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Abstract

Alignment between concepts in an abstract
meaning representation (AMR) graph and the
words within a sentence is one of the impor-
tant stages of AMR parsing. Although there
exist high performing AMR aligners for En-
glish, unfortunately, these are not well suited
for many languages where many concepts ap-
pear from morpho-semantic elements. For the
first time in the literature, this paper presents
an AMR aligner tailored for morphologically-
rich and pro-drop languages by experimenting
on the Turkish language being a prominent ex-
ample of this language group. Our aligner fo-
cuses on the meaning considering the rich Turk-
ish morphology and aligns AMR concepts that
emerge from morphemes using a tree traversal
approach without additional resources or rules.
We evaluate our aligner over a manually anno-
tated gold data set. Our aligner outperforms
the Turkish adaptations of the previously pro-
posed aligners for English and Portuguese by
an F1 score of 0.87 and provides a relative error
reduction of up to 76%.

1 Introduction

AMR (Banarescu et al., 2013) is a semantic formal-
ism that represents sentence meaning as directed
graphs. The nodes in the graphs represent the con-
cepts in the sentence, and the edges show the rela-
tions between the concepts. The purpose of AMR
is to abstract sentence meaning from syntactic fea-
tures. It gathers the semantic aspects of the sen-
tence (semantic roles, time concepts, entity names,
etc.) under a formalism and focuses on the sen-
tence’s meaning. Words that do not contribute to
meaning and some syntactic features (tenses, pas-
sive voice, etc.) are not shown in AMR graphs.

With its increasing popularity in recent years,
AMR has attracted the attention of many re-
searchers (Žabokrtskỳ et al., 2020; Bos, 2016) and
has been used in several applications such as text
generation (Wang et al., 2020; Mager et al., 2020;

Zhao et al., 2020; Fan and Gardent, 2020), text sum-
marization (Dohare et al., 2017; Liu et al., 2018a;
Liao et al., 2018), event extraction (Huang et al.,
2016; Li et al., 2020). An important branch of this
research is AMR parsing. Most parsing studies
require an alignment between graph nodes and sen-
tence concepts to create the training set for convert-
ing sentences to AMR graphs (Flanigan et al., 2014;
Wang et al., 2015; Zhou et al., 2016). Many studies
in the literature have reported that the alignment
process greatly affects the parsing performance and
has offered different solutions for the alignment
process (Flanigan et al., 2014; Liu et al., 2018b;
Pourdamghani et al., 2014; Anchiêta and Pardo,
2020). Lyu and Titov (2018) use alignments as
latent variables during parsing, while Konstas et al.
(2017); Zhang et al. (2019) could be given as an
example study which does not require an alignment
stage before parsing. However, since in these stud-
ies the learning process requires large amounts of
sentence-AMR graph pairs, it is hard to apply them
directly to a resource-poor languages.

The popular approaches in the literature for au-
tomatic AMR alignment aim to match concepts
(either with fuzzy or semantic match) with the
word lemmas with the help of a rule list. Although
these approaches seem to be suitable for English,
they do not perform well on languages with dif-
ferent characteristics (Anchiêta and Pardo, 2020).
Morphologically-rich and pro-drop languages pose
interesting challenges for AMR alignment as well
as other NLP tasks. In these languages, many
concepts appear from morpho-semantic elements
rather than the entire word surface-form, yielding
multiple concepts from a single word. In this pa-
per, we introduce an AMR aligner for Turkish, a
morphologically-rich and pro-drop language. Our
alignment strategy handles concepts that emerge
from the morphemes without the need for any ex-
tension of external resources or rules. Differing
from the literature, with this approach, instead of
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looking for a match over the rule list, we use a
two-stage strategy: we first map words to lexi-
cal concepts by using a similarity measure, and
then navigate through the nodes over these matches,
aligning the remaining concepts (i.e., abstract and
morphology-based concepts) that do not have a
word correspondence in the sentence. We evaluate
our approach on manually annotated sentences ran-
domly selected from IMST (Sulubacak et al., 2016)
using the same evaluation methods from Flanigan
et al. (2014). The results show that the proposed
alignment strategy performs better for Turkish than
the existing approaches originally proposed for En-
glish and Portuguese. The aligner will be available
for researchers in GitHub 1.

The paper is organized as follows: Section 2
provides alignment fundamentals and briefly repre-
sents the related studies from the literature. Section
3 introduces the aligner and Section 4 gives the
evaluation. Finally, 5 provides the conclusion.

2 Background and Related Work

In AMR parsing, although the parser takes sen-
tences as input and produces AMR graphs, it is
challenging to learn complete semantic representa-
tion from the sentences directly by using sentence-
AMR graph pairs. Therefore, several parsing ap-
proaches need a word-concept alignment stage to
know the semantic representation of words sepa-
rately. One should note that concepts’ names may
differ substantially (e.g., due to inflections, deriva-
tions, or semantic closeness) from the related lexi-
cal words, and it is probable that they could not be
mapped directly: for example, the word ‘desirous’
or ‘desires’ could be related to the concept name
‘desire.01’ in an AMR graph. This situation may
be even harder in morphologically rich languages,
where the character length of the inflectional af-
fixes could be longer then the length of the lemma.
Another example could be the word ‘afraid’ related
to the concept ‘fear-01’. An aligner is a tool that
maps AMR concepts to the related words within
the sentence. The outputs of the aligner are used as
input data to train the AMR parsers.

JAMR (Flanigan et al., 2014) aligner, the first
AMR aligner in the literature, is built on heuris-
tic rules and greedy search. In this method, fuzzy
matching between words and concepts is searched
using heuristic rules. The aligner moves down

1https://github.com/amr-turkish/
turkish-amr-aligner

from the first rule and looks for a fuzzy match
based on the rule currently being processed. While
some rules are applied to all nodes by traversing
the entire graph for each rule, some are only ap-
plied to some specific nodes (e.g., entity names).
The TAMR (Liu et al., 2018b) aligner is an ex-
tension of the method presented in JAMR with
emphasis on meaning. The list of JAMR rules
has been expanded with syntactic and semantic
matching, where semantic and morpho-semantic
matching are used together with fuzzy matching.
The connection between verb-invoking nouns and
their verb frames (e.g., example - exemplify) is
provided by the morphological meaning database
(Fellbaum et al., 2007). Pourdamghani et al. (2014)
used syntax-based statistical machine translation
with an unsupervised word alignment method in the
alignment approach. During the alignment, they
linearize AMR graphs with the IBM word align-
ment model (Brown et al., 1993) and map the nodes
to English sentences. Anchiêta and Pardo (2020)
presents an AMR aligner for Portuguese which
is a morphologically rich language. The authors
solve the word-concept alignment using the Word
Mover’s Distance (Kusner et al., 2015) and lexical
lists for the alignment of the abstract concepts and
entity names.

::snt The boy wants to be believed by the girl.
::alignments 1-2|0.0 2-3|0 5-6|0.1 8-9|0.1.0

(w / want-01 0
:ARG0 (b / boy) 0.0
:ARG1 (b2 / believe-01 0.1

:ARG0 (g / girl) 0.1.0
:ARG1 b))

Figure 1: Alignment format of JAMR

The alignment format adopted in the literature
is presented by JAMR, where alignment blocks
are separated with white space (Figure 1). Each
alignment block includes a word span and its graph
fragment where a pipe sign (‘|’) separates them.
Graph fragments consist of nodes represented with
their position in the AMR graphs. A root node is
located at position 0 (‘want-01’); its children take
0.x where x represents the order of the children.
For example, the first child of the root node takes
0.0 as a position indicator (‘boy’); the second takes
0.1 (‘believe-01’).
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3 The Aligner

For Turkish, an alignment approach depending only
on word-concept matching (Flanigan et al., 2014;
Liu et al., 2018b) does not fully cover all concepts.
On the other hand, unsupervised machine transla-
tion approaches (Pourdamghani et al., 2014) are
not easily applicable due to representation issues
(Oflazer and Durgar El-Kahlout, 2007) and the
need for high-volume of parallel data. In Turkish,
some of the correspondences are not present ex-
plicitly as a word, and are hidden inside the words
as morphemes (e.g., personal markers, modality
markers) due to its complex morphology and pro-
drop nature. Consider the sentences in Figure 2
“Sana geleceğimi bilebilmene şaşırdım” (I am sur-
prised that you could know that I would be coming
to you.). The lemma of the words are ‘sen’ (you),
‘gel’(come), ‘bil’ (know) and ‘şaşır’ (be shocked).
The lexical concepts related to these may be aligned
using fuzzy matching, however, the other concepts
‘ben’ (I) and mümkün.01 (possible-01)) deriving
from their suffixes could not be matched. ‘ben’
is a dropped pronoun represented with a the first
personal suffix (-m) that attach to verb lemma
‘gel’, ‘mümkün.01’ is originated from the modality
marker (-ebil).

Figure 2 shows the aligned version of the sen-
tence “Sana geleceğimi bilebilmene şaşırdım” (I
am surprised that you could know that I would be
coming to you.).

::snt Sana / geleceğimi / bilebilmene / şaşırdım
::eng to you / that I would be coming / that you
could know / I am surprised
::alignments 0-1|0.1.1 1-2|0.1.1.0 2-3|0.1.0+0.1
3-4|0+0.0

(ş / şaşır.01 0
:ARG0 (b / ben) 0.0
:ARG1 (m / mümkün.01. 0.1

:ARG1 (b2 / bil.01. 0.1.0
:ARG0 (s / sen). 0.1.1
:ARG1 (g / gel.01 0.1.1.0

:ARG0 b
:ARG4 s))))

Figure 2: AMR representation of the sentence “Sana
geleceğimi bilebilmene şaşırdım” (I am surprised that
you could know that I would be coming to you ) and its
alignment in JAMR format

To align such concepts, one alternative is to
follow the literature and expand the rule list of
JAMR (Flanigan et al., 2014) with the new rules

to handle morphology based concepts. We believe
this is not an option due to the following reasons:
(i) There may be morphemes whose meaning can
be changed according to the context. In order to
align them, their meaning should be determined
first and this needs semantic interpretation. Modal-
ity marker (-meli) is such an example and could
carry out different meanings (i.e., ‘should’ or ‘have
to’) depending on the context. (ii) There may be
morphemes that invoke predicates, and the predi-
cates invoked by the same morphemes can be dif-
ferent based on the nouns being attached. For ex-
ample, when the very productive suffix -CI (with
surface forms ci, cı, çi, çı under different vowel har-
monies) attaches to nouns, it may mean 1) ‘a person
who sells’ the item given in the noun lemma (e.g.,
‘simitçi’ is the person who sells bagels where ‘simit’
is bagel), 2) ‘a person who runs’ the item given in
the noun lemma (e.g., ‘lokantacı’ is a person who
runs a restaurant where ‘lokanta’ is restaurant) 3)
‘a person who plays’ (e.g., ‘bascı’ is a person who
plays bass guitar where ‘bas’ is bass guitar), and so
forth. Covering all possible meanings with defining
rules requires numerous rules. (iii) Construction
of a solution on top of the morphemes (i.e., align-
ing morphemes using a predefined list) requires
a preliminary morphological analysis stage. The
aligner would become very dependent on the per-
formance of the morphological analysis, and its
errors propagate throughout the alignment. Con-
sidering these, we believe that a better approach
should be proposed for the alignment of handling
morphology-based concepts.

We propose an alignment strategy which relies
on the word-concept similarity and tree traversal.
Our aligner has two steps. In the first step, it builds
a map where concepts are mapped to their word
correspondence. This mapping is done by using
similarity between pre-trained word embeddings
for the words of the sentence and the node labels
of the graph. The mapping does not necessarily in-
clude all concepts in this step: morphology derived
and abstract concepts are left unmapped. The sec-
ond step focuses on aligning all concepts. First, it
starts aligning with concept-words pairs in the map-
ping obtained in the first step. Then it aligns the
remaining concepts (i.e., morphology derived and
abstract concepts) by traversing the AMR graph
through the mapping. For each concept-word pair,
the aligner visits neighbors of the concept by fol-
lowing the heuristically determined paths, and any
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unaligned neighbors are simply added to the align-
ments for the word. Our aligner is detailed in the
following subsections: Section 3.1 and 3.2.

3.1 Similarity Mapping

The similarity mapping aims to create lemma-
concept pairs to be aligned in the next step. Our
approach is similar to TAMR in which both syntac-
tic and semantic similarities are used. However, we
do not use morpho-semantic matching from TAMR
despite Turkish being an morphologically rich lan-
guage. Since Turkish is an agglutinative language,
there is a direct link between the nouns invoking
verbs and the verb frames. Therefore, semantic
similarity can easily be used to match such nouns
and the use of extra databases is not necessary.

The mapping is started with the semantic simi-
larity calculation. A similarity score is calculated
for each lemma-concept pair in the cross of lemma
and concept set. We use Fasttext2 (Grave et al.,
2018) vectors, and empirically define threshold of
0.5 for the similarity score. Lemma-concept pairs
with similarity scores above this limit are consid-
ered ‘close’. The closest ones are matched with
each other when they satisfy the condition that the
closeness should be bi-directional. In other words,
a mapping occurs when the closest concept of a
lemma ‘A’ is B when B’s closest pair is A (Function
mapping in Algorithm 2). It should be noted the
aligner allows the lemma A to map more than one
concept since there may be cases where A should
have more than one concept as pair.

In some cases, word vectors fail to converge
words having the same stem semantically; to han-
dle them, we use syntactic similarity (mFuzzy)
since their lemmas are the same3. After these two
similarity matching processes, it is considered that
remaining words that can not be mapped to any
concept do not contribute to sentence meaning.

Similarity mapping seems straightforward; how-
ever, ellipsis makes the mapping difficult. An
elliptical construction is the omission of one or
more words that we call omitted words and their
existence may be understood from the remaining
words within the context. The AMR representa-
tion of such constructions varies across languages
(Migueles-Abraira et al., 2018; Liu et al., 2019).
Similar to (Liu et al., 2019), the omitted words
are also restored and represented with concepts in

2https://fasttext.cc/docs/en/crawl-vectors.html
3We set threshold of 0.95 for the similarity score

Turkish AMR. This results in a situation that there
may appear concepts whose correspondence words
do not exist within the sentence. We call these
concepts ‘elliptic concepts’ since they should align
with the elided words. The elliptic concepts should
be aligned with the words, but the aligned words
may change according to the ellipsis type. Gener-
ally, we align elliptic concepts with the words that
can help to understand the omitted words by seman-
tic inference: these can be either the re-occurrences
or the antecedents of the elided words. For the sake
of simplicity, we name these words infer-words.

We gather the alignment of elliptic concepts un-
der two categories: alignment with re-occurrences
and alignment with antecedents. Similarity map-
ping of the first category is straightforward since
re-occurrences can easily be matched with the el-
liptic concepts such as gapping ellipses. In the
sentence “Herkes şeker (verirdi), o çikolata verirdi.”
(Everybody would give chocolate, s/he would give
a candy.), ‘verirdi’ in parenthesis is omitted, but we
can understand its existence by the last predicate
(i.e., the infer-word). Its AMR graph has to have
two ‘ver.01’ (give) frames since two different peo-
ple perform different actions. We map both ‘ver.01’
concepts to ‘verirdi’.

The latter category deserves more attention since
the infer-words may cause ambiguity. Nominal el-
lipsis is such an example where there could exist
syntactically similar words within the same sen-
tence to the elliptic concrete concept, while the
elliptic concept should actually be aligned to some
other words (e.g., nominal adjectives) that derive
the ellipsis instead of the syntactically similar one.
This means that we need to match the concepts with
the words that are not similar neither semantically
nor syntactically, even if there exist completely
identical words within the sentence.

Figure 3a provides such an example of the align-
ment of an English sentence (“S/he preferred the
red dress over the white.”). The elliptic concept
(i.e., the second dress) is also derived from ‘dress’.
However, the morphologically-rich nature of Turk-
ish poses extra challenges in such situations since
the meaning carried by the ‘dress’ (first dress) will
be provided by the suffix ‘a’ attached to the adjec-
tive (Figure 3b). This situation yields the need of
mapping the elliptic concept to the nominal adjec-
tive.

To deal with this, we add a disambiguation (Fun-
tion disambiguation in Algorithm 2) step. Simi-
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(a) The alignment of nominal ellipsis in English. AMR
graph on the left, the words of the actual sentence on
the right. The elliptic concept ‘d2’ should be aligned
with the word ‘dress’.

(b) The alignment of nominal ellipsis in Turkish.
AMR graph on the left, the words of the actual sentence
on the right. The elliptic concept ‘e3’ should be aligned
with “beyaza” (the lemma ‘beyaz’ (white) in dative form
carrying the meaning of the dress).

Figure 3: The alignment of nominal ellipsis

larity mapping and disambiguation operate simul-
taneously. When there is more than one concept
candidate paired with a single word within the sen-
tence, a disambiguator is invoked to decide if a
removal of a concept-word match is necessary: At
this stage multiple mapping is allowed for the first
category describe above (i.e., gapping ellipsis). For
the second category (i.e., nominal ellipsis), the dis-
ambiguator reduces the possible multiple mappings
into a selected one; i.e., selects one of the candi-
dates.

The disambiguator searches for common syntac-
tic structures (i.e., modifiers of the concept-lemma
pair in focus) between the candidate concept and
lemma. However, since we do not use any extra
resources at this stage such as a dependency parser,
we make a general assumption that the modifiers
(e.g., adjectives describing a noun) would appear
on the left side of a noun in the actual sentence
word order. Although, most of the time, this as-
sumption holds for English and several other lan-
guages, where modifiers frequently precede nouns,
the direction may be changed if necessary for the
language in focus.

First, the aligner calculates an overlap score be-
tween the 1-degree neighbors of each candidate
concepts and the neighboring words in the 1-word
window of the word in focus (i.e., the focus word
to be mapped). Then, the candidate having a higher
overlap score is matched with the word in focus.
For example, possible mappings of the word in
focus ‘dress’ in the actual sentence provided in Fig-
ure 3a are the two concepts d and d2. The overlap
between the word in focus’ neighbors is the word
‘red’, which eliminates the second possible map-
ping: the white dress. As one would notice, the

introduced assumption does not have any effect in
this example since the single overlapped word is
enough for the elimination. However, when we
look to the second example (Figure 3b) in the same
figure, the 1-word window neighbor set of the word
‘elbise’ (dress) contain both the words ‘red’ and
‘white’ where our assumption helps to select the
most possible candidate concept.

3.2 Alignment Algorithm

The alignment procedure (Algorithm 1) starts
with similarity mapping (simMap) where word-
concept pairs are determined as described in the
previous section. Consider a set of words W =
{w1, w2, ..., wn} in sentence S, where n is the
number of words, the AMR graph is shown as
G = {C, V }, where C = {c1, c2, ..., cm} is the
set of concepts, and V is the relation set between
these concepts. It should be noted that concept
indexes and word indexes are not directly related
to each other. As the output of similarity map-
ping, we get a list, each element of which is also
a list (pl). This list pl contains < wj , ci > pairs
where j depicts the word-order index of the current
word within the sentence. Our aligner processes
each < wj , ci > pair and first aligns ci with wj .
Then it searches for ci’s one-edge away neighbors
to find unmatched concepts during previous stage
that need to be aligned with wj . ci is accepted as
a central node and the aligner visits its neighbors.
If a neighbor has a word pair, the aligner turns
back to ci. Otherwise the neighbor node is added
to a list of visited concepts and the aligner moves
to that node to search unmapped concepts in its
neighborhood. This recursive process stops when
there are no more mapped concepts in the neigh-
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borhood and the aligner returns to ci. Concepts
added into the visited list during neighbor search
are aligned with wj . Then, the aligner moves to
another concept-word pair and repeats the same
steps. The alignment algorithm terminates when
all pairs are processed.

Algorithm 1: Alignment Algorithm
Input: S = List(w1 . . . wn), G = (C, V )
Output: Alignments
M ← simMap(S,G)
M ← sort(M)
T ← removeReent(G)
Alignments← ∅
for j = 0 to n do

plj ←M [j]
for < wj , ci >∈ plj do

Alignments[j] ∪ {ci}
Alignments[j]∪getVisited(ci,T ,M )

end
end
Alignments←postprocess(Alignments)

Function getVisited (c, T,M ):
visited← ∅
n← NeighInAllowedPath(c, T,M)
for ni,∈ n do

if < ∀w, ni > /∈M then
visited ∪ getVisited(ni,T ,M )

end
return visited

Morphologicallly rich languages lead to frequent
reification (i.e., conversion of a role into a concept
(Banarescu et al., 2013)) situations in AMR. This
results in nested concepts. Remember the example
‘simitçi’ (the person who sells bagels) from Section
3, which produces 3 concepts: ‘person’, ‘sell.01’,
and ‘bagel’. We use the above-explained recursive
search for finding unmapped concepts within the
nested relation chains.

At the beginning of the alignment proce-
dure, we remove reentrancy4 relations (function
removeReent in the Algorithm 1) and the graphs
are transformed into trees. The reasons for this
are that (i) we aim to align words whose align-
ments are graph fragments, and reentrancy connec-
tions appear on the linguistic phenomena such as
co-reference, coordination, repetition, etc. (Blod-

4A single word in a sentence might be argument of more
than one predicate. This is called reentrancy (Banarescu et al.,
2013) in AMR.

gett and Schneider, 2021) rather than morphology-
based ones where such graph fragments emerge.
Therefore, we assume that the graph fragments do
not include reentrancy connections. (ii) the ma-
jority of the reentrancy relations come from the
personal suffixes whose concepts are mostly mor-
phology originated. In figure 2, the concept ‘ben’
comes from the personal suffix -Im and can be
aligned with ‘geleceğimi’ or ‘şaşırdım’, both align-
ments are correct. Since one of them is enough for
the aligner to be used in concept generation as the
first stage of parsing, we ignore the reentrancy con-
nections during the alignment to be handled later
during parsing.

Our aligner greedily searches neighbor nodes
and the ordering of the concepts in the mapping
list (M) is crucial for our aligner. The unmapped
morphology-based concepts should be reached
from their children nodes first since they tend
to appear on top of the lexical concepts in the
AMR graph. In order to ensure this, we add a
sorting (sort) operation which moves the predi-
cate concepts to the end of the mapping list to
ensure that they are handled later than the leaf
nodes. Moreover, we put constraints to force the
aligner to visit neighbor nodes only in allowed
path (NeighInAllowedPath) so that some nodes
are reachable only via specified relations. These
constraints guarantee the alignment of the abstract
concepts of AMR. For instance, ‘-quantity’ con-
cepts are only reachable over the relations :unit
and :value. The constraints are taken from JAMR
rules responsible for alignments of abstract con-
cepts.

Up to this stage, the aligner produces alignments
for words. However, in order to produce align-
ments for word spans (e.g., named entities, redu-
plications, multi-word expressions), we need an
additional stage to combine some words and their
alignments. Therefore, we use a two stage post-
processing step: The first stage focuses on the
alignment of named entities: it unifies the align-
ment of consecutive words which were initially
aligned to some concepts connected to the same
‘name’5 concept. In other words, consecutive words
are merged into word spans, and their related con-
cepts are also merged similarly for named entities.

5In AMR, the abstract ‘name’ concept is used for repre-
senting the named entities.
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Algorithm 2: Similarity Mapping Algo-
rithm (simMap)

Input: S = List(w1 . . . wn), G = (C, V ),
wv, t

Output: M
sim← n×m, M← ∅
for j = 0 to n do

wj ← S[j]
vwj ← wv(wj)
for ci ∈ C do

vci ← wv(ci)
if CosSim(vwj ,vci) ≥ t then

sim[wj][ci]←CosSim(vwj ,vci)
else if mFuzzy(vwj ,vci ≥ 0.95 then

sim[wj][ci]←mFuzzy(vwj ,vci)
end

end
for j = 0 to n do

concepts← mapping(sim,S,j,G)
for each ci in concepts do

M[j] ∪{< S[j], ci >}
end

end
Function mapping (sim,S,j,G)

wj ← S[j]
s←max(sim[wj])
for cl ∈ C do

wk ←argmax(sim[:,cl])
if wk = wj then

cands ∪ {cl} if s =sim[wk,cl]
end
if length(cands) ≥ 2 then

cands←
disambugate(cands,S,j,G)

end
return cands

Function disambugate (candidates,S,i,G)
max← 0, v← ∅
for each c in candidates do

if c is verb frame then
return candidates

else
children← getChildren(c,G)
prev← {S[i− 1]}
next← {S[i+ 1]}
parents← getParent(c,G)
overlap← { prev ∩ children } ∪

{ next ∩ parents }
if length(overlap)≥ max then

v← candidate
max← length(overlap)

end
end

end
return { v }

The second stage focuses on multi-word ex-
pressions (i.e., idioms) and reduplications 6. The
previous stages can only align one word of such
constructions, and the other words in the expres-
sion or reduplication remain unaligned. The post-
processor checks each unaligned word within a
sentence and creates word spans by combining
them with their consecutive neighbours whose re-
lated concept name includes the unaligned word’s
lemma. For the languages which do not have these
phenomena, this latter post processing steps could
be omitted.

4 Experiments and Results

In order to evaluate the performance of our aligner,
we randomly choose 100 sentences from a Turkish
AMR corpus (Oral et al., 2022). and manually align
the concepts of the AMR graphs with the words
within sentences.7

Following the same evaluation method used in
JAMR8, we compare our aligner with TAMR (Liu
et al., 2018b), JAMR (Flanigan et al., 2014) , and
Portuguese-Aligner (shortly, PrAMR) (Anchiêta
and Pardo, 2020). We adapt these aligners to Turk-
ish. The predefined dictionaries such as months,
conjunctions, etc., are replaced with their Turkish
counterparts, and Fasttext is used in TAMR and
PrAMR. We set similarity thresholds as 0.5 and 1.5
respectively. Since PrAMR uses lexical lists for
named entities, we localized these as far as possible
via a Portuguese to Turkish translator and adding
additional Turkish gazetteers. Table 1 shows the re-
sults. Our aligner achieves an F1-score of 87% and
outperforms the other aligners developed for En-
glish and Portuguese. Although TAMR and JAMR
have a precision score relatively close to our aligner,
they fall far behind the F1 score due to their low re-
calls. The recalls obviously show that the proposed
methods for alignment fail to align around half of
the concepts; these are the concepts derived from
morphology. Furthermore, the alignment approach
with Word Mover’s Distance (PrAMR) has poorer
performance than the fuzzy matching.

We design another experiment to evaluate our ap-
6Reduplication is the repetition of a word or part of a word

(Göksel and Kerslake, 2004).
7The alignment gold set was annotated by one of the au-

thors in two iterations. In the first iteration, the alignments
were built from scratch. In the second iteration, the same
annotator checked the correctness of the alignments, and the
ones having alignment mistakes were corrected.

8https://github.com/jflanigan/jamr/blob/Semeval-
2016/src/EvalSpans.scala
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Output P R F1
JAMR 0.73 0.48 0.58
TAMR 0.70 0.43 0.53
PrAMR 0.55 0.39 0.45
Ours 0.89 0.84 0.87

Table 1: The evaluation of our aligner

proach’s effectiveness and investigate our aligner’s
alignment performance on different concept types.
We evaluate our aligner on the sentence con-
stituents concerning only the concept types in fo-
cus.

P R F1
Elliptic Concepts 0.60 0.42 0.50
NEs 0.86 0.89 0.88
Abstract Concepts 0.90 0.82 0.86
Morphological Concepts 0.87 0.86 0.86

Table 2: Alignment performance of our aligner on dif-
ferent concept types

As shown in Table 2, our aligner’s performance
is in parallel to its overall score except elliptic
concepts. Ellipsis is one of the most challenging
parts of AMR alignment in Turkish. As a future
work, we aim to improve the approach for this phe-
nomenon.

We make a further error analysis to see the weak-
nesses of our aligner. One of our aligner’s mis-
takes is the mismatch/unmatch of specific concepts.
Since our alignment algorithm greedily searches
unmapped concepts, any mistakes in the mapping
phase result in the wrong alignments. Although our
aligner uses the power of the pre-trained word em-
beddings, it fails to match the punctuation marks
when they create concepts, especially the cases
when they have a coordination role in the sentence:
for example the comma mark is related to the con-
cept ‘and’, and the colon mark is related to the
concept ‘de.01’(say.01), however these punctuation
marks are not similar to the concept names neither
semantically nor syntactically. The alignment of
the light verbs is another unmatched case where
our aligner fails. The Turkish Propbank (Şahin,
2016) represents them as frames of auxiliary verbs,
which is how the AMR uses them too. Therefore,
our aligner maps only the verb part due to seman-
tic similarity; the first part of the verb is left un-
matched. For example ‘tercih et-’ (to prefer) is
represented with ‘et.16’ our aligner aligns only ‘et’
(do). Our aligner also shows poor performance on

the alignment of the auxiliary verb ‘ol’. This verb
has 26 frames, including the widespread meanings
‘have’ (ol.04) and ‘become’ (ol.03). When there
are multiple occurrences within the same sentence,
the aligner does not have enough information to
distinguish these frames. As a result, it may pro-
duce wrong mappings. An option to solve this
ambiguity problem could be to integrate Propbank
verb frames as an external resource in future works.
One should note that this kind of additions would
increase the alignment cost.

5 Conclusions and Feature Work

In this paper, we proposed an alignment approach
for morphologically-rich and pro-drop languages
and presented the first AMR aligner designed for
Turkish which is prominent language of morpho-
logically rich languages. Our aligner uses pre-
trained word vectors and fuzzy matching for align-
ing concrete concepts. Furthermore, we present an
algorithm for the alignment problem of concepts
that emerged from the morphemes; this simple ap-
proach may be adopted to other morphologically
rich and pro-drop languages with little effort. Our
study reveals the challenging points in the Turkish
alignment study, and we believe that our findings
will accelerate the development of multilingual
AMR parsing studies. As a future work, we plan
to expand our study on the other morphologically
rich and pro-drop languages (e.g., Portuguese).
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Zdeněk Žabokrtskỳ, Daniel Zeman, and Magda
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