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Abstract

We exploit the pre-trained seq2seq model
mBART for multilingual text style transfer.
Using machine translated data as well as gold
aligned English sentences yields state-of-the-
art results in the three target languages we
consider. Besides, in view of the general
scarcity of parallel data, we propose a modu-
lar approach for multilingual formality trans-
fer, which consists of two training strategies
that target adaptation to both language and
task. Our approach achieves competitive per-
formance without monolingual task-specific
parallel data and can be applied to other style
transfer tasks as well as to other languages.

1 Introduction

Text style transfer (TST) is a text generation task
where a given sentence must get rewritten chang-
ing its style while preserving its meaning. Tradi-
tionally, tasks such as swapping the polarity of a
sentence (e.g. “This restaurant is getting worse and
worse.”↔“This restaurant is getting better and bet-
ter.”) as well as changing the formality of a text
(e.g. “it all depends on when ur ready.”↔“It all
depends on when you are ready.”) are considered
as instances of TST. We focus here on the latter
case only, i.e. formality transfer, because (i) re-
cent work has shown that polarity swap is less of a
style transfer task, since meaning is altered in the
transformation (Lai et al., 2021a), and (ii) data in
multiple languages has recently become available
for formality transfer (Briakou et al., 2021b).

Indeed, mostly due to the availability of parallel
training and evaluation data, almost all prior TST
work focuses on monolingual (English) text (Rao
and Tetreault, 2018; Li et al., 2018; Prabhumoye
et al., 2018; Cao et al., 2020).1 As a first step
towards multilingual style transfer, Briakou et al.
(2021b) have released XFORMAL, a benchmark

1“Parallel data” in this paper refers to sentence pairs in the
same language, with the same content but different formality.

of multiple formal reformulations of informal text
in Brazilian Portuguese (BR-PT), French (FR), and
Italian (IT). For these languages the authors have
manually created evaluation datasets. On these,
they test several monolingual TST baseline models
developed using language-specific pairs obtained
by machine translating GYAFC, a English corpus
for formality transfer (Rao and Tetreault, 2018).
Briakou et al. (2021b) find that the models trained
on translated parallel data do not outperform a sim-
ple rule-based system based on handcrafted trans-
formations, especially on content preservation, and
conclude that formality transfer on languages other
than English is particularly challenging.

One reason for the poor performance could be
the low quality (observed upon our own manual
inspection) of the pseudo-parallel data, especially
the informal side. Since machine translation sys-
tems are usually trained with formal texts like
news (Zhang et al., 2020), informal texts are harder
to translate, or might end up more formal when
translated. But most importantly, the neural models
developed by Briakou et al. (2021b) do not take ad-
vantage of two recent findings: (i) pre-trained mod-
els, especially the sequence-to-sequence model
BART (Lewis et al., 2020), have proved to help sub-
stantially with content preservation in style trans-
fer (Lai et al., 2021b); (ii) Multilingual Neural Ma-
chine Translation (Johnson et al., 2017; Aharoni
et al., 2019; Liu et al., 2020) and Multilingual Text
Summarization (Hasan et al., 2021) have achieved
impressive results leveraging multilingual models
which allow for cross-lingual knowledge transfer.

In this work we use the multilingual large model
mBART (Liu et al., 2020) to model style transfer in
a multilingual fashion exploiting available parallel
data of one language (English) to transfer the task
and domain knowledge to other target languages.
To address real-occurring situations, in our exper-
iments we also simulate complete lack of parallel
data for a target language (even machine translated),
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and lack of style-related data at all (though avail-
ability of out-of-domain data). Language speci-
ficities are addressed through adapter-based strate-
gies (Pfeiffer et al., 2020; Üstün et al., 2020, 2021).
We obtain state-of-the-art results in all three target
languages, and propose a modular methodology
that can be applied to other style transfer tasks as
well as to other languages. We release our code
and hopefully foster the research progress.2

2 Approach and Data

As a base experiment aimed at exploring the con-
tribution of mBART (Liu et al., 2020; Tang et al.,
2020) for multilingual style transfer, we fine-tune
this model with parallel data specifically developed
for style transfer in English (original) and three
other languages (machine translated).

Next, in view of the common situation where
parallel data for a target language is not avail-
able, we propose a two-step adaptation training
approach on mBART that enables modular mul-
tilingual TST. We avoid iterative back-translation
(IBT) (Hoang et al., 2018), often used in previous
TST work (Prabhumoye et al., 2018; Lample et al.,
2019; Yi et al., 2020; Lai et al., 2021a), since it has
been shown to be computationally costly (Üstün
et al., 2021; Stickland et al., 2021a). We still run
comparison models that use it.

In the first adaptation step, we address the prob-
lem of some languages being not well represented
in mBART, which preliminary experiments have
shown to hurt our downstream task.3 We conduct
a language adaptation denoising training using un-
labelled data for the target language. In the sec-
ond step, we address the task at hand through fine-
tuning cross-attention with auxiliary gold parallel
English data adapting the model to the TST task.

For TST fine-tuning, we use parallel training
data, namely formal/informal aligned sentences
(both manually produced for English and machine
translated for three other languages). For the adap-
tation strategies, we also collect formality and
generic non-parallel data. Details follow.

English formality data GYAFC (Rao and
Tetreault, 2018) is an English dataset of aligned
formal and informal sentences. Gold parallel pairs

2All code at https://github.com/laihuiyuan/
multilingual-tst.

3The number of monolingual sentences used in mBART-
50’s pre-training is only 49,446 for Portuguese, for example,
versus 36,797,950 for French and 226,457 for Italian.

are provided for training, validation, and test.

Multilingual formality data XFORMAL (Bri-
akou et al., 2021b) is a benchmark for multilingual
formality transfer, which provides an evaluation set
that consists of four formal rewrites of informal sen-
tences in BR-PT, FR, and IT. This dataset contains
pseudo-parallel corpora in each language, obtained
via machine translating the English GYAFC pairs.

Language-specific formality non-parallel data
Following Rao and Tetreault (2018) and Briakou
et al. (2021b), we crawl the domain data in tar-
get language from Yahoo Answers.4 We then use
the style regressor from Briakou et al. (2021a) to
predict formality score σ of the sentence to auto-
matically select sentences in each style direction.5

Language-specific generic non-parallel data
5 M sentences containing 5 to 30 words for each
language randomly selected from News Crawl.6

3 Adaptation Training

To adapt mBART to multilingual TST, we employ
two adaptation training strategies that target lan-
guage and task respectively.

3.1 Language Adaptation
As shown in Figure 1(a), we introduce a mod-
ule for language adaptation. Inspired by previous
work (Houlsby et al., 2019; Bapna and Firat, 2019),
we use an adapter (ADAPT; ~50M parameters),
which is inserted into each layer of the Transformer
encoder and decoder, after the feed-forward block.

Following Bapna and Firat (2019), the ADAPT
module Ai at layer i consists of a layer-
normalization LN of the input xi ∈ Rh followed by
a down-projection Wdown ∈ Rh×h, a non-linearity
and an up-projection Wup ∈ Rh×h combined with
a residual connection with the input xi:

A(xi) =WupRELU(WdownLN(xi)) + xi (1)

Language adaptation training Following
mBART’s pretraining, we conduct the language
adaptation training on a denoising task, which
aims to reconstruct text from a corrupted version:

LφA = −
∑

log(T | g(T );φA) (2)

4https://webscope.sandbox.yahoo.com/
catalog.php?datatype=l&did=11

5Sentences with σ < −0.5 are considered informal while
> 1.0 are formal in our experiments.

6http://data.statmt.org/news-crawl/
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(b) Task adaptation training with English parallel data

Figure 1: Overview of adaptation training. In 1(a), the feed-forward network of each transformer layer or the
inserted adapter layer is trained with monolingual data to adapt to the target language. In 1(b), the cross-attention
of mBART is trained with auxiliary English parallel data to adapt to the TST task.

where φA are the parameters of adaptation module
A, T is a sentence in target language and g is the
noise function that masks 30% of the words in
the sentence. Each language has its own separate
adaptation module. During language adaptation
training, the parameters of the adaptation module
are updated while the other parameters stay frozen.

3.2 Task Adaptation
As shown in Figure 1(b), after training the language
adaptation module we fine-tune the model on the
auxiliary English parallel data with the aim of mak-
ing the model adapt to the specific task of formality
transfer. Following Stickland et al. (2021b), we
only update the parameters of the decoder’s cross-
attention (i.e. task adaptation module) while the
other parameters are fixed, thus limiting computa-
tional cost and catastrophic forgetting.

Multilingual TST process For the language
adaptation modules we have two settings: (i) adap-
tation modules AE

s on the encoder come from the
model trained with source style texts, and modules
AD
t on the decoder come from the model trained

with target style texts (M2.X, Table 1); (ii) both AE

and AD are from a model trained with generic texts
(M3.X), so there are no source and target styles for
the adaptation modules. For the task adaptation
modules, we also have two settings: (i) the module
is from the English model (X + EN cross-attn); (ii)
fine-tuning the model of the target language with
English parallel data (X + EN data).

4 Experiments

All experiments are implemented atop Trans-
formers (Wolf et al., 2020) using mBART-large-

50 (Tang et al., 2020). We train the model using
the Adam optimiser (Kingma and Ba, 2015) with
learning rate 1e-5 for all experiments. We train
the language adaptation modules with generic texts
separately for each language for 200k training steps
with batch size 32, accumulating gradients over 8
update steps, and set it to 1 for other training.

Evaluation Following previous work (Luo et al.,
2019; Sancheti et al., 2020), we assess style
strength and content preservation. We fine-tune
mBERT (Devlin et al., 2019) with Briakou et al.
(2021b)’s pseudo-parallel corpora to evaluate the
style accuracy of the outputs. We also use a style re-
gressor from Briakou et al. (2021a), which is based
on XLM-R (Conneau et al., 2020) and is shown to
correlate well with human judgments.7 We calcu-
late BLEU and COMET (Rei et al., 2020) to assess
content preservation. As overall score, following
previous work, we compute the harmonic mean
(HM) of style accuracy and BLEU.

Systems Based on our data (Section 2), we have
four settings for our systems. D1: pseudo-parallel
data in the target language via machine translating
the English resource; D2: non-parallel style data in
the target language; D3: no style data in the target
language; D4: no parallel data at all. The first three
settings all contain gold English parallel data.

Results Table 1 shows the results for both I→F
(informal-to-formal) and F→I (formal-to-informal)
transformations.8 We include the models from Bri-
akou et al. (2021b) for comparison (they only
model the I→F direction).

7Results of classifiers/regressor are in Appendix A.2.
8Complete results are in Appendix A.3.
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INFORMAL→FORMAL FORMAL→INFORMAL

DATA MODEL ITALIAN FRENCH PORTUGUESE ITALIAN FRENCH PORTUGUESE

BLEU ACC HM BLEU ACC HM BLEU ACC HM BLEU ACC HM BLEU ACC HM BLEU ACC HM

D1
Multi-Task (Briakou et al., 2021b) 0.426 0.727 0.537 0.480 0.742 0.583 0.550 0.782 0.645 - - - - - - - - -
M1.1: pseudo-parallel data 0.459 0.856 0.598 0.530 0.829 0.647 0.524 0.852 0.649 0.177 0.311 0.226 0.195 0.377 0.257 0.225 0.306 0.259
M1.2: M1.1 + EN data 0.461 0.841 0.596 0.525 0.863 0.653 0.553 0.809 0.657 0.178 0.315 0.227 0.194 0.458 0.273 0.219 0.313 0.258

D2

DLSM (Briakou et al., 2021b) 0.124 0.223 0.159 0.180 0.152 0.165 0.185 0.191 0.188 - - - - - - - - -
M2.1: IBT training + EN data 0.460 0.510 0.484 0.500 0.487 0.492 0.491 0.428 0.457 0.168 0.420 0.240 0.196 0.235 0.214 0.237 0.083 0.123
M2.2: ADAPT + EN cross-attn 0.467 0.637 0.539 0.516 0.627 0.566 0.499 0.365 0.422 0.175 0.672 0.278 0.212 0.627 0.317 0.237 0.471 0.315
M2.3: ADAPT + EN data 0.476 0.731 0.577 0.519 0.702 0.597 0.526 0.509 0.517 0.180 0.719 0.288 0.209 0.567 0.305 0.169 0.534 0.257

D3
M3.1: EN data 0.485 0.670 0.563 0.553 0.727 0.628 0.039 0.890 0.074 0.186 0.767 0.299 0.216 0.692 0.329 0.020 0.403 0.038
M3.2: ADAPT + EN cross-attn 0.480 0.672 0.560 0.545 0.749 0.631 0.547 0.559 0.553 0.179 0.421 0.251 0.209 0.685 0.320 0.175 0.560 0.267
M3.3: ADAPT + EN data 0.423 0.735 0.537 0.547 0.722 0.622 0.423 0.508 0.462 0.169 0.733 0.275 0.205 0.584 0.303 0.189 0.505 0.275

D4
Rule-based (Briakou et al., 2021b) 0.438 0.268 0.333 0.472 0.208 0.289 0.535 0.448 0.488 - - - - - - - - -
M4.1: original mBART 0.380 0.103 0.162 0.425 0.080 0.135 0.128 0.200 0.156 0.160 0.146 0.153 0.189 0.189 0.189 0.080 0.657 0.143
M4.2: ADAPT (generic data) 0.401 0.092 0.150 0.444 0.075 0.128 0.463 0.223 0.301 0.164 0.130 0.145 0.194 0.170 0.181 0.237 0.082 0.122

Table 1: Results for multilingual formality transfer. Notes: (i) for F→I there are four different source sentences
and a human reference only, so for each instance scores are averaged; (ii) bold numbers denote best systems for
each block, and underlined denote the best score for each transfer direction for each language.

Results in D1 show that fine-tuning mBART
with pseudo-parallel data yields the best overall per-
formance in the I→F direction. The F→I results,
instead, are rather poor and on Italian even worse
than IBT-based models (M2.1). This could be due
to this direction being harder in general, since there
is more variation in informal texts, but it could also
be made worse by the bad quality of the informal
counterpart in the translated pairs. Indeed, work
in machine translation has shown that low-quality
data is more problematic in the target side than in
the source side (Bogoychev and Sennrich, 2019).

In D2, we see that our proposed adaptation ap-
proaches outperform IBT-based models on both
transfer directions. The results of fine-tuning the
target language’s model with English parallel data
are generally better than inserting the EN model’s
cross-attention module into the target language’s
model. This suggests that the former can better
transfer task and domain knowledge.

In D3, the large amounts of generic texts yield
more improvement in I→F direction rather than
F→I. This could be due to generic texts being more
formal than informal. The performance improve-
ment on Portuguese is particularly noticeable (com-
pare M3.1 trained with EN data only with other
M3.X models), and mostly due to this language
being less represented than the others in mBART.
Interestingly, the performance of task adaptation
strategies is reversed compared to D2: it is here
better to adapt cross attention in the English model
rather than fine-tune the target language model di-
rectly. Future work will need to investigate how
using different data sources for language adapta-
tion (D2, style-specific vs D3, generic) interacts
with task adaptation strategies.

Results for D4 show that language adaptation

training helps with content preservation, especially
for Portuguese, confirming this curbs the problem
of language underrepresentation in pre-training.
However, low performance on style accuracy shows
that task-specific data is necessary, even if it comes
from a different language.

5 Analysis and Discussion

Case Study Table 2 shows a group of example
outputs in Italian. In the I→F direction, most sys-
tems tend to copy a lot from the source and change
formality words slightly. DLSM and Rule-based
systems fail to transfer the formality style while oth-
ers are successful to some extent: our M1.1 yields
the best performance on the style strength. When
looking at content, most outputs contain more or
less part of the source sentence; Multi-Task system
achieves the highest BLEU score but our systems
(except for M3.3) have higher COMET scores, with
M3.1 achieving the highest score. For the F→I di-
rection, we can see that M1.1 has the worst perfor-
mance on style strength (its output is almost iden-
tical to the source), while M2.1, M3.1 and M3.2
generate the same output with the lowest regression
score. Overall, M3.3 achieves the best performance
on style and content.

Direction Analysis For English, Rao and
Tetreault (2018) find that the I→F direction is quite
different from the opposite one since there are far
more ways to express informality. As our work is
the first attempt at the F→I direction in a multilin-
gual setting, we run some additional analysis using
two test sets for each direction: (a) the original
test set; (b) the test set of the opposite direction,
swapping sources and references. We fine-tune
BART (Lewis et al., 2020) and mBART-50 (Tang
et al., 2020) with English parallel data (GYAFC)
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MODEL SENTENCE REG. ACC BLEU COMET
INFORMAL→FORMAL

Source se te ne vai secondo me e segno di debolezza e di paura se hai tanti problemi qui cerca di risolverli - - - -
if you go away I think it’s a sign of weakness and fear if you have many problems here try to solve them

Reference Secondo il mio parere, il tuo andartene denota debolezza e paura, poiché se hai molti problemi, è necessario risolverli. - - - -
In my opinion, your going away denotes weakness and fear, since if you have many problems it is crucial to solve them.

Multi-Task Se te ne vai secondo me e segno di debolezza e di paura, se hai molti problemi qui, cerca di risolverli. 0.120 0.959 0.151 0.175
DLSM Se te ne vai qualcosa e stesso di cui e di peggio se hai messo due soldi <unk> tutti i <unk> di <unk> -2.666 0.014 0.015 -1.563
Rule-based Se te ne vai secondo me e segno di debolezza e di paura se hai tanti problemi qui cerca di risolverli -1.340 0.430 0.029 0.423
M1.1 Secondo me, è segno di debolezza e di paura. Se hai tanti problemi qui, cerca di risolverli. 0.742 0.995 0.035 0.658
M2.1 Se te ne vai secondo me e segno di debolezza e di paura. Se hai tanti problemi qui cerca di risolverli. -0.243 0.978 0.028 0.634
M3.1 Se te ne vai, secondo me è segno di debolezza e di paura. Se hai tanti problemi, cerca di risolvere i problemi. 0.310 0.992 0.026 0.728
M3.2 Se te ne vai è segno di debolezza e di paura, se hai tanti problemi qui cerca di risolverli. -0.225 0.971 0.037 0.639
M3.3 Its segno di debolezza e paura, se hai tanti problemi qui cerca di risolvere. -0.092 0.692 0.126 -0.968

FORMAL→INFORMAL

Source Se scrivi in italiano corretto avrai più possibilità di ricevere una risposta. - - - -
If you write in correct Italian you will have a better chance of receiving an answer.

Reference se magari scrivi in italiano riusciamo a risponderti!!! - - - -
maybe if you write in Italian we can answer you !!!

M1.1 Se scrivi in italiano correttamente, avrai più possibilità di ottenere una risposta. 1.580 0.001 0.071 0.566
M2.1 se scrivi in italiano corretto avrai più possibilità di ricevere una risposta. 0.221 0.896 0.083 0.557
M3.1 se scrivi in italiano corretto avrai più possibilità di ricevere una risposta. 0.221 0.796 0.083 0.557
M3.2 se scrivi in italiano corretto avrai più possibilità di ricevere una risposta. 0.221 0.796 0.083 0.557
M3.3 scrivi in italiano e avrai più possibilità di ricevere una risposta. 0.891 0.878 0.084 0.566

Table 2: Example outputs in Italian and their sentence-level evaluation scores. Notes: (i) REG. indicates the score
of the style regressor; (ii) ACC is the style confidence from the style classifier.

Figure 2: English formality transfer on content preser-
vation using one reference. Setting (a) uses the original
test set for each direction; (b) uses the test set of the
opposite direction, swapping sources and references.

and evaluate them on (a) and (b). Figure 2 shows
the results of content preservation. For INPUT
(source copy), BLEU scores are almost the same
swapping sources and references but COMET ones
are not, probably due to COMET being trained to
prefer a formal/better “generated sentence”; com-
pared to INPUT, the performance gain of BART
and mBART in I→F is larger than the opposite
direction on both metrics. Results are similar for
other languages (Table 3). We pick M1.1 and M1.2
from Table 1 since they are both fine-tuned using
parallel data in the target language. BLEU scores
of F→I are always lower than the opposite; the
COMET score of INPUT in F→I is higher than
I→F, but scores of both systems for F→I drop af-
ter transforming the source sentence into the target
style. All these observations suggest that there is
more variation in informal texts for the languages

MODEL

ITALIAN FRENCH PORTUGUESE

BLEU COMET BLEU COMET BLEU COMET
INFORMAL→FORMAL (setting (a))

INPUT 0.176 0.078 0.198 -0.019 0.244 0.217
M1.1 0.196 0.170 0.234 0.133 0.269 0.282
M1.2 0.194 0.181 0.231 0.138 0.283 0.319

FORMAL→INFORMAL (setting (b))

INPUT 0.174 0.364 0.196 0.277 0.243 0.463
M1.1 0.194 0.326 0.201 0.239 0.226 0.371
M1.2 0.193 0.311 0.199 0.219 0.220 0.358

Table 3: Results for multilingual formality transfer on
content preservation using one reference.

we consider, and the F→I direction is harder.

6 Conclusions

Fine-tuning a pre-trained multilingual model with
machine translated training data yields state-of-the-
art results for transferring informal to formal text.
The results for the formal-to-informal direction are
considerably worse—the task is more difficult, and
the quality of translated informal text is lower. We
have also proposed two adaptation training strate-
gies that can be applied in a cross-lingual transfer
strategy . These strategies target language and task
adaptation, and can be combined to adapt mBART
for multilingual formality transfer. The adaptation
strategies with auxiliary parallel data from a differ-
ent language are effective, yielding competitive re-
sults and outperforming more classic IBT-based ap-
proaches without task-specific parallel data. Lastly,
we have shown that formal-to-informal transforma-
tion is harder than the opposite direction.
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A Appendices:

This appendices include: (i) Results for BART and mBART on English data (A.1); (ii) Results for style
classifiers/regressor (A.2); (iii) Detailed results for multilingual formality transfer (A.3).

A.1 Results for BART and mBART on English data
We fine-tune BART (Lewis et al., 2020) and mBART-50 (Tang et al., 2020) with English parallel data
specifically developed for formality transfer in English (GYAFC). The performance of BART and English
data can be seen as a sort of upperbound, as these are best conditions (monolingual model, and gold
parallel data). The drop we see using mBART is rather small, suggesting mBART is a viable option. We
also see that formal to informal is much harder than viceversa, probably due to high variability in informal
formulations (Rao and Tetreault, 2018). Table A.1 shows the results for both models.

MODEL DIRECTION COMET BLEU REG. ACC HM

BART Informal→Formal 0.544 0.795 -0.527 0.928 0.856
Formal→Informal 0.170 0.436 -1.143 0.683 0.532

mBART Informal→Formal 0.512 0.779 -0.531 0.916 0.842
Formal→Informal 0.151 0.422 -1.031 0.591 0.492

Table A.1: Results of BART and mBART on English data. Note that REG. indicates the score of the style regressor
(the higher is better in Informal→Formal, lower is better in Formal→Informal).

A.2 Results for style classifiers/regressor
We compare four different style classifiers and one regressor: (i) TextCNN (Kim, 2014) trained with
pseudo-parallel data in the target language; (ii) mBERT (Devlin et al., 2019) fine-tuned with pseudo-
parallel data, English data, or a combination of all data; and (iii) a XLM-R (Conneau et al., 2020) based
style regressor from Briakou et al. (2021a), which is trained with formality rating data in English.

MODEL TRAINING DATA
ITALIAN FRENCH PORTUGUESE

ACC Precision Recall F1 ACC Precision Recall F1 ACC Precision Recall F1

TextCNN Pseudo data 0.865 0.885 0.839 0.861 0.838 0.876 0.787 0.829 0.799 0.793 0.809 0.801
mBERT Pseudo data 0.898 0.905 0.890 0.897 0.879 0.918 0.831 0.872 0.851 0.806 0.924 0.861
mBERT English data 0.889 0.856 0.934 0.893 0.896 0.856 0.951 0.901 0.839 0.771 0.964 0.857
mBERT All data 0.891 0.906 0.872 0.888 0.882 0.911 0.846 0.877 0.851 0.815 0.909 0.859
XLM-R Formality ratings Informal: -1.672 Formal: 0.108 Informal: -1.701 Formal: 0.050 Informal: -1.438 Formal: 0.065

Table A.2: Results for style classifiers/regressor on test set. The data used for evaluation are 1000 sentences from
the test set and the corresponding 1000 human references. For informal sentences, the smaller the XLM-R score
is better, higher is better for formal sentences.
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A.3 Detailed results for multilingual formality transfer

DATA MODEL
ITALIAN FRENCH PORTUGUESE

COMET BLEU REG. ACC HM COMET BLEU REG. ACC HM COMET BLEU REG. ACC HM
TRANSFER DIRECTION: INFORMAL→FORMAL

D1

Translate Train Tag (Briakou et al., 2021b) -0.059 0.426 -0.705 0.735 0.539 -0.164 0.451 -0.586 0.696 0.547 0.194 0.524 -0.636 0.755 0.619
+ Back-Tranlated Data (Briakou et al., 2021b) 0.026 0.430 -0.933 0.556 0.485 0.004 0.491 -0.898 0.485 0.488 0.301 0.546 -0.875 0.627 0.584
Multi-Task Tag-Style (Briakou et al., 2021b) -0.021 0.426 -0.698 0.727 0.537 -0.062 0.480 -0.501 0.742 0.583 0.266 0.550 -0.578 0.782 0.645
M1.1: pseudo-parallel data 0.143 0.459 -0.426 0.856 0.598 0.124 0.530 -0.305 0.829 0.647 0.297 0.524 -0.334 0.852 0.649
M1.2: M1.1 + EN parallel data 0.147 0.461 -0.442 0.841 0.596 0.130 0.525 -0.275 0.863 0.653 0.331 0.553 -0.395 0.809 0.657
M1.3: all data (one model) 0.137 0.461 -0.409 0.850 0.598 0.127 0.515 -0.267 0.851 0.642 0.309 0.537 -0.367 0.803 0.644

D2

DLSM (Briakou et al., 2021b) -1.332 0.124 -2.141 0.223 0.159 -1.267 0.180 -2.021 0.152 0.165 -1.131 0.185 -2.078 0.191 0.188
M2.1: IBT training 0.057 0.420 -1.351 0.240 0.305 -0.019 0.465 -1.303 0.219 0.298 0.233 0.487 -1.074 0.411 0.446
M2.2: M2.1 + EN data 0.105 0.460 -0.867 0.510 0.484 0.036 0.500 -0.814 0.487 0.492 0.236 0.491 -1.040 0.428 0.457
M2.3: ADAPT + EN cross-attn 0.139 0.467 -0.684 0.637 0.539 0.066 0.516 -0.613 0.627 0.566 0.288 0.499 -1.143 0.365 0.422
M2.4: ADAPT + EN data 0.131 0.476 -0.537 0.731 0.577 0.074 0.519 -0.572 0.702 0.597 0.291 0.526 -0.922 0.509 0.517

D3
M3.1: EN data 0.134 0.485 -0.590 0.670 0.563 0.102 0.553 -0.591 0.727 0.628 -1.673 0.039 -0.550 0.890 0.074
M3.2: ADAPT + EN cross-attn 0.130 0.480 -0.588 0.672 0.560 0.091 0.545 -0.446 0.749 0.631 0.302 0.547 -0.859 0.559 0.553
M3.3: ADAPT + EN data -0.107 0.423 -0.579 0.735 0.537 0.101 0.547 -0.488 0.722 0.622 -0.260 0.423 -1.112 0.508 0.462

D4

Round-trip MT (Briakou et al., 2021b) -0.053 0.346 -1.026 0.354 0.350 -0.065 0.416 -0.748 0.406 0.411 0.213 0.430 -0.661 0.601 0.501
Rule-based (Briakou et al., 2021b) 0.071 0.438 -1.167 0.268 0.333 -0.013 0.472 -1.236 0.208 0.289 0.291 0.535 -1.081 0.448 0.488
M4.1: original mBART -0.067 0.380 -1.672 0.103 0.162 -0.106 0.425 -1.709 0.080 0.135 -1.444 0.128 -1.870 0.200 0.156
M4.3: ADAPT (generic data) 0.033 0.401 -1.675 0.092 0.150 -0.033 0.444 -1.700 0.075 0.128 0.230 0.463 -1.438 0.223 0.301

TRANSFER DIRECTION: FORMAL→INFORMAL

D1
M1.1: pseudo-parallel data 0.298 0.177 -0.225 0.311 0.226 0.239 0.195 -0.188 0.377 0.257 0.388 0.225 -0.273 0.306 0.259
M1.2: M1.1 + EN parallel data 0.278 0.178 -0.228 0.315 0.227 0.215 0.194 -0.304 0.458 0.273 0.373 0.219 -0.282 0.313 0.258
M1.3: all data (one model) 0.283 0.175 -0.287 0.368 0.237 0.207 0.191 -0.301 0.439 0.266 0.407 0.229 -0.241 0.292 0.257

D2

M2.1: IBT training 0.335 0.166 -0.082 0.338 0.223 0.272 0.195 0.037 0.194 0.194 0.467 0.237 0.042 0.084 0.124
M2.2: M2.1 + EN data 0.337 0.168 -0.174 0.420 0.240 0.274 0.196 -0.016 0.235 0.214 0.471 0.237 0.045 0.083 0.123
M2.3: ADAPT + EN cross-attn 0.176 0.175 -0.631 0.672 0.278 0.226 0.212 -0.464 0.627 0.317 0.441 0.237 -0.343 0.471 0.315
M2.4: ADAPT + EN data 0.279 0.180 -0.582 0.719 0.288 0.232 0.209 -0.444 0.567 0.305 -0.022 0.169 -0.520 0.534 0.257

D3
M3.1: EN data 0.289 0.186 -0.646 0.767 0.299 0.244 0.216 -0.566 0.692 0.329 -1.695 0.020 -1.225 0.403 0.038
M3.2: ADAPT + EN cross-attn 0.300 0.179 -0.285 0.421 0.251 0.221 0.209 -0.594 0.685 0.320 0.367 0.175 -0.449 0.560 0.267
M3.3: ADAPT + EN data 0.100 0.169 -0.744 0.733 0.275 0.220 0.205 -0.447 0.584 0.303 0.130 0.189 -0.586 0.505 0.275

D4
M4.1: original mBART 0.260 0.160 0.076 0.146 0.153 0.204 0.189 0.031 0.189 0.189 -1.363 0.080 -1.406 0.657 0.143
M4.2: ADAPT (generic data) 0.317 0.164 0.084 0.130 0.145 0.268 0.194 0.052 0.170 0.181 0.475 0.237 0.047 0.082 0.122

Table A.3: Results for multilingual formality transfer. Notes: (i) REG. indicates the score of the style regressor
(the higher is better in I→F, lower is better in F→I); (ii) for F→I there are four different source sentences and a
human reference only, so for each instance scores are averaged; (iii) bold numbers denote best systems for each
block, and underlined indicate the best score for each transfer direction.
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