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Abstract

We present an efficient BERT-based multi-task
(MT) framework that is particularly suitable
for iterative and incremental development of
the tasks. The proposed framework is based
on the idea of partial fine-tuning, i.e. only fine-
tune some top layers of BERT while keep the
other layers frozen. For each task, we train
independently a single-task (ST) model using
partial fine-tuning. Then we compress the task-
specific layers in each ST model using knowl-
edge distillation. Those compressed ST mod-
els are finally merged into one MT model so
that the frozen layers of the former are shared
across the tasks. We exemplify our approach
on eight GLUE tasks, demonstrating that it is
able to achieve 99.6% of the performance of
the full fine-tuning method, while reducing up
to two thirds of its overhead.

1 Introduction

In this work we explore the strategies of BERT
(Devlin et al., 2019) serving for multiple tasks un-
der the following two constraints: 1) Memory and
computational resources are limited. On edge de-
vices such as mobile phones, this is usually a hard
constraint. On local GPU stations and Cloud-based
servers, this constraint is not as hard but it is still
desirable to reduce the computation overhead to cut
the serving cost. 2) The tasks are expected to be
modular and are subject to frequent updates. When
one task is updated, the system should to be able
to quickly adapt to the task modification such that
the other tasks are not affected. This is a typical
situation for applications (e.g. Al assistant) under
iterative and incremental development.

In principle, there are two strategies of BERT
serving: single-task serving and multi-task serving.
In single-task serving, one independent single-task
model is trained and deployed for each task. Typ-
ically, those models are obtained by fine-tuning a

* Equal contribution.

copy of the pre-trained BERT and are completely
different from each other. Single-task serving has
the advantage of being flexible and modular as
there is no dependency between the task models.
The downside is its inefficiency in terms of both
memory usage and computation, as neither parame-
ters nor computation are shared or reused across the
tasks. In multi-task serving, one single multi-task
model is trained and deployed for all tasks. This
model is typically trained with multi-task learn-
ing (MTL) (Caruana, 1997; Ruder, 2017). Com-
pared to its single-task counterpart, multi-task serv-
ing is much more computationally efficient and
incurs much less memory usage thanks to its shar-
ing mechanism. However, it has the disadvantage
in that any modification made to one task usually
affect the other tasks.

The main contribution of this work is the propo-
sition of a framework for BERT serving that si-
multaneously achieves the flexibility of single-task
serving and the efficiency of multi-task serving.
Our method is based on the idea of partial fine-
tuning, i.e. only fine-tuning some topmost layers
of BERT depending on the task and keeping the
remaining bottom layers frozen. The fine-tuned
layers are task-specific, which can be updated on
a per-task basis. The frozen layers at the bottom,
which plays the role of a feature extractor, can be
shared across the tasks.

2 Related Work

The standard practice of using BERT is fine-tuning,
i.e. the entirety of the model parameters is ad-
justed on the training corpus of the downstream
task, so that the model is adapted to that specific
task (Devlin et al., 2019). There is also an alterna-
tive feature-based approach, used by ELMo (Peters
et al., 2018). In the latter approach, the pre-trained
model is regarded as a feature extractor with frozen
parameters. During the learning of a downstream
task, one feeds a fixed or learnable combination of
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L ‘QNLI RTE QQP MNLI SST-2 MRPC CoLA STS-B

859 603  86.1 71.1 91.6 77.2 38.7 84.8
883 635 883 80.8 91.9 80.6 40.0 86.1
8909 653 89.0 825 91.2 84.6 453 87.3
90.7 69.0 89.7 83.3 92.0 84.3 48.6 88.2
91.0 715 90.1 84.0 92.2 89.7 51.3 88.3
912 711 903 84.2 93.1 86.8 53.1 86.4
913 700 905 83.9 93.0 87.5 515 88.6
915 708 906 845 92.8 88.0 55.2 88.9
91.6 70.8 90.7 84.0 92.5 87.7 54.7 88.8
91.7 697 911 84.5 93.0 87.3 55.0 88.7
91.7 704 911 84.5 93.1 88.2 54.7 89.1
91.6 69.7 911 84.6 934 88.2 54.7 88.8
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Table 1: Dev results on GLUE datasets obtained with
partial fine-tuning. The parameter L indicates the num-
ber of fine-tuned transformer layers. For each dataset
and for each value of L, we always run the experiment
5 times with different initializations and report the max-
imum dev result obtained. The best result in each col-
umn is highlighted in bold face. Shaded numbers indi-
cate that they attain 99% of the best result of the col-
umn. It can be seen that although fine-tuning more lay-
ers generally leads to better performance, the benefit
of doing so suffers diminishing returns. Perhaps sur-
prisingly, for RTE, MRPC and CoLA it is the partial
fine-tuning with roughly half of the layers frozen that
gives the best results.

the model’s intermediate representations as input to
the task-specific module, and only the parameters
of the latter will be updated. It has been shown that
the fine-tuning approach is generally superior to
the feature-based approach for BERT in terms of
task performance (Devlin et al., 2019; Peters et al.,
2019).

A natural middle ground between these two ap-
proaches is partial fine-tuning, i.e. only fine-tuning
some topmost layers of BERT while keeping the
remaining bottom layers frozen. This approach has
been studied in (Houlsby et al., 2019; Merchant
et al., 2020), where the authors observed that fine-
tuning only the top layers can almost achieve the
performance of full fine-tuning on several GLUE
tasks. The approach of partial fine-tuning essen-
tially regards the bottom layers of BERT as a fea-
ture extractor. Freezing weights from bottom lay-
ers is a sensible idea as previous studies show that
the mid layer representations produced by BERT
are most transferrable, whereas the top layers rep-
resentations are more task-oriented (Wang et al.,
2019a; Tenney et al., 2019b,a; Liu et al., 2019a;
Merchant et al., 2020). Notably, Merchant et al.
(2020) showed that fine-tuning primarily affects
weights from the top layers while weights from
bottom layers do not alter much. Liu et al. (2019a)

showed that it is possible to achieve state-of-the-art
results on a number of probing tasks with linear
models trained on frozen mid layer representations
of BERT.

3 Method

In what follows, we denote by 7T the set of all target
tasks. We always use the 12-layer uncased version
of BERT as the pre-trained language model'. The
proposed framework features a pipeline (Fig. 1)
that consists of three steps: 1) Single task partial
fine-tuning; 2) Single task knowledge distillation;
3) Model merging. We give details of these steps
below.

3.1 Single Task Partial Fine-Tuning

In the first step, we partial fine-tune for each task
an independent copy of BERT. The exact number
of layers L to fine-tune is a hyper-parameter and
may vary across the tasks. We propose to experi-
ment for each task with different value of L within
range Npin < L < Npax, and select the one that
gives the best validation performance. The purpose
of imposing the search range [Nmin, NVmax] is to
guarantee a minimum degree of parameter sharing.
In the subsequent experiments on GLUE tasks (see
Section 4.3), we set Npin = 4 and Ny = 10.

This step produces a collection of single-task
models as depicted in Fig. 1(a). We shall refer to
them as single-task teacher models, as they are to
be knowledge distilled to further reduce the mem-
ory and computation overhead.

3.2 Single Task Knowledge Distillation

Since there is no interaction between the tasks, the
process of knowledge distillation (KD) can be car-
ried out separately for each task. In principle any
of the existing KD methods for BERT (Wang et al.,
2020; Aguilar et al., 2020; Sun et al., 2019a; Jiao
et al., 2020; Xu et al., 2020a) suits our needs. In
preliminary experiments we found out that as long
as the student model is properly initialized, the
vanilla knowledge distillation (Hinton et al., 2015)
can be as performant as those more sophisticated
methods.

Assume that the teacher model for task 7 € T
contains L(7) fine-tuned layers at the top and
12 — L) frozen layers at the bottom. Our goal is

"The model checkpoint is downloaded from https:
//storage.googleapis.com/bert_models/
2018_10_18/uncased_L-12_H-768_A-12.zip.
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Figure 1: Pipeline of the proposed method. (a) For each task we train separately a task-specific model with partial
fine-tuning, i.e. only the weights from some topmost layers (blue and red blocks) of the pre-trained model are
updated while the rest are kept frozen (gray blocks). (b) We perform knowledge distillation independently for each
task on the task-specific layers of the teacher models. (c) The student models are merged into one MT model so

that the frozen layers of the former can be shared.

to compress the former into a smaller Z(T)—layer
module. The proposed initialization scheme is
very simple: we initialize the student model with
the weights from the corresponding layers of the
teacher. More precisely, let N, denote the number
of layers (including both frozen and task-specific
layers) in the student, where N; < 12. We propose
to initialize the student from the bottommost N,
layers of the teacher. Similar approach has also
been used in (Sanh et al., 2019), where the student
is initialized by taking one layer out of two from
the teacher. The value of Z(T), i.e. the number of
task-specific layers in the student model for task
T, determines the final memory and computation
overhead for that task.

3.3 Model Merging

In the final step, we merge the single-task student
models into one multi-task model (Fig. 1(c)) so
that the parameters and computations carried out
in the frozen layers can be shared. To achieve this,
it suffices to load weights from multiple model
checkpoints into one computation graph.

4 Experiments

In this section, we compare the performance and
efficiency of our model with various baselines on
eight GLUE tasks (Wang et al., 2019b). More de-
tails on these tasks can be found in Appendix A.

4.1 Metrics

The performance metrics for GLUE tasks is ac-
curacy except for CoLA and STS-B. We use
Matthews correlation for CoLLA, and Pearson cor-
relation for STS-B.

To measure the parameter and computational
efficiency, we introduce the total number of trans-
former layers that are needed to perform inference
for all eight tasks. For the models studied in our
experiments, the actual memory usage and the com-
putational overhead are approximately linear with
respect to this number. It is named “overhead” in
the header of Table 2.

4.2 Baselines

The baseline models/methods can be divided into
4 categories:

Single-task without KD. There is only one
method in this category, i.e. the standard practice
of single task full fine-tuning that creates a separate
model for each task.

Single-task with KD. The methods in this cate-
gory create a separate model for each task, but a
certain knowledge distillation method is applied to
compress each task model into a 6-layer one. The
KD methods include (Hinton et al., 2015; Xu et al.,
2020b; Sanh et al., 2019; Turc et al., 2019; Sun
et al., 2019b; Jiao et al., 2020; Wang et al., 2020).

Multi-task learning. This category includes two
versions of MT-DNN (Liu et al., 2019b, 2020), both
of which produce one single multi-task model. 1)
MT-DNN (full) is jointly trained for all eight tasks.
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| QNLI RTE QQP MNLI SST-2 MRPC CoLA STS-B | Avg. | Layers | Overhead
Full fine-tuning | 91.6  69.7 9.1 846 934 882 547 888 | 82.8 || 12x8 | 96(100%)
DistilBERT!) 892 599 885 822 913 875 513 869 | 796 | 6x8 | 48(50.0%)
Vanilla-KD[4] 880 649 881 80.1 905 862 451 849 | 785 6x8 | 48(50.0%)
PD-BERT! 89.0 667 89.1 830 911 872 - - - 6x8 | 48(50.0%)
BERT-PKD 884 665 884 813 913 857 455 862 | 792 6x8 |48 (50.0%)
BERT-of-Theseusl/] | 895 682 896 823 915 8.0 511 887 | 812 | 6x8 |48(50.0%)
TinyBERTL! 90.5 722 906 835 916 884  42.8 - - 6x8 | 48(50.0%)
MiniLM" 884 665 884 813 913 857 455 862 | 792 | 6x8 | 48(50.0%)
MT-DNN (full)l/] 91.1 809 87.6 844 935 874 513 868 | 829 | 12x1 |12(12.5%)
MT-DNN (LOO)¥ | 69.7 606 665 567 792 742 102 729 - - -
Ours (KD-1) 864 661 910 775 907 851 364 883 | 774 | 7+1x8 | 15(15.6%)
Ours (KD-2) 886 646 913 817 927 863 440  88.6 | 79.7 | 7+2x8 |23 (24.0%)
Ours (KD-3) 902 668 912 829 927 880 500 889 | 813 || 7+3x8 |31(32.3%)
Ours (w/o KD) 917 715 911 845 931 897 552 889 | 832 || 7+60 | 67(69.8%)
2100 (75 (2100  (48)  (66) (7.5) (18 (48
Ours (mixed) 902 715 910 829 927 880 552 883 | 825 || 7+26 |33(343%)
@3) @5 21 @43 (62 (7.3) 48 @D

Table 2: A comparison of performance and overhead between our approach and various baselines (see §4.2 for
more details). The performance is evaluated on the dev set. To obtain the results labeled as “Ours”, we always run
the experiment 5 times with different initializations and report the maximum. The best result in each column is
highlighted in bold face. Shaded numbers indicate that they attain 99% of the Full fine-tuning baseline. Results of
[b] are from (Sanh et al., 2019); [c]-[f] are from (Xu et al., 2020b); [g]-[] are from (Wang et al., 2020); [j]-[k] are
reproduced by us with the toolkit from (Liu et al., 2020). Round bracket (x, y) indicates that the underlying task
model before merging consists of = frozen layers and y task-specific layers (fine-tuned or knowledge-distilled). In
the “Layers” column, notation 7 4+ 2 x 8 implies that in the final multi-task model there are 7 shared frozen layers

and 2 task-specific layers for each of the 8 task.

It corresponds to the idea scenario where all tasks
are known in advance. 2) MT-DNN (LOQO), where
“LOO” stands for “leave-one-out”, corresponds to
the scenario where one of the eight tasks is not
known in advance. The model is jointly pre-trained
on the 7 available tasks. Then an output layer for
the “unknown” task is trained with the pre-trained
weights frozen.

Flexible multi-task. Our models under various
efficiency constraints. Ours (w/o KD) means that
no knowledge distillation is applied to the task mod-
els. The number of fine-tuned layers for each task
is selected according to the criterion described in
Section 3.1. Ours (KD-n) means that knowledge
distillation is applied such that the student model
for each task contains exactly n task-specific lay-
ers. For Ours (mixed), we determine the number
of task-specific layers for each task based on the
marginal benefit (in terms of task performance met-
ric) of adding more layers to the task. More pre-
cisely, for each task we keep adding task-specific
layers as long as the marginal benefit of doing so is
no less than a pre-determined threshold c. In Table
2, we report the result for ¢ = 1.0. Results with

other values of ¢ can be found in Appendix D.

4.3 Results

The results are summarized in Table 2. From the
table it can be seen that the proposed method Ours
(mixed) outperforms all KD methods while be-
ing more efficient. Compared to the single-task
full fine-tuning baseline, our method reduces up
to around two thirds of the total overhead while
achieves 99.6% of its performance.

We observe that MT-DNN (full) achieves the
best average performance with the lowest over-
head. However, its performance superiority pri-
marily comes from one big boost on a single task
(RTE) rather than consistent improvements on all
tasks. In fact, we see that MT-DNN (full) suffers
performance degradation on QQP and STS-B due
to task interference, a known problem for MTL
(Caruana, 1997; Bingel and Sogaard, 2017; Alonso
and Plank, 2017; Wu et al., 2020). From our per-
spective, the biggest disadvantage of MT-DNN is
that it assumes full knowledge of all target tasks
in advance. From the results of MT-DNN (LOO),
we observe that MT-DNN has difficulty in han-
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dling new tasks if the model is not allowed to be
retrained.

5 Discussions

5.1 Advantages

One major advantage of the proposed architecture
is its flexibility. First, different tasks may be fed
with representations from different layers of BERT,
which encapsulate different levels of linguistic in-
formation (Liu et al., 2019a). This flexibility is
beneficial to both task performance and efficiency.
For instance, on QQP we achieve an accuracy of
91.0, outperforming all KD baselines with merely
one task-specific layer (connected to the 2nd layer
of the frozen backbone model). Second, our ar-
chitecture explicitly allows for allocating uneven
resources to different tasks. We have redistributed
the resources among the tasks in ours (mixed), re-
sulting in both greater performance and efficiency.
Third, our framework does not compromise the
modular design of the system. The model can be
straightforwardly updated on on a per-task basis.

5.2 Limitations

The major limitation of our approach is that for
each downstream task it requires approximately
10x more training time for the hyper-parameter
search compared to the conventional approach. Al-
though the cost is arguably manageable in practice,
i.e. typically 2 or 3 days per task on a single Nvidia
Tesla V100 GPU, the excessive computation load
should not be overlooked.

Another limitation is that although the overall
computation overhead is reduced, the serving la-
tency of our model deteriorates as the number of
tasks grows, and may eventually be worse than
that of the single task baseline. This is due to the
fact that during inference one cannot get the output
of any one task until the model has finished com-
puting for all tasks. In this regard, our approach
may not be appropriate for those applications that
demand exceptionally low serving latency, e.g. be-
low 10 ms. Nevertheless, we report in Appendix E
an industrial use case where our multi-task model
serves 21 tasks while achieving a latency as low as
32 ms (99th percentile).

5.3 Comparison with Adaptor-Based
Approaches

The adaptor-based approaches (Houlsby et al.,
2019; Pfeiffer et al., 2020) belong to another

category of fine-tuning approaches that are also
parameter-efficient. Basically, the adaptor-based
approaches introduce one trainable task-specific
“adaptor” module for each downstream task. This
module is generally lightweight, containing only a
few parameters and is inserted between (or within)
layers of the backbone model (e.g. BERT). How-
ever, even though the parameters of the backbone
model can be shared across the tasks, the compu-
tation for inference cannot due to the fact that the
internal data flow in each task model is modified
by the task-specific adaptor. Therefore, the adaptor-
based approaches are not computationally efficient
and one needs to perform a separate full forward
pass for each task. Since both parameter and com-
putation efficiency are what we aim to achieve, the
adaptor-based approaches are not comparable to
our method.

6 Conclusion

We have presented our framework that is designed
to provide efficient and flexible BERT-based multi-
task serving. We have demonstrated on eight
GLUE datasets that the proposed method achieves
both strong performance and efficiency. We release
our code? and hope that it can facilitate BERT serv-
ing in cost-sensitive applications.
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Supplemental Materials

A Details on the GLUE tasks

The GLUE benchmark includes the following
datasets:

e QNLI (Question Natural Language Infer-
ence). The dataset is derived from (Rajpurkar
et al.,, 2016). This is a binary classifica-
tion task where an example is of the form
(question, sentence) and the goal is to predict
whether the sentence contains the correct an-
swer to the question (Wang et al., 2018).

e RTE (Recognizing Textual Entailment). A
binary entailment task similar to MNLI but
with much less training data (Bentivogli et al.,
2009).

o QQP (Quora Question Pairs) A binary clas-
sification task where the goal is to determine
if two questions asked on Quora are semanti-
cally equivalent (Chen et al., 2018).

o MNLI (Multi-Genre Natural Language Infer-
ence). Given a pair of sentences, the goal is to
predict whether the second sentence is an en-
tailment, contradiction or neutral with respect
to the first one (Williams et al., 2018).

e SST-2 (The Stanford Sentiment Treebank).
A binary single-sentence classification task
where the goal is to predict the sentiment (pos-
itive or negative) of the movie reviews (Socher
et al., 2013).

o MRPC (Microsoft Research Paraphrase Cor-
pus). A binary classification task where the
goal is to predict whether two sentences are

semantically equivalent (Dolan and Brockett,
2005).

e CoLA (The Corpus of Linguistic Acceptabil-
ity). A binary single-sentence classification
task where the goal is to predict whether an
English sentence is linguistically “acceptable”
or not (Warstadt et al., 2018).

e STS-B (The Semantic Textual Similarity
Benchmark). A regression task where the goal
is to predict whether two sentences are similar
in terms of semantic meaning as measured by
a score from 1 to 5 (Cer et al., 2017).

e WNLI (Winograd NLI). The dataset is de-
rived from (Levesque et al., 2012). We ex-
clude this task in our experiments following
the practice of (Devlin et al., 2019; Radford

et al., 2018).
Dataset ‘ Train Dev
QNLI 108k 5.4k
RTE 2.5k 0.3k
QQP 363k 40k
MNLI | 392k 9.8k
SST-2 67k 0.8k
MRPC | 3.5k 0.4k
CoLA 8.5k 1.0k
STS-B 5.7k 1.5k

Table 3: Number of examples for training and develop-
ment in GLUE datasets.

B Hyper-parameters

The approach presented in this work introduces two
new hyper-parameters for each task 7 € T, namely
the number of fine-tuned layers L(™) for the teacher
and the number of knowledge distilled layer 17
for the student. If the resources permit, these two
hyper-parameters should be tuned separately for
each task. As introduced in Section 3.1, we suggest
to constrain L within the range 4 < L) < 10. As
for 1) which determines the eventual task-specific
overhead, we impose /(7 < 3. Since we always
determines L(7) first, we do not need to experiment
with every combination of (L(7),1(7)). Combin-
ing these together, our approach requires approx-
imately 10x (7 for L and 3 for /) more training
time compared to conventional full fine-tuning ap-
proach.

The conventional hyper-parameters (e.g. learn-
ing rate, mini-batch size, etc) used in our experi-
ments are summarized in Table 4.

C Detailed Experiment Results

In the box plots of Figure 2 above we report the
performance of the student models initialized from
pre-trained BERT and from the teacher. It can be
clearly seen that the latter initialization scheme
generally outperforms the former. Besides, we also
observe that although increasing the number of
task-specific layers improves the performance, the
marginal benefit of doing so varies across tasks.
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Hyper-parameter | value
learning rate 2e-5
batch size 32
Epoch 3,4,5
Optimizer Adam
weight decay rate | 0.01
51 0.9
B2 0.999
€ le-6

Table 4: Hyper-parameters used in our experiments.
We mainly followed the practice of (Devlin et al., 2019).

Notably, for QQP and STS-B the student models
with only one task-specific layer are able to attain
99% of the performance of their teacher.

D Performance-Efficiency Trade-off

In Fig 5, we report the performance of our method
with various values of ¢, where ¢ is defined as the
minimal marginal benefit (in terms of task perfor-
mance metric) that every task-specific layer should
bring (see Section 4.2).

E Industrial Application

We have implemented our framework in the ap-
plication of utterance understanding of XiaoAl,
a mono-lingual (Chinese) commercial Al assis-
tant developed by XiaoMi. Our flexible multi-task
model forms the bulk of the utterance understand-
ing system, which processes over 100 million user
queries per day with a peak throughput of nearly
4000 queries-per-second (QPS).

For each user query, the utterance understanding
system performs various tasks, including emotion
recognition, incoherence detection, domain classi-
fication, intent classification, named entity recog-
nition, slot filling, etc. Due to the large workload,
these tasks are developed and maintained by a num-
ber of different teams. As the Al assistant itself
is under iterative/incremental development, its ut-
terance understanding system undergoes frequent
updates®:

e Update of training corpus, e.g. when new
training samples become available or some
mislabeled samples are corrected or removed.

3Not necessarily frequent for any particular task, but over-
all frequent if we regard the system as a whole.

e Redefinition of existing tasks. For instance,
when a more fine-grained intent classification
is needed, we may need to redefine existing
intent labels or introduce new labels.

e Introduction of new tasks. This may happen
when the Al assistant needs to upgrade its
skillsets so as to perform new tasks (e.g. rec-
ognize new set of instructions, play verbal
games with kids, etc).

e Removal of obsolete tasks. Sometimes a
task is superseded by another task, or simply
deprecated due to commercial considerations.
Those tasks need to be removed from the sys-
tem.

One imperative feature for the system is the mod-
ular design, i.e. the tasks should be independent
of each other so that any modification made to one
task does not affect the other tasks. Clearly, a con-
ventional multi-task system does not meet our need
as multi-task training breaks modularity.

Before the introduction of BERT, our utterance
understanding system is based on single-task serv-
ing, i.e. a separate model is deployed for each
task. As those models are relatively lightweight
(e.g. TextCNN, LSTM), overhead is not an issue.
However, with the introduction of BERT, the cost
for single-task serving becomes a valid concern
as each task model (a unique 12-layer fine-tuned
BERT) requires two Nvidia Tesla V100 GPUs for
stable serving that meets the latency requirement.

With the primary objective of reducing cost,
we have implemented the proposed flexible multi-
task model in our utterance understanding system,
which provides serving for a total of 21 downstream
tasks. Overall, there are 40 transformer layers of
which 8 are shared frozen layers (on average 1.5
task-specific layers per task). Using only 5 Nvidia
Tesla V100 GPUs, we are able to achieve®* a P99
latency of 32 ms under a peak throughput of 4000
QPS. Compared with single-task serving for 21
tasks which would require 42 GPUs, we estimate
that our system reduces the total serving cost by up
to 88%.

“with fpl6 and fast transformer (https://github.
com/NVIDIA/FasterTransformer) acceleration.
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Figure 2: A comparison of the task performance between vanilla initialization (initialize from pre-trained BERT)
and teacher initialization as described in Section 3.2 for n € {1, 2, 3}, where n is the number of task-specific layers
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|QNLI RTE QQP MNLI SST-2 MRPC CoLA STS-B | Avg. | Layers | Overhead

Full fine-tuning | 9.6  69.7 91.1 846 934 882 547 888 | 828 | 12x8 | 96 (100%)

Ours (KD-1) | 864 661 910 775 907 851 364 883 | 774 | 7+1x8 | 15(15.6%)

Ours (KD-2) | 886 646 913 817 927 863 440 886 | 797 | 7+2x8 | 23(24.0%)

Ours (KD-3) | 902 668 912 829 927 880 500 889 | 813 | 7+3x8|31(323%)

Ours(c=1.0) | 902 715 910 829 927 880 552 883 | 825 | 7+26 |33(343%)
@3) @5 @) @y 62 (73 (@8 (4

Ours (c=2.0) | 886 661 910 817 927 851 500 883 | 804 | 7+13 | 20(202%)
(2,2) (7,1) (2,1) (4,2) (6,2) (7,1) (4,3) (4,1)

Ours (c=3.0) | 864 661 910 817 907 851 500 883 | 799 | 7+11 | 18(18.8%)
(2,1) (7,1) (2,1) (4,2) (6,1) (7,1) (4,3) (4,1)

Ours(woKD) | 917 715 911 845 931 897 552 889 | 832 | 7+60 |67(69.8%)
(2,10) (7,5) (2,10) (4,8) (6,6) (7,5) (4,8) (4,8)

Table 5: Results with various values of c. This parameter controls the performance-efficiency trade-off of the
overall multi-task model, in the sense that we allow the growth of an existing task module by one more task-
specific layer only if that would bring a performance gain greater than c.
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A. For every submission

Al. Did you discuss the limitations of your work?
Yes, it is explicitly discussed in Section 5.2.

A2. Did you discuss any potential risks of your
work?
No, we believe that there is no potential risk.

A3. Do the abstract and introduction summarize
the paper’s main claims?
Yes, we confirm so.

B. Did you use or create scientific artifacts?

Yes, we used the GLUE datasets in Section 4.

B1. Did you cite the creators of artifacts you used?
Yes, the GLUE paper is cited in Section 4. The
individual datasets in GLUE are cited in Appendix
A.

B2. Did you discuss the license or terms for use
and/or distribution of any artifacts?

No. Since those artifacts are popular in the NLP
community, we merely followed the common
practice of using these artifacts. We do not believe
that our usage violate the license for use, or is
potentially risky in any ways we can imagine.

B3. Did you discuss if your use of existing
artifact(s) was consistent with their intended
use, provided that it was specified? For the

artifacts you create, do you specify intended use
and whether that is compatible with the original
access conditions (in particular, derivatives of data
accessed for research purposes should not be used
outside of research contexts)?

No. The justification is the same that for question
B2.

B4. Did you discuss the steps taken to check
whether the data that was collected/used con- tains
any information that names or uniquely identifies
individual people or offensive content, and the
steps taken to protect / anonymize it?

No. The justification is the same that for question
B2.

B5. Did you provide documentation of the
artifacts, e.g., coverage of domains, languages,
and linguistic phenomena, demographic groups
represented, etc.?

Yes, it is provided in Appendix A.

B6. Did you report relevant statistics like the
number of examples, details of train/test/dev splits,
etc. for the data that you used/created?

Yes, it is provided in Appendix A.

C. Did you run computational experiments?

Yes, in Section 4.

C1. Did you report the number of parameters in
the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure
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used?

No, we did not report the number of parameters
in the models used as it can be easily inferred
from Table 2. The total computation budget was
discussed in Section 5.2.

C2. Did you discuss the experimental setup,
including hyperparameter search and best-found
hyperparameter values?

Yes, it is provided in the Section 4 and Appendix B.

C3. Did you report descriptive statistics about your
results (e.g., error bars around results, summary
statistics from sets of experiments), and is it
transparent whether you are reporting the max,
mean, etc. or just a single run?

Yes, we explicitly stated in the caption of Table
1 and Table 2 that our results are the maximum
over 5 independent runs. Detailed results are also
reported in Appendix C.

C4. If you used existing packages (e.g., for
preprocessing, for normalization, or for evalua-
tion), did you report the implementation, model,
and parameter settings used (e.g., NLTK, Spacy,
ROUGE, etc.)?

We did reuse the WordPiece implemen-
tation from  BERT’s  repository  https:
//github.com/google—research/bert for
tokenization. We did not report this as we consider
it as a trivial matter.

D. Did you use human annotators (e.g.,
crowdworkers) or research with human
subjects?

No, we did not use any human annotators, nor did
we research with human subjects.
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