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Abstract

Injecting desired geometric properties into text
representations has attracted a lot of attention.
A property that has been argued for, due to
its better utilisation of representation space, is
isotropy. In parallel, VAEs have been success-
ful in areas of NLP, but are known for their sub-
optimal utilisation of the representation space.
To address an aspect of this, we investigate
the impact of injecting isotropy during train-
ing of VAEs. We achieve this by using an
isotropic Gaussian posterior (IGP) instead of
the ellipsoidal Gaussian posterior. We illus-
trate that IGP effectively encourages isotropy
in the representations, inducing a more dis-
criminative latent space. Compared to vanilla
VAE, this translates into a much better classi-
fication performance, robustness to input per-
turbation, and generative behavior. Addition-
ally, we offer insights about the representa-
tional properties encouraged by IGP.1

1 Introduction

In recent years, with the success facilitated by pre-
trained representations across various NLP tasks,
more attention has been placed on studying and
utilising the geometric properties of learned rep-
resentations. A phenomena that has been studied
more recently in this direction is anisotropy (Etha-
yarajh, 2019), indicating a sub-optimal property
where the learned embeddings only utilise a small
subset of the representation space. Various methods
have been proposed to rectify this and encourage
the representations to be more discriminative or to
exploit the representation dimensions more effec-
tively (Liu et al., 2021; Gao et al., 2021; Li et al.,
2020a; Su et al., 2021; Mu and Viswanath, 2018).

In parallel, Variational Autoen-
coders (VAEs) (Kingma and Welling, 2014)
have been widely used in various areas of NLP,

1Code and datasets are available at https://github.
com/lanzhang128/IGPVAE

from representation learning for downstream
tasks (Li et al., 2020b; Wei and Deng, 2017), to
generation (Prokhorov et al., 2019; Bowman et al.,
2016), representational sparsity and disentangle-
ment (Prokhorov et al., 2021; Zhang et al., 2021),
and semi-supervised learning (Zhu et al., 2021;
Choi et al., 2019; Yin et al., 2018; Xu et al., 2017).
In recent years, most of the developments around
VAEs have focused on avoiding the posterior
collapse (Bowman et al., 2016) which leads to
learning sub-optimal representations (Havrylov
and Titov, 2020; Fu et al., 2019; Li et al., 2019;
Dieng et al., 2019; He et al., 2019; Higgins
et al., 2017; Yang et al., 2017; Bowman et al.,
2016). Despite the success of these techniques, a
non-collapsed VAE still utilises the representation
space sub-optimally (Prokhorov et al., 2019; He
et al., 2019; Burda et al., 2016), as very commonly
the learned representations do not fully utilise the
latent space to encode information.

In this paper we bridge between the two lines of
research by injection isotropy in the latent space of
VAEs. Such property could be encouraged by us-
ing an Isotropic Gaussian Posterior (IGP) which in-
volves a simple modification of VAEs. An Isotropic
Gaussian distribution, N (µ, σ2I), is similar to
vanilla VAE’s posterior with the exception that all
dimensions share the same unified variance. Tying
the variances would encourage encoder of VAEs to-
wards the extreme where all dimensions are either
active or inactive.2

Our experimental findings indicate that, com-
pared to vanilla VAE, the use of IGP is effective in
both increasing dimension activation and injecting
isotropy in the learned representation space. We ob-
serve that isotropy results in a more discriminative
representation space which is much more suited for
classification tasks and robust to input perturbation.

2A dimension u is defined to be active if Au =
Covx(Eu∼q(u|x) [u]) is larger than 0.01, where Cov denotes
covariance (Burda et al., 2016).
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Our generative experiment for sentence completion
suggests that the VAE trained with IGP is more
capable of maintaining semantic cohesiveness.

2 Isotropic Gaussian Posterior (IGP)

Variational Autoencoder (VAE). Let x denote
datapoints in data space and z denote latent vari-
ables in the latent space, and assume the datapoints
are generated by the combination of two random
processes: The first random process is to sample
a point z(i) from the latent space in VAEs with
prior distribution of z, denoted by p(z). The sec-
ond random process is to generate a point x(i) from
the data space, denoted by p(x|z(i)). VAE uses
a combination of a probabilistic encoder qφ(z|x)
and decoder pθ(x|z), parameterised by φ and θ, to
learn this statistical relationship between x and z.
VAE is trained by maximizing the lower bound of
the logarithmic data distribution log p(x), called
evidence lower bound (ELBO), L(φ, θ; x):

Eqφ(z|x)[log(pθ(x|z))]− KL(qφ(z|x)||p(z))

The first term of objective function is the expecta-
tion of the logarithm of data likelihood under the
posterior distribution of z. The second term is KL-
divergence, measuring the distance between the
recognition distribution qφ(z|x) and the prior dis-
tribution p(z) and can be seen as a regularisation.

In the presence of auto-regressive and power-
ful decoders, a common optimisation challenge of
training VAEs in text modelling is called poste-
rior collapse, where the learned posterior distribu-
tion qφ(z|x), collapses to the prior p(z). Several
strategies have been proposed to alleviate this prob-
lem (Bowman et al., 2016; Havrylov and Titov,
2020; Fu et al., 2019; He et al., 2019). In this work,
we follow Prokhorov et al. (2019), L(φ, θ; x):

Eqφ(z|x)[log(pθ(x|z))]−β|KL(qφ(z|x)||p(z))−C|

where C is a positive real value which represents
the target KL-divergence term value and β indi-
cates the regularisation strength. We set β = 1
to make sure the weights of the two terms bal-
ance, noting that it acts as a Lagrange Multiplier
(Boyd and Vandenberghe, 2004). This also has an
information-theoretic interpretation, where the KL
term is seen as the amount of information transmit-
ted from a sender (encoder) to a receiver (decoder)
via the message (z) (Alemi et al., 2018) and the us-
age ofC can control this channel capacity. This can

help us to make a fair comparison between Diago-
nal Gaussian Posterior (DGP) and IGP when VAEs
are under the same encoder capacity constraint.

VAE with Isotropic Gaussian Posterior. A
common behaviour of VAEs is the presence of in-
active representation units across the entire dataset,
causing the number of utilised dimensions to be
even far smaller than the number of potential gen-
erative factors behind any real-world dataset. The
soft ellipsoidal representation space of VAEs is
known to lead to less representative mean vec-
tors (Bosc and Vincent, 2020). We illustrate that
encouraging isotropy (i.e., tying the variance of di-
mensions on the posterior) will avoid the aforemen-
tioned issue since the encoder of VAEs would be
forced to either use all dimensions or none and the
learned latent space is soft spherical. In the Gaus-
sian case, this corresponds to using an Isotropic
Gaussian, a subclass of diagonal Gaussian distribu-
tion

{
N (µ, σ2I)|µ ∈ Rn, σ ∈ R+

}
, as the poste-

rior. Tying the variances in IGP imposes a different
pathological pattern by encouraging Active Units
(AUs; Burda et al., 2016) to reach the maximum
(i.e., representation dimension).

Additionally, the use of IGP allows the estima-
tion of variance more accurately. Suppose we
have N samples with the same posterior. For a
K-dimension diagonal Gaussian posterior, we will
have an estimation of variance with standard devia-
tion approximately σ̂2k

√
2
N for each dimension k,

whereas for an isotropic Gaussian posterior, we will
have a unified estimation of variance with standard
deviation approximately σ̂2

√
2
NK , where σ̂2k and

σ̂2 denote the estimates of the variance. Moreover,
with K different σ̂2k estimates, a few may differ
substantially from their best values by chance.3

3 Experiments

We trained our models on Yahoo Question
and DBpedia (Zhang et al., 2015) which have
(100K/10K/10K, 12K, 10) and (140K/14K/14K,
12K, 14) for (sentences in training/dev/test, vocab-
ulary size, classes), respectively. We use one uni-
directional LSTM layer for encoder and decoder,
and fully-connected layers to produce mean and
variance of posteriors. We concatenate the latent

3It is worth noting that IGP is not a solution for posterior
collapse, and our experimental findings are not specific to the
chosen technique for avoiding the collapse (i.e., our prelimi-
nary experiments with KL-annealing exhibit similar findings
reported in this paper).
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Figure 1: Results are calculated on the test set (aver-
age of 3 runs reported) of (top) DBpedia Corpus and
(bottom) Yahoo Question (Zhang et al., 2015). AU is
bounded by the dimensionality of z (32).

code with word embedding at every timestamp as
the input of the decoder. For VAE with IGP, we
just produce one variance value and assign it to
be the variance of posterior for all dimensions. At
decoding phase, we use greedy decoding. The di-
mensions for word embedding, encoder-decoder
LSTMs, and latent code are (200, 512, 32). Three
different values of C are used on each dataset to
explore the impact of the amount of information
transmitted by the code. We also adopt Autoen-
coder (AE) as a baseline.4 All models are trained
from 3 random starts for 20 epochs and 128 batch
size using Adam (Kingma and Ba, 2015) with learn-
ing rate 0.0005.

We compare the choice of isotropic Gaussian
posterior (IGP) with vanilla diagonal Gaussian pos-
terior (DGP) on various grounds, from reconstruc-
tion loss and unit activation (§3.1) to downstream
classification task, sample efficiency, robustness,
and generation (§3.2), posterior sharpness (§3.3),
and distributional properties of the induced repre-
sentations (§3.4).

3.1 Basic Results

Figure 1 reports the reconstruction loss, AU and
BLEU-2 (Papineni et al., 2002) for C = 5, 15, 50.
KL-divergence in all cases matches the set target C.
We observe the C constraint can effectively control
the KL-divergence to the set level. The reconstruc-
tion loss generally drops with the increase of C.
We observe the same pattern for DGP and IGP. Ad-
ditionally, while DGP struggles, IGP can activate
all dimensions (e.g., AU for C = 5 on DBpedia
are 4 and 32 for DGP and IGP, respectively). This

4We also tried Importance Weighted Autoencoder
(IWAE;Burda et al. (2016)) as another baseline commonly
used in image domain. This model yields KL-collapse which
is non-trivial to address given its objective function.
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Figure 2: Classification accuracy on DBpedia (top-left)
and Yahoo (top-right) with and without the isotropic
Gaussian posterior (IGP) under different C values.
Also, classification accuracy for C = 15 trained on var-
ious portion of DBpedia (bottom). Results are reported
as mean and std across 3 VAE encoders.

translates into IGP reaching a significantly higher
BLEU. For more results, including autoencoder,
see Appendix.

3.2 Classification and Generation

Classification. We trained a classifier on top of
the frozen encoders of DGP and IGP and use the
mean vector representations as features to train the
classifier. For the classifier, we used a 2-hidden-
layer MLP with 128 neurons and ReLU activation
function at each layer. We trained 10 randomly
initialised classifiers and used the mean of classifi-
cation accuracy as the final accuracy. Figure 2 (top)
reports the results. Overall, the representations of
most VAEs with IGP lead to a significant improve-
ment of classification accuracy compared to vanilla
VAEs. In the only exception (i.e, C = 5 on DB-
pedia), two models have comparable results with
no model having any statistically significant advan-
tage. We attribute this to having a more representa-
tive mean which is encouraged by IGP. One notable
thing is that DGP does not perform as good as AEs
regardless of C choice, whereas IGP (C = 15, 50)
achieve similar and better classification accuracy
on DBpedia and Yahoo Question.

We adopted few-shot setting to compare sample
efficiency of both VAEs (with C = 15), by using
0.1%, 1% and 10% of training data of DBpedia and
did classification on the test set as before. Accuracy
scores are reported in Figure 2 (bottom) with IGP
exhibiting a better sample efficiency. For instance,
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ORIGINAL the carnegie library in unk washington is a building
from 1911 . it was listed on the national register of
historic places in 1982 .

st. marys catholic high school is a private roman
catholic high school in phoenix arizona . it is located
in the roman catholic diocese of phoenix .

IMPUTED the carnegie library in unk washington · · · st. marys catholic high school is · · ·
DGP the carnegie library in unk washington is a unk (

unk ft ) high school in the unk district of unk in the
province of unk in the unk province of armenia .

st. marys catholic high school is a unk - unk school in
unk unk county new jersey united states . the school
is part of the unk independent school district .

IGP the carnegie library in unk washington was built in
1909 . it was listed on the national register of historic
places in unk was designed by architect john unk .

st. marys catholic high school is a private roman
catholic high school in unk california . it is located
in the roman catholic diocese of unk .

Table 1: Word imputation experiment.

DBpedia Yahoo

DGP [0.11,−0.63] [0.10,−0.51]
IGP [0.12,−6.22] [0.08,−4.86]

Table 2: Reports [ ||µ||22 , log det(Cov[qφ(z)]) ].

the mean accuracy gap at 0.1% is quite significant
being above 7 points, and VAE gets the gap down
to 4 points at 100% (still significant).

We further investigated the robustness of the
learned representations to perturbation via apply-
ing word dropout on sentences by randomly delet-
ing 30% of words in a sentence, and repeating the
classification experiment. IGP with accuracies of
(83.5, 34.0) outperforms both DGP (76.4, 24.1) and
AE (83.1, 30.7) on (DBpedia, Yahoo). We specu-
late this to be an indication of information overlap
across dimensions of the representations at higher
AU, offering a better recovery of information in the
presence significant perturbation.

Generation. We imputed 75% of words of a sen-
tence from the test set of DBpedia, fed it to VAE
encoder and reconstructed the sentence from its
latent code using IGP and DGP in Table 1. IGP
successfully recovers the type of the mentioned
object and completes the imputed sentence with a
similar structure, whereas DGP fails to do so.

3.3 Posterior Shape

To understand the impact of isotropy on the ag-
gregated posterior, qφ(z) =

∑
x∼q(x) qφ(z|x), we

obtain unbiased samples of z by sampling an x
from data and then z ∼ qφ(z|x), and measure
the log determinant of covariance of the samples
(log det(Cov[qφ(z)])) as well as the mean of the
samples to measure ||µ||22. Table 2 reports these
for C = 15. We observe that log det(Cov[qφ(z)])
is significantly lower for IGP indicating a sharper
approximate posteriors.

DBpedia Yahoo

Sample Mean Sample Mean

DGP 0.72 0.62 0.72 0.63
IGP 0.76 0.77 0.78 0.76
AE 0.087 0.059

Table 3: Isotropy score of mean and samples for DBpe-
dia and Yahoo test sets (trained with C = 15).

3.4 Properties of Representations
Isotropy Score. We quantitatively approximate
the isotropy score (Mu and Viswanath, 2018),

IS(V) =
minm∈M

∑
v∈V exp(m

ᵀv)

maxm∈M
∑

v∈V exp(m
ᵀv)

,

where V is the matrix of representations (i.e., of
samples or mean vectors of posteriors), andM is
the set of eigen vectors of VᵀV . As observed in
Table 3, compared to DGP, IGP has a significantly
larger IS on both means and samples. Interestingly,
given that dimensions are independently modeled
via univariate Gaussians, both VAEs outperform
the Autoencoder counterparts.

Visualization. We visualize the learned represen-
tation space of DGP and IGP for DBpedia, using
t-SNE (van der Maaten and Hinton, 2008), in Fig-
ure 3 (bottom). As illustrated in the right plot, the
clusters of classes in IGP have less overlap among
classes compared with DGP (left). Additionally,
we use the Mapper5 algorithm (Singh et al., 2007)
to visualise the highest density region (HDR) (Hyn-
dman, 1996) of the mean vectors for DGP and IGP.
HDR cuts the overall density space to form latent
spaces that contain above a threshold probability
mass (i.e., ≥ 0.05 with minimum samples ≥ 2 per
latent space). The output of the mapper is a graph,
where each component in the graph corresponds to
a set of nearby points forming a high density space.

5https://github.com/scikit-tda/
kepler-mapper
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Figure 3: Visualisations of the mean representations of
posterior on DBpedia test set for C = 15. Left: DGP;
Right: IGP. Top: HDR; Bottom: t-SNE.

The connectivity of the graph reflects some topo-
logical properties of the sampling space (darker
colors indicate higher density). As observed in
Figure 3 (top), the HDR of DGP posterior means
forms a single component whereas IGP forms 9
disconnected components indicating more discrim-
inative characteristics of its mean vectors, echoing
earlier results in better accuracy in the classification
setting (§3.2).

4 Conclusion

We proposed Isotropic Gaussian Posteriors (IGP)
as a means of encouraging isotropy in the latent
space induced by VAEs. The injection of isotropy
addressed a sub-optimal behaviour of VAEs by
activating more dimensions of the representation
and encouraging a more discriminative latent space.
Our experiments illustrated a significant improve-
ment of classification performance and robustness
to input perturbations with IGP. We also observed,
in the sentence completion task, that VAE trained
with IGP is more capable at maintaining seman-
tic cohesiveness. Our ongoing work suggests the
representation utilisation achieved by IGP has the
potential to be exploited towards representational
properties such as disentanglement.
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A Full Results

We report detailed reconstruction loss, KL-
divergence, active units and results of BLEU and
ROUGE scores on reconstructed test set in Table 4.
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Rec. KL AU BLEU-2/4 ROUGE-2/4

D
B

pe
di

a

AE 66.32±0.11 - 32.0±0.0 40.96±0.25/27.57±0.17 35.87±0.19/23.78±0.07

C = 5, DGP 100.65±0.08 5.09±0.01 4.0±0.0 23.47±0.79/14.00±0.47 20.85±0.69/10.19±0.34
C = 5, IGP 101.73±0.31 5.04±0.01 32.0±0.0 25.09±0.55/14.83±0.22 22.29±0.17/10.47±0.10

C = 15, DGP 94.16±0.19 15.06±0.04 8.7±0.9 35.35±0.49/22.37±0.31 30.54±0.43/17.41±0.16
C = 15, IGP 95.52±0.08 15.08±0.05 32.0±0.0 37.23±0.27/24.47±0.11 34.19±0.12/19.32±0.06

C = 50, DGP 80.65±0.53 50.02±0.04 31.7±0.5 40.54±0.21/26.95±0.19 35.19±0.25/22.13±0.24
C = 50, IGP 80.58±0.04 50.15±0.04 32.0±0.0 44.79±0.30/30.72±0.17 39.91±0.12/25.40±0.08

Ya
ho

o
Q

ue
st

io
n AE 17.64±0.28 - 32.0±0.0 42.88±0.51/32.86±0.58 41.63±0.58/31.67±0.67

C = 5, DGP 50.58±0.06 5.14±0.01 5.7±0.5 17.07±0.71/6.04±0.25 10.96±0.41/1.50±0.06
C = 5, IGP 51.24±0.01 5.06±0.03 32.0±0.0 20.91±0.03/8.07±0.03 14.48±0.13/2.21±0.02

C = 15, DGP 43.00±0.12 15.06±0.04 9.3±1.2 22.62±0.37/10.81±0.21 16.04±0.32/4.76±0.08
C = 15, IGP 44.43±0.05 15.20±0.12 32.0±0.0 29.76±0.06/14.99±0.08 23.11±0.17/6.94±0.12

C = 50, DGP 28.29±0.40 50.00±0.19 31.3±0.9 31.78±0.73/20.47±0.70 27.14±0.85/15.07±0.77
C = 50, IGP 26.18±0.19 50.15±0.08 32.0±0.0 39.68±0.20/27.49±0.31 35.73±0.40/22.57±0.55

Table 4: Results are calculated on the test set. We report mean value and standard deviation across 3 runs. Rec and
AU denote reconstruction loss and number of Active Units, respectively. DGP, and IGP denote diagonal Gaussian
posteriors and isotropic Gaussian posteriors, respectively. C is the target KL value.
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