedding (−−−→msent) in the context of
the sentence (sent),

3. the absolute difference between the MWE
embedding and the component embedding
(|−−−→msent −−−→csent|),

4. and the Hadamard product between the MWE
embedding and the component embedding
(−−−→msent ⊙−−→csent).

The proposed representation has been inspired by
the ones often used in the Natural Language In-
ference domain and also in the task of semantic
relations extraction (Fu et al., 2014; Levy et al.,
2015). Our idea is to represent syntactic and se-
mantic relations between the whole MWE and its
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components. We want to analyse the relation be-
tween the picture of the whole MWE used in a
context and one of its components used in the same
context, but separately, i.e. we exchange the whole
MWE with one of its components and vice versa to
see their contextual picture and interactions alone.
The obvious target is the potential compositionality
of an expressions: MWE or non-lexicalised collo-
cation. In the case of compositional expressions
we expect to see some kind of inclusion relation.
However, we assumed that contextual embeddings
allow us to go beyond focusing only on semantic
compositionality, e.g. some syntactic idiosyncrasy
should be also visible in relation between contex-
tual embeddings of the whole expression and its
component. Moreover, in order to minimise the
effect of accidental properties of some specific con-
text we try to collect representations of the same
expressions (MWEs and collocations) across as
many contexts as possible.

The obtaining of contextual MWE embeddings
is described in Eq. 1. An MWE embedding (−−−→msent)
in the sentence context (sent) is an average of the
WordPiece subtoken (s ∈ Smsent) vectors (−→vs) re-
lated to the MWE components.

−−−→msent =

∑
s∈Smsent

−→νs
|Smsent |

(1)

In the next step, the MWE occurrence was re-
placed subsequently with each of its components in
order to obtain their contextual embeddings (−−→csent)
by averaging the corresponding subtoken vectors
representations (−→νs) related to the substituted com-
ponents (Scsent), see Eq. 2.

−−→csent =

∑
s∈Scsent

−→νs
|Scsent |

(2)

The final baseline embedding (
−→
B ) of a train-

ing sample related to a sentence (sent) containing
MWE (m) and one of its components (c) is de-
scribed in Eq. 3.

−−−−−→
Bc,m,sent =

−−→csent ⊕−−−→msent ⊕ (−−−→msent −−−→csent)

⊕ (−−−→msent ⊙−−→csent)
(3)

4.2 Difference vector based representation
Diff-Emb

Our element-wise difference vector based represen-
tation Diff-Emb (

−→
D), described in Eq. 5 leverages

the absolute difference between non-contextual

component embeddings (−→w1 − −→w2) obtained via
the skipgram model from the fastText library (Bo-
janowski et al., 2017) and the averaged element-
wise difference between the component embed-
dings and MWE embedding (avg_diffm,sent) in
the context of the sentence (sent). Eq. 4 de-
scribes the averaged difference vector for the MWE
(m) containing components (c ∈ m). The non-
contextual, static word embeddings were intro-
duced into the representation in order to take into
account semantic characteristics of expression com-
ponents collected from a large corpus. In this way
we want to take a yet another perspective on rela-
tion between the components.

−−−−−−−−−−→
avg_diffm,sent =

∑
c∈m(−−−→msent −−−→csent)

|m| (4)

−−−−−→
Dm,sent = |−→w1 −−→w2| ⊕

−−−−−−−−−−→
avg_diffm,sent (5)

4.3 Product based representation
We also decided to consider the relevance of
Hadamard product vectors, which we included in
our Prod-Emb representation (

−→
P ), explained in

Eq. 7. It consists of the Hadamard product of
non-contextual fastText component embeddings
(−→w1 ⊙ −→w2) and the averaged vector of Hadamard
products between the component (c ∈ m) embed-
dings and MWE (m) embedding (avg_prodm,sent)
in the context of the sentence (sent) described in
Eq. 6

−−−−−−−−−−→
avg_prodm,sent =

∑
c∈m(−−−→msent ⊙−−→csent)

|m| (6)

−−−−→
Pm,sent = (−→w1 ⊙−→w2)⊕

−−−−−−−−−−→
avg_prodm,sent (7)

4.4 Combined representation: differences and
products

In order to combine the difference-based and
product-based approaches we developed the Mean-
Emb representation (

−→
M ), explained in Eq. 8.

It consists of the averaged difference vector
(
−−−−−−−−−−→
avg_diffm,sent) and the averaged Hadamard

product vector (
−−−−−−−−−−→
avg_prodm,sent) described in

Eq. 4 and 6 respectively.

−−−−−→
Mm,sent =

−−−−−−−−−−→
avg_diffm,sent ⊕

−−−−−−−−−−→
avg_prodm,sent (8)
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5 Experimental Setup

For all conducted experiments we selected a single-
task binary classification, where the classifier aims
to predict the correct label out of 2 possible ones
(lexicalised vs non-lexicalised) for the expression
represented by one of the vector representations:
baseline, Diff-Emb, Prod-Emb or Mean-Emb. In
the process of generating the contextual embed-
dings we used the XLM-RoBERTa (Conneau et al.,
2020) language model as it is considered as one
of the best transformer models for English. We
decided to use the convolutional neural network
(CNN) architecture as the classifier to better extract
the knowledge from our vector representations. We
used the TensorFlow library (Abadi et al., 2015)
to implement the CNN model. Our convolutional
neural network contains three convolutional lay-
ers, each followed by the pooling layer and the
dropout layer and is shown in Fig. 1. We used the
F1-macro metric to measure the performance of
the classifier on each of the representations. To
prevent data leakage, we applied the lexical split to
avoid the risk of testing on the same multiword unit,
which was used in the training procedure (even if
the sentence samples are obviously not overlap-
ping). We leveraged the 10-fold cross-validation
and used statistical tests to measure the significance
of the difference between different experiment con-
figurations. We checked the assumptions and then
applied the independent samples t-test with the
Bonferroni correction if they were met. Otherwise
we used the Mann-Whitney U-test.

6 Results

Tab. 1 shows the evaluation results for each repre-
sentation on the ODE–PMI dataset. Each value is
averaged over ten folds. The Mean-Emb represen-
tation combining both the knowledge based on the
difference vector and the Hadamard product vector
achieved the best results.

The performance of the CNN model trained on
all representations and evaluated on the ODE–Dice
dataset is shown in Tab. 2. The best performance
can be observed for the Mean-Emb model. Each
of the developed representations achieved better
results than the baseline vector representation.

The evaluation results for the classifier trained
on each representation and evaluated on the ODE–
Chi2 dataset are shown in Tab. 3. The Mean-Emb
model achieved the best results among other repre-
sentations. The worst performance can be observed

Representation Cor F1 Inc F1 F1
baseline 0.77 0.77 0.77
Diff-Emb 0.77 0.78 0.78
Prod-Emb 0.78 0.78 0.78
Mean-Emb 0.79 0.79 0.79

Table 1: The results of the CNN model trained on vari-
ous representations on the ODE–PMI dataset. Measures:
Cor F1 – F1 score for lexicalised MWEs; Inc F1 – F1
score for non-lexicalised MWEs; F1 – macro average of
the F1 scores for lexicalised and non-lexicalised MWEs.
Values in bold are significantly better than others.

Representation Cor F1 Inc F1 F1
baseline 0.75 0.75 0.75
Diff-Emb 0.76 0.76 0.76
Prod-Emb 0.76 0.76 0.76
Mean-Emb 0.77 0.77 0.77

Table 2: Evaluation results on the ODE–Dice dataset.
Measures: Cor F1 – F1 score for lexicalised MWEs; Inc
F1 – F1 score for non-lexicalised MWEs; F1 – macro av-
erage of the F1 scores for lexicalised and non-lexicalised
MWEs. Values in bold are significantly better than oth-
ers.

for the baseline vector representation.

Representation Cor F1 Inc F1 F1
baseline 0.77 0.77 0.77
Diff-Emb 0.77 0.78 0.78
Prod-Emb 0.77 0.78 0.78
Mean-Emb 0.79 0.80 0.80

Table 3: Evaluation results on the ODE–Chi2 dataset.
Measures: Cor F1 – F1 score for lexicalised MWEs; Inc
F1 – F1 score for non-lexicalised MWEs; F1 – macro av-
erage of the F1 scores for lexicalised and non-lexicalised
MWEs. Values in bold are significantly better than oth-
ers.

7 Discussion

The idea of silver dataset enables transformation of
any corpus into a dataset for MWE extraction, only
if a limited lexicon of MWE examples is provided
as a starting point – a kind of seed lexicon to be ex-
panded. We can leverage a MWE annotated corpus,
too, in the same way as a lexicon to extract the ini-
tial list of MWEs, but a large non-annotated corpus
stays the basis. Several linguistic resources can be
also merged, any MWE annotated text, as well as
lexicons. Time-consuming and expensive corpus
annotation is avoided. Moreover, it seems to be
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Figure 1: Convolutional neural network classifier structure.

easier to maintain high quality lexicon than corpus
annotation, e.g. due to potential errors and discrep-
ancies between single annotations. A lexicon can
be edited by several linguists, and metrics such as
inter-annotator agreement can be easily calculated.

What is more, such a transformation of lexicon-
based knowledge into a dataset enables the use
of deep neural network models that require large
number of training samples. This is one of the
reasons why our CNN method, pre-trained on con-
textual embeddings with weighted voting, applied
to MWE recognition achieved several times better
results than methods based on contextual embed-
dings and recurrent neural in the PARSEME shared
task in general (Ramisch et al., 2020a), not men-
tioning the English part alone that is very small.

Our approach may be applied to texts in differ-
ent languages, both to obtain multilingual collec-
tions and to apply transfer learning to facilitate the
knowledge about MWEs in one language to MWE
recognition in another language. This may be par-
ticularly relevant for low-resource languages, and
it definitely a direction for further research.

Another advantage of the proposed method is
faster training and prediction in comparison to se-
quence labeling methods. In our case, the model
gets the full sample representation only once before
prediction. This shortens the inference time.

Our vector representations support MWEs
longer than two words. In the case of multiword
units containing three and more words, the differ-
ence and product vectors calculated between two
MWE components can be replaced with the vector
obtained via the same operation, but averaged over
all MWE component pairs.

The obtained results show that non-lexicalised
representations, i.e. those that do not include vec-
tors for components and the whole expression2 per-
form better independently of the kind of a measure
used to extract collocations. All representations
except the baseline are built from differences and

2A contextual vector of the whole expression somehow
includes a picture of the particular expression and its lexemes.

products of vectors, not the vectors itself. Thus
they are more focused on representing relations be-
tween a potential MWE and its components. It is
worth to be emphasised that lexical split was also
implemented in order to prevent the models to re-
member concrete words instead of learning patterns
for behaviour of proper MWEs. There are no large
differences between results for different measure,
but, with some caution, we can observe that results
obtained with PMI are slightly better, while in the
case of PMI the measure is naturally is filtered by 0
threshold and produces potentially more interesting
collocations, thus harder to be distinguished from
the proper MWEs.

8 Conclusions and Future Work

Our three representations allowed classifier to
achieve significantly better results in comparison
to the baseline approach focused on the component
and MWE embedding.

The context provided additional information
on the MWE semantics, which improved the
model performance. This is related to the non-
compositional nature of the MWEs, which meaning
cannot be inferred from their component meanings.

Our approach based on difference and product
vectors forced the models significantly reduced the
training time. It may be more important in prac-
tice, when the training time and inference time are
more important than the quality of prediction. On
the other hand, the method based on contextual
embeddings allows transforming any set of texts
with the use of dictionary knowledge into an anno-
tated corpus containing occurrences of the MWEs
and their components. The model, by examining
the semantic differences between the component
and the entire expression, takes into account the
variability of the context, which should allow for
the extraction of the MWE meaning following the
assumption of its monosemous character.

In future work, we want to use our methods to
generate corpora in other languages, which will be
later used to train models in the multilingual MWEs
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detection task and to explore the transfer learning
mechanism in a language-independent MWE de-
tection.
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