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Abstract

Pretrained language models are typically
trained on massive web-based datasets, which
are often “contaminated” with downstream test
sets. It is not clear to what extent models ex-
ploit the contaminated data for downstream
tasks. We present a principled method to study
this question. We pretrain BERT models on
joint corpora of Wikipedia and labeled down-
stream datasets, and fine-tune them on the rel-
evant task. Comparing performance between
samples seen and unseen during pretraining en-
ables us to define and quantify levels of mem-
orization and exploitation. Experiments with
two models and three downstream tasks show
that exploitation exists in some cases, but in
others the models memorize the contaminated
data, but do not exploit it. We show that these
two measures are affected by different factors
such as the number of duplications of the con-
taminated data and the model size. Our results
highlight the importance of analyzing massive
web-scale datasets to verify that progress in
NLP is obtained by better language understand-
ing and not better data exploitation.

1 Introduction

Pretrained language models are getting bigger
and so does their capacity to memorize data
from the training phase (Carlini et al., 2021). A
rising concern regarding these models is “data
contamination”—when downstream test sets find
their way into the pretrain corpus. For instance,
Dodge et al. (2021) examined five benchmarks and
found that all had some level of contamination in
the C4 corpus (Raffel et al., 2020); Brown et al.
(2020) flagged over 90% of GPT-3’s downstream
datasets as contaminated. Eliminating this phe-
nomenon is challenging, as the size of the pretrain
corpora makes studying them difficult (Kreutzer
et al., 2022; Birhane et al., 2021), and even dedupli-
cation is not straightforward (Lee et al., 2021). It

Figure 1: We pretrain BERT on Wikipedia along with
both the labeled training and test sets (denoted seen)
of a downstream task (e.g., SST). Then, we fine-tune
this model on the same training set for that task. We
compare performance between samples seen and unseen
during pretraining to quantify levels of memorization
and exploitation of labels seen in pretraining.

remains unclear to what extent data contamination
affects downstream task performance.

This paper proposes a principled methodology
to address this question in a controlled manner
(Fig. 1). We focus on classification tasks, where
instances appear in the pretrain corpus along with
their gold labels. We pretrain a masked language
modeling (MLM) model (e.g., BERT; Devlin et al.,
2019) on a general corpus (e.g., Wikipedia) com-
bined with labeled training and test samples (de-
noted seen test samples) from a downstream task.
We then fine-tune the model on the same labeled
training set, and compare performance between
seen instances and unseen ones, where the latter
are unobserved in pretraining. We denote the differ-
ence between seen and unseen as exploitation. We
also define a measure of memorization by compar-
ing the MLM model’s performance when predict-
ing the masked label for seen and unseen examples.
We study the connection between the two measures.

157



We apply our methodology to BERT-base and
large, and experiment with three English text clas-
sification and NLI datasets. We show that exploita-
tion exists, and is affected by various factors, such
as the number of times the model encounters the
contamination, the model size, and the amount of
Wikipedia data. Interestingly, we show that memo-
rization does not guarantee exploitation, and that
factors such as the position of the contaminated
data in the pretrain corpus and the learning rate
affect these two measures. We conclude that labels
seen during pretraining can be exploited in down-
stream tasks and urge others to continue developing
better methods to study large-scale datasets. As far
as we know, our work is the first work to study the
level of exploitation in a controlled manner.

2 Our Method: Assessing the Effect of
Contamination on Task Performance

To study the effect of data contamination on down-
stream task performance, we take a controlled ap-
proach to identify and isolate factors that affect this
phenomenon. We assume that test instances appear
in the pretrain corpus with their gold labels,1 and
that the labeled training data is also found in the
pretrain corpus.2 We describe our approach below.

We pretrain an MLM model on a general corpus
combined with a downstream task corpus, contain-
ing labeled training and test examples. We split the
test set into two, adding one part to the pretrain cor-
pus (denoted seen), leaving the other unobserved
during pretraining (unseen). For example, we add
the following SST-2 instance (Socher et al., 2013):

I love it! 1 3

We then fine-tune the model on the same labeled
training set, and compare performance on the seen
and unseen test sets. As both test sets are drawn
randomly from the same distribution, differences
in performance indicate that the model exploits
the labeled examples observed during pretraining
(Fig. 1). This controlled manipulation allows us to
define two measures of contamination:

mem is a simple measure of explicit memoriza-
tion. We consider the MLM task of assigning the

1Our focus is on classification tasks, but our method can
similarly be applied to other tasks, e.g., question answering.

2We recognize that these assumptions might not always
hold; e.g., the data might appear unlabeled. Such cases, while
interesting, are beyond the scope of this paper.

3One could imagine other formats, e.g., the label coming
before (rather than after) the text. Preliminary experiments
with this format showed very similar results.

highest probability to the gold label (among the
candidate label set); given the instance text (e.g., I
love it! [MASK]). mem is defined as the dif-
ference in MLM accuracy by the pretrained model
(before fine-tuning) between seen and unseen.4

mem is inspired by recent work on factual prob-
ing, which uses cloze-style prompts to asses the
amount of factual information a model encodes
(Petroni et al., 2019; Zhong et al., 2021). Similarly
to these works, mem can be interpreted as lower
bound on memorization of contaminated labels.

expl is a measure of exploitation: the difference
in task performance between seen and unseen.
mem and expl are complementary measures for

the gains from data contamination; mem is mea-
sured after pretraining, and expl after fine-tuning.
As we wish to explore different factors that influ-
ence expl, it is also interesting to see how they af-
fect mem, particularly whether mem leads to expl
and whether expl requires mem. Interestingly, our
results indicate that these measures are not neces-
sarily tied.

Pretraining design choices Simulating language
model pretraining under an academic budget is not
an easy task. To enable direct comparisons between
different factors, we pretrain medium-sized models
(BERT-{base,large}) on relatively small corpora
(up to 600M tokens). We recognize that some of
the results in this paper may not generalize to larger
models, trained on more data. However, as data
contamination is a prominent problem, we believe
it is important to study its effects under lab condi-
tions. We hope to encourage other research groups
to apply our method at larger scales.

3 Which Factors Affect Exploitation?

We study the extent to which pretrained models
can memorize and exploit labels of downstream
tasks seen during pretraining, and the factors that
affect this phenomenon. We start by examining
how many times a model should see the contami-
nated data in order to be able to exploit it.

We pretrain BERT-base on MLM using a com-
bined corpus of English Wikipedia (60M tokens),
and increasing numbers of SST-5 copies (Socher
et al., 2013). To facilitate the large number of ex-
periments in this paper, we randomly downsample

4Other definitions of memorization, such as relative log-
perplexity of a sequence, have been proposed (Carlini et al.,
2019, 2021). As we are interested in comparing the model’s
ability to predict the correct label, we use this strict measure.
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Figure 2: SST-5 mem and expl rise under different
conditions. Left: increased number of data occurrences.
Right: increased proportion of masking the label token.

SST-5 to subsets of 1,000 training, seen and unseen
instances. We train for one epoch, due to the practi-
cal difference between the number of times the task
data appears in the corpus and the number of times
the model sees it. For example, if a contaminated
instance appears in the corpus once, but the model
is trained for 50 epochs, then in practice the model
encounters the contaminated instance 50 times dur-
ing training. Further exploration of the difference
between these two notions is found in App. A. See
App. D for experimental details. We describe our
results below.

Exploitation grows with contaminated data du-
plicates Both mem and expl levels increase in
proportion to the contaminated data, reaching 60%
mem and almost 40% expl when it appears 200
times (Fig. 2, left). This suggests a direct connec-
tion between both mem and expl and the number
of times the model sees these labels. This finding
is consistent with several concurrent works, which
show similar connections in GPT-based models.
These works study the impact of duplication of
training sequence on regeneration of the sequence
(Carlini et al., 2022; Kandpal et al., 2022), and the
effect on few-shot numerical reasoning (Razeghi
et al., 2022). One explanation for this phenomenon
is the increase in the expected number of times la-
bels are masked during pretraining.5 To check this,
we pretrain BERT-base with 100 copies of SST-5
and varying probabilities of masking the label. Our
results (Fig. 2, right) show that the higher this prob-
ability, the higher mem and expl values. These
results motivate works on deduplication (Lee et al.,
2021), especially considering that casual language
models (e.g., GPT; Radford et al., 2019) are trained
using next token prediction objective, and so every
word in its turn is masked.

In the following, we fix the number of con-
taminated data copies to 100 and modify other

5Following BERT, we mask each token with 15% chance.

Figure 3: mem and expl of BERT-{base,large} on dif-
ferent tasks. We increase the size of clean data while
fixing the amount of contaminated data.6 expl values
are averaged across ten random trials, shaded area corre-
sponds to one SD. Dotted lines are mem/expl baselines
of BERT-{base,large} pretrained on uncontaminated
data.

conditions—the size of the Wikipedia data and the
model size (base/large). We also experiment with
two additional downstream tasks: SST-2 and SNLI
(Bowman et al., 2015). All other experimental de-
tails remain the same. Fig. 3 shows our results.

Memorization does not guarantee exploitation
Perhaps the most interesting trend we observe is
the connection between mem and expl. Low mem
values (10% or less) lead to no expl, but higher
mem values do not guarantee expl either. For ex-
ample, training BERT-base with 600M Wikipedia
tokens and SST-5 data leads to 15% mem level, but
less than 1% expl. These results indicate the mem
alone is not a sufficient condition for expl.

Model and corpus sizes matter Across all three
datasets and almost all corpora sizes, mem levels
of BERT-large are higher then BERT-base. This
is consistent with Carlini et al. (2021)’s findings
that larger models have larger memorization ca-
pacity. Also, we observe that mem levels (though
not necessarily expl) of SST-5 are consistently
higher compared to the other datasets. This might
be due to the fact that it is a harder dataset (a 5-label
dataset, compared to 2/3 for the other two), with
lower state-of-the-art results, so the model might
have weaker ability to capture other features.

Much like memorization, exploitation is also
affected by the size of the model, as well as the
amount of additional clean data. We observe
roughly the same trends for all three datasets, but
not for the two models. For BERT-base, 2–6%
expl is found for low amounts of clean data, but

6Training of BERT-large models with 60M tokens did not
converge, therefore they are not presented.
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Figure 4: SST-5 mem and expl when contamination is
inserted in different stages of pretraining, using a linear
learning rate decay, and a constant learning rate.

gradually decreases. For BERT-large, the trend is
opposite: expl is observed starting 300M and con-
tinues to grow with the amount of external data, up
to 2–4%. This indicates that larger models benefit
more from additional data.

We next explore other factors that affect expl.
Unless stated otherwise, we use BERT-base (60M
Wikipedia tokens, 100 copies of SST-5).

Early contamination leads to high exploitation
Does the position of the contaminated data in the
pretraining corpus matter? To answer this, we pre-
train the model while inserting contaminated data
in different stages of pretraining: at the beginning
(in the first third), the middle, or the end. Our re-
sults (Fig. 4, left) show that early contamination
leads to high expl (up to 17%), which drops as
contamination is introduced later.7 In contrast, the
highest mem levels appear when contamination is
inserted in the middle of the training. We also ob-
serve that in early contamination mem levels are
lower then expl. This is rather surprising, since
the model has certain level of memorization of the
labels (as expressed by expl), but it does not fully
utilize these memories in the MLM task of mem.
This suggests that in early contamination, the lower
bound that mem yields on memorization is not tight.
The model might have an “implicit” memories of
the labels, which are not translated to gains in the
MLM task of predicting the gold label (mem). Dis-
tinguishing between implicit and explicit memory
of LMs is an important question for future work.

We note that different stages of training also
yield different learning rates (LRs). In our exper-
iments we follow BERT, using linear LR decay
with warmup. We might expect instances observed
later, with lower LR, to have a smaller affect on the
model’s weights, thus less memorized. Fig. 4 (left)
indeed shows that late contamination leads to no

7Other datasets show a similar trend, see Fig. 6, App. C.

Figure 5: SST-5 mem and expl values drop as the
pretraining batch size increases.

expl (though mem levels remain relatively high).
To separate the LR from the contamination timing,
we repeat that experiment with a constant LR of
2.77e-5 (midway of the linear decay). Fig. 4 (right)
shows that in the last stage, both measures increase
compared to the LR decay policy. As the LR is con-
stant, this indicates that both LR and contamination
timing might affect label memorization.

Large batch size during pretraining reduces ex-
ploitation Similar to learning rate, the batch size
can also mediate the influence that each instance
has on the models weights. We pretrain BERT-base
several times with increasing batch sizes.8 Our
experiments show that as we decrease the batch
size, both measures increases (Fig. 5). In the ex-
treme case of batch size=2, mem reaches 49%, and
expl reaches 14%. This phenomenon might be
explained by each training instance having a larger
impact on the gradient updates with small batches.

A good initialization matters Carlini et al.
(2019) showed that memorization highly depends
on the choice of hyperparameters. We observe a
similar trend—expl depends on the random seed
used during fine-tuning. These results are also
consistent with prior work that showed that fine-
tuning performance is sensitive to the selection of
the random seed (Dodge et al., 2020). Careful in-
vestigation reveals that some random seeds lead
to good generalization, as observed by unseen per-
formance, while others lead to high exploitation:
When considering the top three seeds (averaged
across experiments) for expl—two out of those
seeds are also in the worst three seeds for general-
ization. This indicates a tradeoff between general-
ization and exploitation. Future work will further

8We update after each batch (no gradient accumulation).
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study the connection between these concepts. To
support such research, we publicly release our ex-
perimental results.9

4 Related Work

Memorization in language models has been ex-
tensively studied, but there is far less research on
data contamination and the extent models exploit
the contamination for downstream tasks. Most re-
lated to our work is Brown et al. (2020)’s post-hoc
analysis of GPT-3’s contamination. They showed
that in some cases there was great difference in
performance between ‘clean’ and ‘contaminated’
datasets, while in others negligible. However, they
could not perform a controlled experiment due to
the high costs of training their models. As far as
we know, our work is the first work to study the
level of exploitation in a controlled manner.

Several concurrent works explored related ques-
tions on memorization or utilization of training in-
stances. These works mostly use GPT-based mod-
els. Carlini et al. (2022) showed that memorization
of language models grows with model size, training
data duplicates, and the prompt length. They fur-
ther found that masked language models memorize
an order of magnitude less data compared to causal
language model. This finding hints that exploita-
tion levels might be even higher on the latter. Kand-
pal et al. (2022) showed that success of privacy at-
tacks on large language models (as the one used in
Carlini et al., 2021) is largely due to duplication in
commonly used web-scraped training sets. Specif-
ically, they found that the rate at which language
models regenerate training sequences is superlin-
early related to a duplication of the sequence in the
corpus. Lastly, Razeghi et al. (2022) examined the
correlations between model performance on test
instances and the frequency of terms from those in-
stances in the pretraining data. They experimented
with numerical deduction tasks and showed that
models are consistently more accurate on instances
whose terms are more prevalent.

5 Discussion and Conclusion

We presented a method for studying the extent
to which data contamination affects downstream
fine-tuning performance. Our method allows to
quantify the explicit memorization of labels from

9https://github.com/schwartz-lab-NLP/
data_contamination

the pretraining phase and their exploitation in fine-
tuning. Recent years have seen improvements in
prompt-based methods for zero- and few-shot learn-
ing (Shin et al., 2020; Schick and Schütze, 2021;
Gu et al., 2021). These works argue that masked
language models have an inherent capability to per-
form classification tasks by reformulating them as
fill-in-the-blanks problems. We have shown that
given that the language model has seen the gold
label, it is able to memorize and retrieve that label
under some conditions. Prompt-tuning methods,
which learn discrete prompts (Shin et al., 2020) or
continuous ones (Zhong et al., 2021), might latch
on to the memorized labels, and further amplify
this phenomenon. This further highlights the im-
portance of quantifying and mitigating data con-
tamination.
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A Two Notions of “Occurences”

As noted in Sec. 3, the number of times an instance
appears in the corpus is a different notion than the
number of times the model sees it during training.
The latter also takes into account the number of
training epochs. For example, if an instance ap-
pears in the corpus once, but the model is trained
for 50 epochs, than practically the model sees it 50

epochs appears seen expl

1 10 10 2.07%
5 10 50 6.87%

Table 1: expl results of two models which were trained
on corpus with 10 contaminated SST-5 appearances.

epochs appears seen expl

5 10 50 6.87%
1 50 50 7.73%

Table 2: expl results of two models which were saw
the contamination 50 times.

times. In the field on memorization and data con-
tamination, it is mostly common to report the num-
ber of times an instance appears in the corpus (Car-
lini et al., 2021; Brown et al., 2020). However, the
following experiments emphasizes the importance
of accounting for the number of times a sample is
seen. In the first experiment we fix the number of
times the contamination appears in the corpus (10
copies), and change the number of times it is seen.
We do so by performing second-stage-pretraining
(Gururangan et al., 2020; Zhang and Hashimoto,
2021) on a combined corpus of Wikipedia and 10
copies of SST-5. We train one model for one epoch,
and the other for 5 epochs. Results are shown in
Tab. 1. In the second experiment we fix the number
of times the model sees SST-5, and change the num-
ber of times it appears in the corpus. We do so by
performing second-stage-pretraining for one epoch
on a combined corpus of Wikipedia and changing
number of copies of SST-5. Results are shown in
Tab. 2.

We observe that expl levels of the models
which saw the contamination 50 times are rather
similar. On the contrary, expl levels of the model
which saw the data 10 times is 5% lower. These
results indicate the number of times contamina-
tion is seen during training have great influence on
expl. In the main experiments presented in this
paper we train for one epoch in order to eliminate
the difference between the two notion (appears vs.
seen).

B Same Ratio, Different expl

In Sec. 3 we have seen the expl and mem grows
with the number of contamination occurrences in
the corpus. One explanation for the results in is that
the rising ratio between the contaminated corpus
and the full corpus leads to increased mem. We
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conduct experiments in which we keep the ratio
between the two fixed while increasing their abso-
lute sizes. We keep constant ratio of 1:10 between
the number of instances (in Wikipedia set we con-
sider lines as instances) in the datasets. To do so,
we adjust both the size of Wikipedia and the du-
plications of SST-5 train and seen test sets in the
corpus. For example, to achieve total corpus sized
1M we use 9k instances from Wikipedia and 50
copies of SST-5 (which yields 1k samples). We
focus on BERT-base and SST-5 task and follow
the basic experiment setup and hyperparameters of
our main experiments (Sec. 3). Our results (Fig. 7)
show that this manipulation leads to increased mem,
indicating the importance of the total number of
occurrences of the task data.

C Position of Contamination Matters

We pretrain BERT-base model while inserting con-
taminated data in different stages of pretraining.
We discuss the experiment in Sec. 3. Results on
SST-2 and SNLI can be found in Fig. 6.

Figure 6: mem and expl when contamination is in-
serted in different stages of pretraining, using a linear
learning rate decay, and a constant learning rate.

D Experimental Details

Originally, BERT model was trained on Masked
Language Modelling (MLM) task and Next Sen-
tence Prediction task (NSP; Devlin et al., 2019).
However, Liu et al. (2019) showed that removing
the NSP loss does not impact the downstream task
performance substantially. Therefore we pretrain
both BERT models (-base and -large, both uncased)
on the MLM task only.

Figure 7: Keeping same ratio of 1:10 between contami-
nated data to total corpus by increasing both the number
of SST-5 copies and the size of Wikipedia.

Wikipedia Data We extracted and pre-
processed the April 21’ English Wikipedia dump.
We used the wikiextractor tool (Attardi, 2015). In
order to measure the effect of contamination when
contaminated data is shuffled across the pretraining
corpus, we divided clean Wikipedia text into lines
(instances which were originally separated by new
line symbol).

Experimental Details for Sec. 3 All models
were trained with the following standard proce-
dure and hyperparameters. Specific experimental
adjustments will be discussed later. We pretrained
BERT models using huggingface’s (Wolf et al.,
2020) run_mlm script for masked language model-
ing. We used heads sized 64 (calculated as: hidden
dimension divided by the number of heads) with
standard architecture as implemented in transform-
ers library. We used a combined corpus of 60M
tokens of Wikipedia along with 100 copies of the
downstream corpus. Due to computational limi-
tations, we limited the training sequences to 128
tokens. We pretrained for 1 epoch and used batch
size of 32 to fit on 1 GPU. We trained with a learn-
ing rate of 5e-5. We apply linear learning rate
warm up for the first 10% steps of pretraining and
linear learning rate decay for the rest. We fine-tune
the models on 1,000 samples of the downstream
corpora (SST-2, SST-5 and SNLI).

We fine-tune for 3 epochs using batch size of
8. We use AdamW (Loshchilov and Hutter, 2019)
optimizer with learning rate of 2e-5 and default pa-
rameters: β1 = 0.9, β2 = 0.999, ϵ = 1e-6, with bias
correction and without weight decay. We average
the results over ten random trials. As baselines we
use pretrained BERT-base and BERT-large and fine-
tune them as described above. Accuracy results on
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the unseen test sets are shown in Tab. 3.

task size 60M 150M 300M 450M 600M baseline

SST-5
base 34.07 34.18 35.57 35.76 37.05 45.35
large 33.76 32.93 34.3 37.1 48.28

SST-2
base 72.26 74.78 75.96 75.17 76.5 87.15
large 70.49 73.5 73.76 73.85 89.29

SNLI
base 46.66 48.65 54.53 57.17 58.16 68
large 47.58 49.61 55.53 59.05 67.11

Table 3: Accuracy of unseen test set for main experi-
ment in Sec. 3.

In the experiment of contamination in different
stages of training, we divided the entire corpus
(clean and contaminated) into 3 equal size sections,
making sure that all the contaminated data appears
entirely in one of those sections. We disabled the
random sampler and shuffled each section individu-
ally. We refer to the sections as ‘first’, ‘middle’ and
‘last’ according to the order they appear in train-
ing. All our experiments were conducted using the
following GPUs: RTX 2080Ti, Quadro RTX 6000,
A10 and A5000.

Experimental Details for App. A We conducted
second-stage-pretraining by continuing to update
BERT-base weights. We used batch size of 32 and
learning rate of 5e-5. Learning rate scheduling, op-
timization and fine-tuning are the same as standard
procedure described above.
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