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Abstract

We examine methods and techniques, proven
to be helpful for the text-to-text translation of
spoken languages in the context of gloss-to-text
translation systems, where the glosses are the
written representation of the signs. We present
one of the first works that include experiments
on both parallel corpora of the German Sign
Language (PHOENIX14T and the Public DGS
Corpus). We experiment with two NMT ar-
chitectures with optimization of their hyperpa-
rameters, several tokenization methods and two
data augmentation techniques (back-translation
and paraphrasing). Through our investigation
we achieve a substantial improvement of 5.0
and 2.2 BLEU scores for the models trained on
the two corpora respectively. Our RNN mod-
els outperform our Transformer models, and
the segmentation method we achieve best re-
sults with is BPE, whereas back-translation and
paraphrasing lead to minor but not significant
improvements.

1 Introduction

Sign languages (SL), the main medium of exchang-
ing information for the deaf and the hard of hearing,
are visual-spatial natural languages with their own
linguistic rules. In contrast to the spoken ones,
they lack a written form, on one hand, and use
face, hands and body to convey meaning, on the
other. However, in our society, spoken languages
are used by and large, leading to social exclusion
in the everyday life of the deaf and hard of hear-
ing. Therefore, recent research is making the most
out of the technical advances in the fields of Natu-
ral Language Processing (NLP), Deep Neural Net-
works (DNN), and Machine Translation (MT), with
the aim to develop systems that are able to trans-
late between signed and spoken languages in order
to fill the gap of communication between the SL
speaking communities and the people using vocal
language. Most latest approaches tackle the prob-
lem, dividing it into two sub-tasks: Sign Language

Recognition (SLR), also called video-to-gloss, and
Sign Language Translation (SLT), also known as
gloss-to-text translation. The latter uses as an in-
termediate representation the glosses, described
in Section 3.1 and Section 4.2.1. Isolating gloss-
to-text translation serves as a building block of a
bigger project, which considers SL as a whole and
is done in direct co-operation with members of the
SL community.

For the rest of this work, we focus on the gloss-
to-text sub-task and treat it as a low-resource text-
to-text machine translation problem. We explore
different known techniques for MT of written lan-
guages on the glosses, and report our findings dur-
ing our experiments with:

• two neural architectures (RNN and Trans-
former)

• several tokenization and sub-word segmen-
tation methods (BPE, unigram and custom
tokenization of the gloss annotations)

• two data augmentation techniques (back-
translation and paraphrasing)

Preprocessing scripts and data are publicly avail-
able.1

The rest of our work is organized as follows: In
Section 2, there is a review of previous related work
in the field. In Section 3, we describe the essence of
the gloss-to-text translation task, and briefly present
the neural machine translation methods we have
used throughout our experiments on the two cor-
pora, both of them introduced in Section 4. Further,
we present the experiments in Section 5 as well as
all our results and findings, described in Section 6.
In the last Section 7 we conclude our work and
discuss possibilities for future research.

2 Related work

Sign language translation is a relatively new re-
search field with recent findings made possible

1https://github.com/DFKI-SignLanguage/
gloss-to-text-sign-language-translation
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thanks to the continuous advances in neural ma-
chine translation (NMT). Several experiments with
SL gloss-to-text translation have taken place in the
previous decade using statistical phrase-based ma-
chine translation (Stein et al., 2012; Morrissey et al.,
2013). Camgoz et al. (2018) and Camgoz et al.
(2020) use the Transformer architecture for SL
translation, and are the first to realize an end-to-end
system, combining SLR and SLT, jointly training
based on both video embeddings, glosses and text,
being currently the state-of-the-art work in the field.
Yin and Read (2020) employ the Spatial-Temporal
Multi-Cue (STMC) Network (Zhou et al., 2020) for
the task. There have also been several experiments
on the opposite direction: text-to-gloss (Othman
and Jemni, 2011; Egea Gómez et al., 2021).

To the best of our knowledge, currently
Moryossef et al. (2021) is the only published work
experimenting with back-translation in the context
of gloss-to-text translation. Their research has been
conducted parallel and independent from our stud-
ies, and has concluded similar results concerning
the use of back-translation in a low-resource SL set-
ting. The main difference is that we further focus
on other machine translation techniques, e.g. dif-
ferent models and tokenization schemes, whereas
they explore in more detail the gloss-text pairs and
their linguistic properties, proposing their own rule-
based heuristics with the purpose to generate SL
glosses, bearing in mind the specifics of the signed
languages. The recent work of Yin et al. (2021),
focusing on the problems related to the machine
translation between signed and spoken language
pairs, reports the first BLEU score on the Public
DGS corpus, but contrary to our work, no details
are given on how the models were trained and eval-
uated and therefore there can be no direct compari-
son of the results.

3 Methods

3.1 The gloss-to-text task

Glosses are the most commonly used written form
for annotating SL, where each sign has a written
gloss transcription. However, a limitation of using
them is the fact that they do not sufficiently capture
all the information, expressed through body pos-
ture, movement of the head and mimics, which also
occur in parallel. As a result, there is a loss of infor-
mation on a semantic level (Camgoz et al., 2020;
Yin et al., 2021). Moreover, each SL corpus, offer-
ing gloss annotations, uses its own way of glossing,

Source: HUND3* AUCH1A SPRINGEN1
Target: Der Hund springt hinterher.

Table 1: Example of a parallel gloss sentence - German
sentence pair.

therefore the annotation is not standardized, and
as a consequence different SL corpora cannot be
concatenated.

In contrast to the classical text-to-text transla-
tion task, where the pairs consist of pre-aligned
sentences - one in the source language and one in
the target language, for our gloss-to-text translation
models we work with matching pairs of gloss sen-
tences on the source side, and German sentences
on the target side (see Table 1). Hence the name
gloss-to-text.

3.2 Architectures for neural machine
translation

In our work we investigate two model architectures
implementing different types of attention mecha-
nisms - RNN and Transformer.

RNN is an encoder-decoder architecture with at-
tention suggested by Sennrich et al. (2017b) (imple-
mented in Nematus), similar to the one proposed
in Bahdanau et al. (2014). A key difference is the
initialization of the decoder hidden state with the
averaged sum of the encoder concatenated hidden
states, instead of with the last backward encoder
state.

The Transformer is another encoder-decoder ar-
chitecture (Vaswani et al., 2017), implementing
the self-attention function. Without using RNNs
the neural system computes representations of the
input and output sequences. The encoder and de-
coder of the Transformer both consist of 6 identical
layers, and each of these layers has two sub-layers.
The decoder adds one additional sub-layer, which
is using multi-head decoder-encoder attention on
the encoder output helping the decoder to focus on
the relevant parts of the input sequence.

3.3 Tokenization

Tokenizing text can be done at word, subword
or character level. Investigation of possible to-
kenization variations for the glosses is particu-
larly relevant in our work, because of the different
gloss annotations in the two used corpora (Sec-
tions 4.2.1 and 5.2).
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Train Dev Test

PHOENIX14T 7,096 519 642
DGS 54,325 4,470 5,113

Table 2: Statistics of the two corpora.

Byte Pair Encoding (BPE) is a simple data com-
pression technique that has been succesfully ap-
plied to NMT (Sennrich et al., 2016b). The idea
behind this algorithm is to replace the most com-
mon pairs of consecutive bytes with one single new
byte. In order to rebuild the original data, a table
of all the replacements is needed (Gage, 1994).

Unigram sub-word segmentation (Kudo, 2018)
considers multiple segmentation variations of a
word with their respective probabilities calculated
based on a unigram language model.

3.4 Back-translation
Back-translation is a semi-supervised method for
improving the quality of translation relying on
monolingual data (Edunov et al., 2018). It allows
using a big amount of monolingual target data,
when available, in order to produce synthetic data
for the source side. This technique may be benefi-
cial in cases where the bilingual data is scarce, as
is the case of the gloss-to-text task.

3.5 Paraphrasing
Paraphrasing is the task of using an alternative
formulation to express the same semantic content
(Madnani and Dorr, 2010). By using paraphrased
sentences in the training set, we hope that the model
may be lexically enriched by the provided varia-
tions. Here, we follow the paraphrasing method
known as bilingual pivoting (Mallinson et al., 2017;
Turkerud and Mengshoel, 2021).

4 Datasets

For our experiments we utilize the following cor-
pora of the German SL, which due to the different
gloss annotations are used only separately for our
experiments. Statistics of the two corpora can be
seen in Table 2.

4.1 RWTH-PHOENIX-Weather 2014T
Introduced by Camgoz et al. (2018), the corpus con-
tains sign language videos with gloss annotations
as well as their corresponding German sentences,
and is a popular benchmark in SL translation. The

Gloss Meaning

ZUˆ3 to squeeze, squeezed
ZU7 closed
ZU9 towards

Table 3: Meaning of different variants of the German
word “zu”.

project consists of a training set of 7,097 parallel
sentences. For our experiments we used the already
publicly available annotated data.2 Contrary to the
DGS corpus, this corpus doesn’t contain any gloss
suffix annotations.

4.2 The Public DGS Corpus

DGS is the result of a long-term project, conducted
at the Institute for German Sign Language and
Communication of the Deaf at the Hamburg Uni-
versity. The corpus, introduced by Hanke et al.
(2020), is a subset of the full project. All resources
are publicly accessible3 via two formats. Our work
will focus on the second one, MY DGS-annotated4.
The data was extracted via the ELAN5 format of
the files (see Appendix, Figure 3). In the follow-
ing sub-sections we describe the nature and the
format of the DGS corpus as well as the required
pre-processing steps. The final version of the cor-
pus consists of 63,908 parallel sentence pairs.

4.2.1 DGS gloss annotation conventions
The gloss annotations of the DGS corpus are far
more complex and comprehensive than the ones
of the PHOENIX14T corpus. Konrad et al. (2020)
give a detailed explanation of the glossing conven-
tions. We use this information to construct the
gloss sentences and to build our parallel data set.
The glosses are written in capitalized letters - a
common convention used for annotating SL. An es-
sential part of the annotations are the gloss suffixes.
For instance, they are used to represent lexical vari-
ants or to indicate different meanings of a word, as
can be seen in the example with the German word
“zu” (Konrad et al., 2020). It can be used as a prepo-
sition - locative, temporal or causal, as an adverb or
as a conjunction. In order to differentiate between

2https://www-i6.informatik.rwth-aachen.
de/~koller/RWTH-PHOENIX/

3https://www.sign-lang.uni-hamburg.de/
dgs-korpus/index.php/welcome.html

4http://ling.meine-dgs.de
5https://archive.mpi.nl/tla/elan
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these meanings, a combination of the word itself
with a number and, in some cases, a sign, is used
(see Table 3).

Focusing in depth on all of the linguistic rules
used to create the different gloss annotations is out
of scope for this work. Therefore, here we mention
briefly some of the main sign categories. The lexi-
cal signs are approximately equivalent to the com-
monsense notion of the words, and also form the
corpus dictionary. The productive signs in combi-
nation with other signs illustrate intended meaning,
but they do not convey meaning of their own. The
pointing signs indicate orientation or movement.
There are also fingerspelling signs for annotating
when the signers sketch the form of letters in the
air. The number type forms a special system for
easily representing different kind of numbers.

4.2.2 Creating the parallel corpus
The annotation of the sign language videos is struc-
tured in parallel channels, the tiers, supporting
multi-level and multi-participant annotations (Ap-
pendix, Figure 3). The tiers we used to form the
parallel sentence pairs are the ones containing the
German sentences for each signer and those con-
taining the glosses for the right and for the left hand
of each signer. The first step was to access the tex-
tual data from all videos, using Beautiful Soup.6

For this purpose we created a python script, which
extracted the links to the files, read the content, and
created an XML parse tree of each recording.

The ordering of glosses to a gloss sentence was
achieved by considering the starting and the ending
time of the corresponding German sentence and of
the individual glosses. One particular obstacle we
encountered during the formation of the parallel
data set were the overlapping timestamps of some
glosses done with both hands. Such is the case of
the fingerspelling signs. Because signers have a
“dominant” and a “non-dominant” hand, the domi-
nant one is usually used for one-handed signs and
for fingerspellings (Crasborn, 2011). For the pur-
pose of constructing our gloss sentences we chose
a uniform way to order the overlapping signs. We
counted all the “left-handed” glosses and all the
“right-handed” glosses for each file, and considered
files with more “left-handed” ones to have signers
with a dominant left hand, whereas files with more
“right-handed” glosses to have signers with a dom-

6https://www.crummy.com/software/
BeautifulSoup/bs4/doc/

inant right hand. We refer to the glosses as “left”
and “right” because of the annotations used in the
corpus, although the distinction between “left” and
“right” does not seem to have any linguistic role
in any SL (Crasborn, 2011). Moreover, the native
signers usually don’t remember if a new signer is
left-handed or right-handed. Thus, we decided to
choose a convention for our work so that the gloss
sentences formation is consistent, and therefore we
always placed the glosses of the dominant hand in
front of those of the non-dominant one.

5 Experiments

We separate our experiments in three main groups.
In the first one, described in Section 5.1 we initially
train two baseline models for both corpora and con-
secutively make changes to them with the goal to
investigate how different model architectures and
known configurations of neural MT systems influ-
ence them. Therefore, we use the best performing
models from the first group to further continue
our experiments in the second one, described in
Section 5.2, where we apply three different tok-
enization schemes - BPE, unigram and custom to-
kenization, on the gloss and on the German sides
of the corpora. Ultimately, we utilize the models,
which produce the best translations up to this point,
in the third group of experiments in Section 5.3,
where we separately look into two data augmenta-
tion techniques - back-translation and paraphrasing.
All models are trained using MarianNMT (Junczys-
Dowmunt et al., 2018) and all configuration param-
eters are detailed in our repository.

5.1 Neural MT architecture

Our initial motivation to approach the gloss-to-text
translation task as a classical low-resource MT
problem were the findings by Koehn and Knowles
(2017) and Sennrich and Zhang (2019). Therefore,
we compare Transformer and RNN (Sennrich et al.,
2017b) on which is the optimal model architecture
for gloss-to-text translation. As baselines we train
two off-the-shelf models on the PHOENIX14T and
the Public DGS corpora separately, using the de-
fault parameters of MarianNMT.

We continue the first set of experiments using
techniques for improving the MT quality in a low-
resource setting (Sennrich and Zhang, 2019). We
perform an extensive hyperparameter search, ini-
tiating from the configurations suggested by the
above authors in order to reduce the chances that
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other hyperparameters can lead to different conclu-
sions. We achieve the best configuration when we
reduce the size of the encoder to 1 layer, and the
size of the decoder to 2 for both types of mod-
els. Furthermore, we implement an aggressive
dropout of 0.5 and a word dropout of 0.4 on the
source and the target sides. We reduce the beam
size to 2, as suggested by Camgoz et al. (2018),
and keep the learning rate 0.0005, the batch size
32, and the vocabulary size 1,010 and 2,600 for
the PHOENIX14T and the DGS corpora, respec-
tively. We use simple word tokenization. For the
next group of experiments we continue only with
the improved RNN configuration, following our
conclusions regarding the best architecture (Sec-
tion 6.2).

5.2 Tokenization experiments

During the tokenization experiments, using the best
performing models up to this point, we investigate
if and to what extend existing tokenization methods
- BPE, unigram and custom tokenization - proven to
be effective for NMT of written natural languages,
could be beneficial in the gloss-to-text setting. The
tokenization of BPE and unigram was done using
SentencePiece (Kudo and Richardson, 2018) with
the parameters that have been established as default,
due to their good performance in WMT shared
tasks (Sennrich et al., 2017a, e.g. 2 BPE iterations).

5.2.1 Tokenizing the PHOENIX14T corpus

On the PHOENIX14T corpus we train RNN sys-
tems using the same parameters as the ones from
the previous group of experiments. The only dif-
ference is the way the input and output sentences
are tokenized. We conduct additional experiments
where we reduce the vocabulary size of the BPE
models and compare the translation scores.

5.2.2 Tokenizing the DGS corpus

The DGS corpus has groups of glosses that are
more complicated and rich in annotations, which
we describe in Section 4. A comparison can be
seen in Figure 1. Thus we make the assumption
that there should be a difference in the translation
quality of the models in favor of the subword to-
kenization. For our first experiment we use word
tokenization and compare the results with the ones
of the following models which use either BPE, uni-
gram or custom tokenizations. The vocabulary size
is 2,600.

Stripping the gloss parameters In a different,
more naive, experiment on the DGS corpus we
decide to strip the gloss parameters - such as signs
or numbers, as shown in Figure 2, to see if they are
making our model too complex, aware of the fact
that they convey meaning to each annotation.

Custom tokenization for the glosses For our
custom tokenization experimenent on the DGS cor-
pus, we choose to add the token “@@” to separate
prefix, suffix and compound glosses without losing
this information in difference to the above case of
leaving only the stem. The chosen custom token is
not a part of the gloss parameters.

5.3 Data augmentation

For the last group of experiments we make the as-
sumption that, according to Edunov et al. (2018),
on one hand, back-translation has proven to be
effective when using strong baselines with a big
amount of data, but, on the other hand, it could
also have a positive effect in low-resource NMT
settings. Thus we decide to try this method for our
corpora, together with one additional data augmen-
tation technique - paraphrasing.

5.3.1 Back-translation on the PHOENIX14T
corpus

We start with the PHOENIX14T corpus. As a first
step, we train a model in the opposite direction,
German sentences on the source side and gloss
sentences on the target side. Based on the sugges-
tions on back-translation in previous work (Sen-
nrich et al., 2016a; Dou et al., 2019), we focus
on in-domain data and we consider filtering sen-
tences from an out-of-domain (ood) corpus sepa-
rately, as too many out-of-domain sentences would
result in adding a lot of noise, which may not be
helpful for the translation quality. To confirm our
hypothesis for the back-translation experiments,
we mainly investigate the quality of the translation
when adding in-domain data, different amounts of
out-of-domain data or a mixture of in-domain and
out-of-domain data.

In-domain back-translation A major challenge
for the purpose of using back-translation is to
find a big monolingual corpus of the target lan-
guages, given the very specific domain of the
PHOENIX14T corpus, because it contains strictly
weather-related sentences. Our first idea is to try
and find weather-related corpus, but unfortunately,
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Figure 1: Comparison between gloss annotations for the two different corpora. The specific DGS gloss parameters
are shown in orange.

Figure 2: Example of the two manual tokenizations of a
gloss in the DGS corpus

popular crawled monolingual corpora do not con-
tain such specific sentences. We collect data man-
ually by selecting sentences from online German
weather-related articles or German weather web-
sites. We pay attention to not only choose recent
articles, but also to search sentences from some
available archive sources. Additionally, we manu-
ally process the sentences which includes splitting
them in shorter ones, removing some words we
know are out-of-vocabulary for our models, rewrit-
ing complex verb forms. Needless to say, this pro-
cess is slow and not scalable. Hence, we stop at
1,202 sentences and add their back-translated vari-
ants to our training data.

In the first of the two following experiments we
observe the effect of adding filtered out-of-domain
back-translated sentences to our training data, and
in the second one we combine in-domain and out-
of-domain sets.

Filtered sentences from out-of-domain corpus
We use crawled data from the German part of the
News Crawl corpus (Barrault et al., 2019). We
extract 5,000 sentences from the whole dataset
using a custom python script. Further, we filter
sentences, containing the most frequently used
weather-related words in the PHOENIX data set.
For example, words or phrases such as: "wetter",
"wettervorhersage", "temperatur", "es regnet", "es
scheint", "wolken", "böen", "gewitter". It is impor-
tant to mention here, that even though our filtered
sentences contain one of the following words or
phrases, these sentences cannot be fully considered
in-domain. One reason for this is the fact that the

crawled sentences are still different in structure and
style than our original training data. Another rea-
son is the fact that many of the words we use for
filtering could also have a different not weather-
related meaning, depending on the context.

Mixing in and out-of-domain sentences Here
we mix our 1,202 in-domain and a part of the out-
of-domain back-translated sentences (3,418) from
the previous two experiments.

Usage of back-translation tag Since Sennrich
et al. (2016a) mix their synthetic data with their
original data without distinguishing between them,
we conduct a further experiment to investigate if the
bt tag, indicating synthetic data, is actually helping
the neural system or worsening the performance.

5.3.2 Back-translation experiments on the
DGS corpus

Considering our low scores on the DGS corpus and
the conclusions of Moryossef et al. (2021) regard-
ing the limitations of the back-translation in low
resource SL settings, we conduct only one experi-
ment as a proof of our premise that back-translation
is not beneficial in a very low-resource setting in
combination with a poor model to back-translate.
For this purpose we filter the first 10,000 sentences
from the news-crawl without taking into account
their domains, because the DGS Corpus also does
not have a specific domain.

5.3.3 Data augmentation using paraphrasing
For the last experiment we add 3,612 translated sen-
tences from our original training set, using DeepL
Translate7, from German to English and then back
from English to German. The paraphrased sen-
tences are firstly reviewed to guarantee their gram-
matical correctness. Here, our goal is to create
more variety in the words (synonyms) on the target
side or in their order.

7https://www.deepl.com/en/translator
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6 Results

In this section we report the results from the three
groups of experiments we have conducted.

6.1 Evaluation

We evaluate all our models using SacreBLEU (Post,
2018). We also use the original dev and test sets
of the PHOENIX14T corpus. For the DGS corpus
we separate our own dev and test sets using 15%
of the collected data - 4,470 sentences for the dev
set, and 5,113 sentences for the test set.

6.2 Model architecture results

The results from our first group of experiments,
described in Section 5.1, where we compare two
types of model architecture, combined with adjust-
ment of hyperparameters for improving the trans-
lation quality in a low-resource setting, are shown
in Table 4. Whereas the baseline models perform
better with a Transformer architecture for both cor-
pora, we observe substantial improvements in the
BLEU scores for the RNN models, trained on the
PHOENIX14T corpus, after optimizing the hyper-
parameters. These results confirm our hypothesis
that the architecture is also a suitable choice for the
task of NMT of sign languages.

6.3 Tokenization results

After conducting the first tokenization experiments,
described in Section 5.2, we observe the results,
shown in Table 5, and conclude that using BPE and
unigram, compared to word tokenization, does not
lead to a substantial difference in the translation
quality of the PHOENIX14T models. We believe
that this is a result of the low word inflection in
the corpus, and because of that the low number of
unique glosses in the training set. Therefore, we
decrease the size of the vocabulary for the model
with BPE tokenization from 2,600 to 2,000 and
gain an increase of 0.5 on the test set. In contrast,
in the DGS corpus we have more complicated and
rich in annotations different groups of glosses. Our
assumption that there should be a greater difference
in the translation quality of the models in favor of
the subword tokenization is verified by the score
we achieve on the test set with BPE (3.7 BLEU)
substantially higher score than the previous one
(2.7 BLEU) for the model trained with word to-
kenization, and the highest score we manage to
obtain on that corpus. This confirms our hypoth-
esis that subword tokenization is a more suitable

choice for machine translation of signed languages
with more complex and diverse annotations.

Stripping The BLUE score we achieve on the
DGS corpus after stripping the parameters from the
glosses is only 2.8 which, we assume, is due to the
fact that each gloss annotation consists of impor-
tant parameters, both contributing to the meaning,
and communicating nuances. Removing this in-
formation, makes it impossible for our model to
learn meaningful and correct representations as the
stems of many glosses may be the same, but with
added parameters the annotations may have very
different meanings.

Custom tokenization By adding a custom token
to split the parameters from the stem of the glosses
we achieve 3.3 BLEU score on the test set, which
is the second best score we manage to obtain. Un-
fortunately, the translation performance remains
low.

6.4 Data augmentation results
Before conducting the back-translation experi-
ments based on previous work (Sennrich et al.,
2016a), we consider that (a) when having a very
narrow domain, it is useful that the sentences, used
for back-translation, are similar in structure and do-
main to the original ones, and (b) adding a number
of sentences less than half of the training set size
could not lead to substantial improvements. We
also add a tag to each back-translated sentence -
{bt}, to indicate for the neural system that this data
is synthetic. After we train a model with added
in-domain synthetic data, we manage to obtain a
BLEU score of 22.3 on the test set, which is very
close to our current best model (22.5 BLEU), and
22.2 BLEU score on the dev set, where we have a
small improvement of 0.3 BLEU, compared to 21.9
BLEU. Results are shown in Table 6. We believe
that this is a sign that the performance of our model
does not get worse, confirming (a), although with
such a small number of data it cannot get substan-
tially better, confirming (b). On the contrary, it is
possible that the model is less prone to overfitting,
compared to the one without noise from synthetic
data.

The model trained with only out-of-domain back-
translated data reaches 22.2 BLEU on the test set,
and does not improve the BLEU score on the dev
set. With these results and the small amount of
sentences we have in our original training set, com-
bined with the rather poor quality of translation of
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Model BLEU dev BLEU test

phoenix-baseline-rnn 18.3 17.7
phoenix-baseline-transformer 18.6 18.2

phoenix-rnn-improved 21.6 22.2
phoenix-transformer-improved 18.8 18.5

dgs-baseline-rnn 1.8 1.6
dgs-baseline-transformer 2.5 2.0

dgs-rnn-improved 2.9 2.7
dgs-transformer-improved 1.9 1.9

Table 4: Model architecture comparison for the baseline and improved systems.

Model Tokenization BLEU dev BLEU test Vocab size

phoenix-word-tok word 21.6 22.2 1,010
phoenix-unigram-tok unigram 22.4 21.5 1,010
phoenix-bpe-tok bpe 22.5 22 2,600
phoenix-bpe-tok* bpe 21.9 22.5 2,000

dgs-word-tok word 2.9 2.7 2,600
dgs-bpe-tok bpe 4.2 3.7 2,600
dgs-unigram-tok unigram 3.5 3.2 2,600
dgs-bpe-tok-stemmed bpe 3.1 2.8 2,600
dgs-custom-tok word 3.5 3.3 2,600

Table 5: Tokenization experiments on PHOENIX14T and The Public DGS Corpus. The last bpe model, marked
with *, is indicating the one with reduced vocabulary size.

our back-translating model, our intuition is that
adding more sentences, which are poorly back-
translated, will not lead to any improvements. It
will rather add more noise to the model, which is
not beneficial anymore for the diversity of the data.

Our last model that combines in-domain and out-
of-domain data, achieves 22.7 BLEU on the test set,
which is our best score. It is +0.2 over phoenix-bpe-
tok - the best performing model with no synthetic
data, but unfortunately, it is not significantly better,
based on a bootstrap resampling significance test.
It improves the score on the dev set - from 21.9
BLEU to 23.4 BLEU confirming our assumption
that this noise is creating some diversity in the data
without worsening the performance.

Results from the comparison of models with syn-
thetic sentences, using a tag and not, can also be
seen in Table 6. Since they show no substantial
difference, we decide that at least in our case the
tag does not play an important role for the quality
of the translation.

Using back-translation on the DGS corpus we

achieve only a small improvement of +0.1 on the
test set (results are also shown in Table 6), confirm-
ing our hypothesis and the findings of Moryossef
et al. (2021) and Edunov et al. (2018) that in a
very low-resource setting back-translation cannot
be clearly beneficial for the translation quality of
the neural systems.

Finally, our model with added grammatically
correct paraphrased sentences reaches 22.5 BLEU
score on the test set - the same as the PHOENIX14T
model without added synthetic data. We believe
that the technique does not lead to worse perfor-
mance. On the contrary, we suppose that it makes
a small improvement, which can be again noticed
on the dev set in Table 6.

7 Conclusion and Future work

In this work we investigated the effect of several
methods used in NMT on the gloss-to-text transla-
tion task for a sign language. We present one of the
first works that does extensive experiments on both
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Model #added sentences dev test

phoenix-bpe-tok 0 21.9 22.5
phoenix-indomain 1,202 23.3 22.3
phoenix-ood 5,000 22.1 22.2
phoenix-mixed 1,202 + 3,418 23.4 22.7

phoenix-paraphrasing 3,612 23.1 22.5

phoenix-mixed-no-tag 1,202 + 3,418 23 22.3

dgs-bpe-tok 0 4.2 3.7
dgs-bt-10000 10,000 4.2 3.8

Table 6: Data augmentation experiments on the PHOENIX14T corpus and the DGS corpus. The “ood” in the names
stands for “out-of-domain”, the “bt” - for “back-translation”.

existing corpora for the German Sign Language -
PHOENIX14T and the DGS Corpus. Further, we
ran three successive groups of experiments:
Neural MT architectures, contrasting RNN and
Transformer, with extensive search of hyperparame-
ters and techniques, proven to be effective in a low-
resource setup. In contrary to previous research,
we found that RNN performs better than the Trans-
former.
Tokenization schemes, where our findings were
in favor of the BPE tokenization for both corpora.
This improved our PHOENIX14T model by 0.3
BLEU on the test set (reaching 22.5 BLEU), and
our DGS model by 1 BLEU on the test set (reaching
3.7 BLEU).
Data augmentation techniques, i.e. back-
translation and paraphrasing via bilingual pivoting,
with the intention to create variance in the data.
Back-translation gave small improvements: +0.2
on the PHOENIX14T corpus and +0.1 on the DGS
corpus. Further investigation on the reasons for
the limited contribution of the above augmentation
techniques may be directed to the extremely low-
resource scenario, the amount and domain of the
data, or the particular nature of the sign language
glosses.

All above methods allowed an improvement of
5 BLEU points on the test set (22.7 BLEU) for the
PHOENIX14T model, and 2.2 BLEU points on the
test set (3.8 BLEU) for the DGS one.

In conclusion, in line with previous research (Yin
et al., 2021; Moryossef et al., 2021), we believe that
in order to achieve better translation performance,
research and experiments should concentrate on
two major problems - collecting and annotating
more resources, and better understanding the nature

of the sign languages with the intention to develop
new SL-specific tools.
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Appendix

Figure 3: Sample of a short sentence form the DGS corpus in the ELAN software. Video with participants is shown
above, and the different tiers can be seen underneath - e.g. “Deutsche_Übersetzung_A” for the German sentence,
“Lexem_Gebärde_l_A” and “Lexem_Gebärde_r_A” for the gloss annotations for the left and right hands of signer A.
Source: Hanke et al. (2020)
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