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Abstract

Knowledge base (KB) embeddings have been
shown to contain gender biases (Fisher et al.,
2020b). In this paper, we study two ques-
tions regarding these biases: how to quantify
them, and how to trace their origins in KB?
Specifically, first, we develop two novel bias
measures respectively for a group of person
entities and an individual person entity. Evi-
dence of their validity is observed by compar-
ison with real-world census data. Second, we
use influence function to inspect the contribu-
tion of each triple in KB to the overall group
bias. To exemplify the potential applications
of our study, we also present two strategies (by
adding and removing KB triples) to mitigate
gender biases in KB embeddings.

1 Introduction

Gender biases have been shown to have noticeable
presence in a wide range of NLP models. For ex-
ample, we can observe that the word embedding of
“engineer” is closer to “he” than “she” (Bolukbasi
et al., 2016), and co-reference systems associate
“surgeon” more with masculine pronouns than with
feminine ones (Rudinger et al., 2018). These biases
are brought to our models from training data by our
algorithms. Hence, besides revealing the existence
of gender biases, it is important to quantify them
and explain their origins in data.

Knowledge bases (KB, e.g. Freebase, Bollacker
et al., 2007) provide accessible organizations of
human knowledge by the form of triples. Each
triple consists of a head entity, a relation, and a
tail entity. For example, the fact that Marie Curie
is a chemist is represented as 〈Marie Curie,
people.person.profession, chemist〉.
KB embeddings encode these knowledge into
dense vector representations. It is important to
understand gender biases in KB embeddings for
two major reasons. First, KB embeddings serve as
sources of prior knowledge in many downstream

NLP models (e.g. pre-trained language models,
Zhang et al., 2019). Clearly, if biases exist in KB
embeddings, they can easily propagate into these
models, and drive these models more biased. Sec-
ond, Garg et al. (2018) observe that word embed-
dings reflect biases in the training corpora, and
hence our society. Likewise, we suspect KB em-
beddings to reflect biases encoded in KBs, as also
suggested by Radstok et al. (2021).

In this paper, we propose two novel gender
bias measures for KB embeddings, one for a group
of person entities (group bias) and the other for
an individual person entity (individual bias). Fur-
thermore, with influence function (Koh and Liang,
2017), we explain the origins of group bias at
the fact triple level (i.e. how each triple in KB
contribute to group bias). In practice, we use
TransE (Bordes et al., 2013) to demonstrate our
methods, for its popularity and simplicity. Never-
theless, most of our study can generalize to other
embedding algorithms. Specifically, we make four
contributions.

First, regarding a group of person entities with
a shared relation-tail pair (e.g. of the same occu-
pation), using correlation analyses, we measure
their gender biases by the differences between dif-
ferent genders’ link prediction errors.

Second, to understand the origins of the group
bias, we use influence function to find its highly-
influential triples in KB (i.e. triples that will change
the bias most if being removed during training).

Third, regarding a single person entity, using
counterfactual analyses, we develop a bias mea-
sure by measuring the change of the link prediction
error when we keep everything else the same and
perturb its gender. To avoid the intractable com-
putational cost of re-training, we propose to use
influence function to approximate the results.

Fourth, to further facilitate large-scale influence
function based analyses, we derive a closed-form
approximation of the Hessian matrix of TransE loss.
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We therefore improve the time complexity of com-
puting influence function from O(n) (stochastic
approximation) to O(1).

Moreover, in further analyses, we show that both
group and individual bias correlate well with real-
world biases. We argue that this suggests the valid-
ity of our bias measures. We also show the accuracy
of our influence function approximation by compar-
ing with the brute-force strategy (i.e., leave-one-out
re-training). Finally, to exemplify the applications
of our study, we propose two simple de-biasing
strategies, and demonstrate their effectiveness.

2 Preliminaries

Knowledge Base KB is a set of structural human
knowledge represented by triples G = {〈h, r, t〉},
where h is a head entity, r is a relation type, and
t is a tail entity. Moreover, these triples form a
graph with entities as nodes (denoted by E, where
e ∈ E is an entity) and relations as edges. In
this work, since we are particularly interested in
person entities and their gender, we use 〈s, rg,m〉
or 〈s, rg, f〉 to represent a person s with gender
male or female, where rg is the relation of gender.1

TransE The entities and relations in KB can be
represented with embedding vectors. These em-
beddings can serve in many NLP task as a source
of prior knowledge. In this work, we focus on the
widely used TransE (Bordes et al., 2013).

Given a triple 〈h, r, t〉, the key idea of TransE is
to make vectors of h, r and t close to each other in
the sense of small link prediction error. Concretely,
TransE embeddings are learned by minimizing a
margin-based ranking loss,

L =
∑

〈h,r,t〉∈G
[m+ ψ(h, r, t)− ψ(h′, r, t′)]+,(1)

where m is a scalar margin and ψ is a distance
measure. The lower ψ(h, r, t) is, the more likely
〈h, r, t〉 forms a fact. h′ and t′ are two randomly
sampled entities. The triple 〈h′, r, t′〉 is called a
negative sample because it is not in G. This loss
function basically says that the dissimilarity of a
positive triple 〈h, r, t〉 should be smaller than a
negative sample by a margin m.2 Specifically, in
this paper, we take ψ to be the L2-norm distance

1We operate with binary gender here, because it is naturally
encoded in KB.

2For simplicity, we consider only linear loss in the rest
of this paper. This is a feasible choice both empirically and
theoretically in our analyses. Empirically, in experiments we
observe that the link prediction errors of all triples converge

ψ(h, r, t) = ‖h+ r− t‖22, where h, r, t ∈ Rd are
the embeddings of h, r and t, respectively.

In this paper, we use Freebase’s (Bollacker et al.,
2007) subset FB5M (Bordes et al., 2015) as the KB
for training TransE embeddings and performing our
analyses. See Appendix A for detailed setup.

Influence Function (Cook and Weisberg, 1982;
Koh and Liang, 2017) provides an efficient way
to approximate each training sample’s impact on
correctly predicting a test sample.

Formally, let L(z, θ) be a convex loss function
on a training set {zi}ni=1 with parameters θ. The
empirical risk minimizer (ERM) is given by θ̂ =
argminθ

1
n

∑n
i=1 L(zi, θ). We are interested in a

training sample z’s impact on θ̂, with a weight of
ε. In this case, the new ERM is given by θ̂z,ε =
argminθ

1
n

∑n
i=1 L(zi, θ) + εL(z, θ) (Note that if

ε = − 1
n , it equals to removing z).

Influence function provides an efficient method
of approximating the difference between θ̂z,ε and
θ̂, without retraining the model,

θ̂z,ε − θ̂ ≈ εIup,param(z), (2)

where Iup,param(z)
def
= −H−1

θ̂
∇θL(z, θ̂). Hθ =

1
n

∑
i∇2L(zi, θ) is the Hessian matrix of the orig-

inal loss function.
Moreover, we are interested in the change of the

test performance, which is a function F of the test
sample ztest and the model parameter (LHS). By
applying chain rule to F and Equation 2, we can
obtain the difference of test performance. Formally,

F (θ̂z,ε, ztest)− F (θ̂, ztest) ≈ εIup,F (z, ztest),(3)

where Iup,F (z,ztest)
def
= ∇θF (ztest ,θ̂)>Iup,param(z).

Similarly, by splitting perturbation to first re-
move then add, we can also inspect the change of F
when a training sample z is perturbed to z′. Denote
θ−z,z′,ε = argminθ

1
n

∑n
i=1 L(zi, θ)− εL(z, θ) +

εL(z′, θ), and apply Equation 3 twice, we obtain

F (θ̂−z,z′,ε, ztest)− F (θ̂, ztest)

≈ εIup,F (z
′, ztest)− εIup,F (z, ztest)

def
=εIpert,F (z, z

′, ztest). (4)

Finally, besides single sample estimation, we are
also interested in inspecting the influence of remov-
ing a group of training samples. In these cases,

at a larger-than-margin value. Theoretically, when link pre-
diction errors converge at values smaller than the margin, the
gradients become 0. Its influence thus becomes 0, too.
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Occupation Bgr #male #female

soldier 8.65× 10−2 3110 78
engineer 6.26× 10−2 3761 113
singer 1.46× 10−2 17260 13155
animator −1.70× 10−2 1342 235
model −3.11× 10−2 1595 5876
nurse −9.77× 10−2 36 466

Table 1: A gallery of group bias (Bgr) results. #male
and #female are the numbers of male and female per-
son entities in KB with this occupation respectively.

following Koh and Liang (2017), we simply add
up the influence of each removed training sample.
However, as noted by Koh and Liang (2017), when
handling a group of samples, although influence
function approximation still holds a strong correla-
tion with the ground truth change of the parameters,
the estimation can suffer from larger errors.

3 Gender Bias Measures

In this section, based on link prediction, we take
two views to quantify gender biases in KB embed-
dings. First, using correlation analysis, we take
a macro view to inspect gender biases of a group
of person entities (e.g., how gender influences the
overall occupation prediction accuracy of a group
of engineer entities). Second, under the framework
of counterfactual analysis, we take a micro view
to assess gender biases of an individual person en-
tity (e.g., how a specific engineer entity’s gender
influences its occupation prediction accuracy). Af-
terwards, we build connections between them.

In this following, we adopt occupation predic-
tion as our running example. The reason is two
fold. First, among all of the relations connected
with person entities, occupation relation has the
highest coverage rate (i.e. connect with the most
person entities). Second, most previous relevant
studies also focus on occupation. Our choice makes
it easier to perform comparative studies (Garg et al.,
2018; Fisher et al., 2020b).

3.1 Gender Biases of a Group
To see whether a group of entities exhibits bias,
one direct solution is to deploy methods analog to
those applied to analyze bias in word embeddings
(Bolukbasi et al., 2016). For example, we can com-
pute the projection of the TransE embedding of an
occupation o to the difference between male and
female entities (Bourli and Pitoura, 2020),

Bwo = o>(m− f),

where m and f are the embeddings of male and
female entity respectively. However, we argue
that because TransE follows a different type of
learning objective (link prediction style objective
instead of the vector-similarity-based ones in word
embedding algorithms), directly adopt existing set-
tings may not fully explore the semantics of TransE
embeddings.

Therefore, we propose to detect group bias based
on the correlation between genders and link pre-
diction errors. Intuitively, given an occupation o,
person entities of o’s privileged gender will link
to o with lower errors than those of unprivileged
gender. Formally, we define the group bias of o as

Bgr =
1
|F |
∑
s∈F

ψ(s, rp, o)− 1
|M |

∑
s∈M

ψ(s, rp, o),

where M and F are the sets of all male and female
person entities with o respectively, and rp is the
relation people.person.profession. The
higher Bgr is, the more o’s embedding is biased to-
wards male. Table 1 lists Bgr of some occupations,
as well as the gender frequency of this occupation
in KB. We make two observations.

First, we observe the existence of gender biases
in KB embeddings, and note their consistency with
real-world biases. For example, engineer and nurse
have more extreme bias scores respectively towards
male and female, while singer and animator have
more moderate ones (quantitative analyses in §4).

Second, although the gender ratio of person en-
tities has a great impact on Bgr, it is not the only
decisive factor. For example, animator has a gender
ratio of 5.7:1, but its Bgr is biased towards female.

Inspecting the Origins of Biases The second
observation motivates us to trace the origins of
biases. More concretely, in the context of KB: how
do different triples contribute to Bgr? To answer
this question, we apply influence function (Equa-
tion 3) with F = Bgr and observe how removing a
training triple changes the overall group bias score.

One appealing property of TransE is that we are
able to derive a closed-form Hessian matrix. More-
over, by further analyses, we can directly obtain
a diagonal approximation of the Hessian matrix,
and thus the Hessian inverse Iup, param. Taking ad-
vantage of this, we can reduce the computation of
Iup,Bgr to constant time complexity (w.r.t. train-
ing set size), which is much faster than the LiSSA
algorithm (Agarwal et al., 2017) applied in (Koh
and Liang, 2017), which requires O(n) time com-
plexity to obtain a Hessian inverse approximation.

1383



−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

δzBgr ×10−5

0

250

500

750

1000

1250

1500

1750

2000

L
in

k
co

un
t

of
en

ti
ty

actor

male

female

Figure 1: The relationship between different triples’
δzBgr (i.e. the change of group bias Bgr if we re-train
the KB embedding model without this triple) w.r.t. the
occupation of actor and their person entities’ attributes
(i.e. the number of links of the entities and the gender
information). Gender information is shown by blue and
orange points, and node degrees is exhibited by grey
points. We can observe that triples with positive (neg-
ative) δzBgr mostly contain person entities of female
(male) gender. Moreover, triples contain high degree
person entities are likely to have close-to-zero δzBgr.

Concretely, using basic calculus, we have the fol-
lowing lemma and remarks. We include their de-
tailed proof and derivations in Appendix B.

Lemma 1. Suppose we generate the corresponding
negative sample of a positive sample 〈h, r, t〉 by
randomly choosing h or t and corrupting it to a
random entity in E, we can derive the closed-form
Hessian matrix of TransE with entries

EHθ̂ =



e e′ r r′

. . .
...

...
...

...

e · · · αeeId αee′Id αerId

...

e′ · · · αee′Id αeeId αerId

...

r · · · αerId αerId 0 0

· · ·
...

...
...

. . .


,

where e, e′ and r, r′ are different entities and rela-
tions, αee, αer, αee′ are three different coefficients
dependent on the frequencies of the corresponding
entities and relations, and Id is the identity matrix
of Rd×d.

Remark 2. In practice, we approximate the closed-
form Hessian from Lemma 1 with its diagonal ele-
ments,

EHθ̂ ≈ diag{· · · , αeeId, · · ·︸ ︷︷ ︸
entities

, · · · , 0, · · ·︸ ︷︷ ︸
relations

}.

Remark 3. αe could be zero or negative, which
breaks the positive definiteness of Hθ̂. Following
Koh and Liang (2017), we add λI (λ > 0) to Hθ̂
(i.e., αee ← αee + λ), which equals adding an L2

regularization on parameters.

Following Equation 3 (ε = −1/|G|), we
can compute the change of group bias (denoted
by δzBgr) after removing a training triple z =
〈h, r, t〉,3

δzBgr =
1

|G|∇θB
>
gr

(
EH−1

θ̂
∇θL(z, θ̂)

)
.

A triple z with positive δzBgr means that re-training
without it will increase Bgr (i.e., towards “mascu-
line”) and vice versa. We note that due to the diag-
onal Hessian, z will have a non-zero influence iff it
is reachable from o in two hops (i.e., entities of z
take part in the computation of Bgr). In practice, we
calculate δzBgr of each triple in KB regarding Bgr
of each occupation, and make three observations.

First, regarding relations in KB, we find most
of the highly-influential triples (i.e. triples with
highest absolute δzBgr values) to be of the profes-
sion relation (i.e., rp) and its inverse4. For example,
regarding the occupation of singer, these two rela-
tions occupy 74% of the top 1% positive triples and
78% of the top 1% negative triples. It suggests that
compared with indirectly (i.e. two-hop) connected
triples, triples directly connect with an entity have
larger impact on it, which matches our intuitions.

Second, regarding gender, we find that most per-
son entities in triples with high positive δzBgr are
of female gender, and vice versa. Figure 1 take
the occupation of actor as an example to illustrate
this.5 This observation agrees with previous obser-
vation: triples with person entities of male gender
will drive the overall biases towards masculine, and
removing them will reverse this effect.

Third, regarding graph substructure, we find that
if a triple contains a high degree person entity, it
usually has a nearly zero δzBgr (i.e. has small im-
pact on other triples, see Figure 1), We suspect
the reason to be as follows: the more neighbors

3More precisely, z is a pair of triples (〈h, r, t〉, 〈h′, r, t′〉).
To handle randomness of negative samples, we adopt two
strategies in our implementation. First, we freeze negative
samples in training epochs to get consistent results. Second,
we use EHθ̂ to replace random Hθ̂ in influence functions.

4i.e. people.person.people_with_this_profession
5Similar patterns are observed in other occupations for

both this observation and the next one.
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Figure 2: Distributions of Bin. A positive value means
the corresponding person entity’s embedding is more
biased towards male and vice versa. We can observe
that for each occupation they are tightly distributed and
consistent with real-world stereotypes.

an entity has, the more constraints its embedding
needs to put on others (by link prediction). It makes
the embedding less optimal to represent each con-
straint, and hence less influential to each triple.

3.2 Gender Biases of an Individual
Group-level correlation analyses offer us a coarse
portrayal of biases. However, we are also interested
in finer characterization (for each group member).
Moreover, because of the complexity of KB struc-
tures, there very likely exist confounders between
person entities and occupations (e.g. if two person
entities of the same occupation are connected them-
selves, they are confounders of each other). In this
case, correlation does not imply causation. In
other words, gender differences are not guaranteed
to be the only cause of Bgr. Therefore, in this sec-
tion, we study a further question: can we perform
analyses on a specific person entity and measure
its gender biases based on how its gender change
its link prediction error (i.e. causality)?

By virtue of the structured knowledge in KB, we
are able to conduct this individual-level analysis
in a tractable way. The key idea is, what if we
keep everything else identical and perturb only
the gender? Intuitively, given an occupation o, if
flipping a person entity’s gender from female to
male will make it easier to connect the person with
o, o should be biased towards male. Formally, we
define individual bias Bin of 〈s, rp, o〉 as

Bin = ψ(s, rp, o)|f − ψ(s, rp, o)|m,

where ψ|f (ψ|m) is ψ computed on a version of
TransE where s’s gender is female (male). A high

Bin means that, it is more difficult to predict s’s
occupation if s is female. We would thus argue that
〈s, rp, o〉 is biased toward male. Because we keep
all other attributes identical, this counterfactual def-
inition naturally offers us causation.

The practical issue of Bin is the computation of
the counterfactual: for each triple, this definition
naively requires the re-training of the entire em-
bedding model. This is intractable for large-scale
analyses because of the extremely high computa-
tional cost. To avoid this issue, we apply influence
function (Equation 4) for a fast evaluation of Bin.
Indeed, using Lemma 1 and Remark 2, we can
obtain a closed-form Bin (proof in Appendix B).

Corollary 4. Assume that for each person entity
s, we have the same negative sample for 〈s, rp, f〉
and 〈s, rp,m〉, then

Bin ≈ −
4

αs|G|
(s+ rp − o)> (m− f) , (5)

One important observation of Bin is that it is
essentially a mixture of local graph substructure in-
formation (αs, the degree of s in KB), and a projec-
tion of link prediction residual (s+rp−o) onto the
gender difference (m− f , a reminiscence of word
embedding gender subspace proposed in Bolukbasi
et al., 2016). Compared with directly projecting o
onto Bwo (a hard generalization of word embedding
bias measure), the link prediction residual is more
compatible with the TransE learning objective.

Figure 2 exhibits the distributions of Bin of sev-
eral occupations. We make two observations from
the results. First, although there are a number of
outliers, most Bin are tightly distributed. It shows
the consistency of the individual bias scores among
different triples. Second, the bias scores correlate
well with real-world gender stereotypes: engineer
and lawyer lean more towards male, while model
and actor lean more towards female. It suggests
the validity of Bin in describing biases in KB.

Differences with Fisher et al. (2020b) A simi-
lar definition of bias is proposed in Fisher et al.
(2020b) (denoted as B′in). B′in is defined as fol-
lows: After training the embedding model to con-
vergence, they perform one extra step of updating
on the gender direction. The bias score is defined
as the difference of the link prediction error before
and after the update. We would like to note here
the two aspects of differences between Bin and B′in.
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Figure 3: Relationship between Bin and B′in. We ob-
serve that these two bias measures align well. Never-
theless, there exist a substantial amount of data points
with positive Bin but near zero B′in.

First, compared with B′in, Bin offers better in-
terpretability. Concretely, in our definition, we
approximate a purely counterfactual setting: flip
the gender and re-train the entire model until con-
vergence. In contrast, Fisher et al. (2020b) update
the embedding after the convergence, which may
not happen in real-world training.

Second, Bin takes more structural information
into account. Under the case of TransE, B′in can be
expanded into the form (details in Appendix B),

B′in ∝ −(s+ rp − o)>(m− f). (6)

Compared with Equation 6, Equation 5 (approxi-
mation of Bin) has an additional graph information
term αs. Intuitively, αs serves as a normalization
term: entities with more connections will be less
affected by a single perturbation. In other words,
the more connections an entity has, the less its link
prediction error relies on one of them (i.e. gender).

Again, take the occupation of journalist as an
example, we show the relationship between Bin
and B′in in Figure 3 and make two observations.
First, there is a strong correlation between these
two bias measures: points are approximately dis-
tributed along the diagonal. Second, we notice that
there exist a substantial number of data points with
positive B′in but near zero Bin. This suggests that
the normalization term αs can prevent the over-
estimation of biases of person entities with many
connections. This also corresponds to our third ob-
servation regarding the distribution of δzBgr (§3.1).

3.3 Connections between Bgr and Bin

After obtaining Bin, a remaining question is: given
a group of person entities, how to use individual

biases to characterize the group’s overall bias?
The rationale behind is that, if we can accurately
measure biases of individuals, we should be able
to aggregate them to represent biases of the group.

A natural solution to this question is to directly
average Bin. However, in practice, we find that
the averaged Bin of all occupations align poorly
with Bgr (r ≈ 0.27). We suspect this inconsistency
to originate from the mismatches among different
person entities’ contexts in KB (i.e. different con-
nections and local substructure). In other words,
without controlling backdoor variables, simply av-
eraging associations observed from each individual
may not be suitable for representing association of
the entire group (Pearl et al., 2016).6

In our analyses, because of the complexity of
KB, it is infeasible to control all factors. Never-
theless, we can control some of them to alleviate
this issue. Here, we focus on controlling gender for
two reasons. First, occupations in KB are often of
very imbalanced gender ratios (e.g., nurse connects
with more female entities than male entities). At
the same time, different genders usually have dif-
ferent distributions of Bin: female entities mainly
have above zero Bin, while Bin of male entities
distributes in a wider range.7 Therefore, control-
ling gender should be able to effectively reduce the
context mismatch. Second, because we treat the
average link prediction error of each gender equally
in group bias (§3.1), controlling gender can help us
to obtain more comparable results.

We thus propose to average scores of each gen-
der separately to calibrate this mismatch (weighted
averaging instead of vanilla averaging). Formally,

1
|F |
∑
s∈F
Bin(〈s, rp, o〉) + 1

|M |
∑
s∈M
Bin(〈s, rp, o〉).

We find weighted averaging align much better with
Bgr (r ≈ 0.50) and real-world biases (§4.1).

4 In-depth Analyses

4.1 Comparison with Real-world Biases

One method of inspecting the validity of a bias mea-
sure is to analyze its connection with real-world
statistics (e.g. gender ratios of occupations). How-
ever, most existing datasets fail to meet our needs,

6Other examples of this phenomenon include Simpson’s
Paradox and ecological fallacy.

7We show Bin distribution of the occupation of journalist
as an example in Figure 5 in Appendix C, and find similar
trends in other occupations.
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vanilla weighted
r p r p

B′in 0.470 .003 0.590 < 10−4

Bin 0.480 .002 0.610 < 10−4

Bgr − − 0.668 < 10−5

Table 2: Alignment results with census data. Vanilla
and weighted denotes for vanilla averaging and
weighted averaging, respectively. Note that because
Bgr is not applicable for averaging strategies, we sim-
ply put its score into weighted. Significant p values
(< .01) are shown in bold font.

because they have different occupation categories
with FB5M (e.g. Garg et al., 2018; Du et al., 2019).

Accordingly, we take the following steps to build
a new dataset. First, we collect the gender distri-
butions of occupations in 2018 by the U.S. census
data (Ruggles et al., 2020). Afterwards, we cal-
culate their log proportions8 and manually pair up
them with occupations in KB.9 We use it as our
validation data and refer it as census data.

Table 2 shows the Pearson’s r values and p val-
ues between census data and all five bias measures
described in §3 (Bgr, Bin and B′in with both averag-
ing strategies). Our observations are two fold.

First, both Bgr and Bin exhibit significant corre-
lations (especially under weighted averaging) with
census data (p < .01), indicating their validity of
measuring gender biases in KB embeddings.

Second, individual bias measures (Bin and B′in)
align better with census data under weight averag-
ing than under vanilla averaging. This backs up our
suspicion regarding contexts’ mismatches, as well
as our solution strategy (weighted averaging).

4.2 Accuracy of the Group Influence
Approximation

Because the Hessian matrix we derived for the cal-
culation of influence function is a diagonal approx-
imation, and influence function of a group of train-
ing samples is only an approximation of the test
performance change after re-training, one may con-
cern the accuracy of our influence function. There-
fore, in this section, we perform a validation ex-
periment to address this concern. Specifically, for
each occupation o, we first remove k triples with
highest δzBgr, then re-train the TransE model from
scratch, and calculate their Bgr regarding o. Af-

8log-prop = p
1−p , where p is % of men in occupation.

9We apply a many to many pairing to match the occupation
categories in census data and KB.

Occupation Bgr de-biased Bgr

architect 7.30× 10−2 4.32× 10−2

physicist 2.16× 10−2 0.22× 10−2

actor −7.67× 10−2 −6.53× 10−2

nurse −9.80× 10−2 −9.16× 10−2

Table 3: Examples of Bgr before and after adding
dummy entities. We observe that this strategy can effec-
tively mitigate bias, although the extent differs among
different occupations.

terwards, we compare the sum of δzBgr with the
ground truth changes in Bgr. In practice, we take
ks to be a arithmetic progression from 500 to 5000,
with a common difference of 500.

We show a few occupations’ alignment results
as examples in Figure 4a-4c. We observe strong
correlations between our approximation and the
ground truth (r > 0.95 for all occupations). It
suggests the accuracy of our approximation (some
additional results in Appendix C).

4.3 Application: De-biasing KB Embeddings
Our study can broadly benefit relevant future re-
search regarding societal biases and KB. As exam-
ples of such applications, based on our study in
§3.1, we explore two strategies for de-biasing KB
embeddings. We note that these two strategies aim
to exemplify the potential impacts of our previous
study, and are not necessarily the best method to
de-bias KB embeddings.10 Instead, we highly en-
courage future studies to build better de-biasing
methods on the basis of our findings.

Strategy 1: De-biasing by Adding In Table 1,
we observe that gender ratio has a substantial im-
pact on Bgr. Based on this, one natural idea of de-
biasing is to balance gender proportion by adding
dummy triples. The advantage of this strategy is
that, because we do not remove triples, we are able
to keep the information of the original KB intact.

Specifically, suppose an occupation o with M
male entities and F female entities, where M is
larger than F . To alleviate bias, we create c(M −
F )11 dummy entities and connect them with only
the female gender and o. Afterwards, we re-train
TransE and observe the Bgr regarding o.

Table 3 lists a few examples of the results. We
find that this de-biasing strategy overall works well.

10For example, Fisher et al. (2020a) and Arduini et al.
(2020) adopt adversarial loss for de-biasing KB embeddings.

11In practice, we set c to be 0.5, and limit the number of
total added entities of each occupation to be < 10000.
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Figure 4: 4a - 4c are the correlations between approximated influence and ground truth results (obtained by remov-
ing triples and re-training). The titles list the Pearson’s r and significance p values of the alignments. 4d-4f show
the Bgr of influence-function-based triples removing (IF-REMOVE) and random removing (Random-REMOVE).
Compared with Random-REMOVE, IF-REMOVE reduces Bgr much more significantly.

It is worth noting that the changes of biases of
some occupations (e.g. nurse) are smaller, which
matches our previous observation: gender ratio is
not the only decisive factor of Bgr.

Strategy 2: De-biasing by Removing Based
on our study on the origins of biases, and in-
spired by the validation results in §4.2, we inves-
tigate a straightforward de-biasing strategy: we
simply remove the top k most influential triples
based on the approximation of influence func-
tion (IF-REMOVE). Again, we take ks to be
[500, 1000, 1500, ..., 5000]. Besides, for the pur-
pose of controlling variable, we compare it to
a naive baseline method, in which we randomly
delete triples of all entities (Random-REMOVE).

Figure 4d-4f exhibit some examples of the re-
sults. We observe that comparing with the baseline,
where Bgr rarely change, this de-biasing strategy
is able to mitigate biases very effectively. Several
additional examples are included in Appendix C.

5 Related Work

Various measures have been proposed to quantify
gender biases in word embeddings (Bolukbasi et al.,
2016; Caliskan et al., 2017; Swinger et al., 2019).
Many of them are based on vector similarity (e.g.
cosine similarity) between words, which matches
the training objective of most word embedding al-

gorithms (maximize the vector similarities between
similar words, Mikolov et al., 2013; Pennington
et al., 2014). Moreover, Garg et al. (2018) sug-
gest that word embedding can reflect biases in the
training corpora and hence our society.

Recently, a few studies have explored gender
biases in KBs and their embeddings. A pioneer
study by Klein et al. (2016) investigates gender
gap in Wikidata across time, space, culture, occu-
pation and language. A following study (Shaik
et al., 2021) further analyzes the race and country
of citizenship bias in KB regarding STEM represen-
tation. Moreover, Janowicz et al. (2018) analyze
the potential bias issues in KBs from both data and
schema viewpoints. Fisher et al. (2020b) propose a
KB embedding bias measure based on the change
of link prediction error after a one-step update to-
wards male. Fisher et al. (2020a) and Arduini et al.
(2020) propose to use adversarial training objective
to mitigate biases in KB embeddings.

Influence function is a commonly used technique
in robust statistics (Cook and Weisberg, 1982). Koh
and Liang (2017) first use it to inspect each training
point’s influence on a neural network’s prediction.
A following study by Koh et al. (2019) investigate
the accuracy of influence function on measuring
the effect of removing a group of training samples,
and show that its approximation has strong correla-
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tions with actual effects. Afterwards, Brunet et al.
(2019) apply influence function as a differential
bias measure to study gender bias in word embed-
ding. Moreover, Pezeshkpour et al. (2019) use an
simplification of influence function to perform ad-
versarial attack on link prediction.

6 Conclusion and Discussion

In this paper, we study the gender biases in KB
embeddings. First, we develop two bias measures
to quantify biases: one from the group level and
the other from the individual level. Evidence of
their validity are obtained in comparison with real-
world biases. Second, to understand the origins
of biases, we adopt influence functions for triple-
level analysis and develop an efficient method for
fast evaluation. The accuracy of this method is
validated by comparing our approximation with
group-truth changes after re-training. Moreover, as
examples of the potential applications of our find-
ings, we propose two de-biasing strategies for KB
embeddings and obtain promising performance.

Although we focus on Freebase (FB5M) and
TransE in this paper, we note that our analyses
are theoretically generalizable to other commonly-
used KBs and embedding training algorithms. For
instance, Wikidata, another commonly-used KB,
uses a different hierarchical structure to organize its
data (Vrandečić and Krötzsch, 2014; Tanon et al.,
2016; Wang et al., 2021). However, it still loosely
follows the triple structure used in Freebase, and
therefore can be pre-processed to fit in our analyses.
Also, because our bias measures and bias tracing
methods are built on simple and generalizable defi-
nitions (i.e., differences between link predictions
errors and influence function), they can naturally
be adapted to other KB embedding algorithms (Lin
et al., 2015; Yang et al., 2015; Peng et al., 2021).

However, we recognize that such generalizations
are not trivial efforts. Take Wikidata again for an
instance, although a simple transformation is ad-
equate for running the embedding algorithm, it is
far from fully eliminating the differences between
Freebase and Wikidata. For example, Wikidata
does not have an inverse predicate for each relation,
and has a much smaller number of overall rela-
tions (Azmy et al., 2018; Diefenbach et al., 2017).
Such differences might have a large impact on the
final results. Also, to perform the same analyses
with other embedding algorithms, we will need
to develop algorithms to facilitate the computa-

tion of their influence function (as Lemma 1), too.
Therefore, we consider such generalizations to be
promising future directions but out of the scope of
our work.
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A Experimental Setup

Choices of datasets Freebase (Bollacker et al.,
2007) is one of the largest publicly available KBs,
with over three billion triples covering a wide range
of real-world facts. Due to time and hardware con-
straints, in this work, we use its subset FB5M (Bor-
des et al., 2015) as the KB for our experiments. In
practice, we find that although FB5M only holds
0.5% of the triples from Freebase, it covers a much
higher percentage of human type entities and their
related facts. Regarding professions, we select ones
with ≥ 400 person entities and contain both male
and female in FB5M.

TransE training We use DGL-KE 0.1.0 (Zheng
et al., 2020) to train TransE embeddings. To get
deterministic results across different training runs,
we fix the random seeds and restricted the training
process to run under a single thread.

Due to that TransE involves negative sampling in
its training objective, we save all negative samples
from the final epoch to make sure that influence
function can output accurate results.12 Regarding
hyper-parameters, we use a number of dimensions
of 200, a batch size of 8000, and stop training after
120000 updating steps. It takes approximately 40
minutes with a single GTX TITAN X GPU.

B Proofs and Derivations

Proof of Lemma 1. We use E and R to denote the
full set of entities and relations, and Ne and Nr

to denote the times of occurrence of entity e and
relation r in KB. Also, we use |G|, |E|, and |R|
to respectively denote the number of triples in KB,
and the number of different entities and relations.
Moreover, we define a counting function C to de-
note the times of occurrence of certain triples,

C(e0, r0, e1) =∑
〈h,r,t〉∈G

1(h = e0, r = r0, t = e1),

where 1 is the indicator function. Also, we use ∗
as a wildcard element. For example,

C(∗, r0, e1) =
∑
e0∈E

C(e0, r0, e1),

Nr = C(∗, r0, ∗) =
∑

e0,e1∈E
C(e0, r0, e1),

C(∗, ∗, ∗) = |G|.
12To ensure the results from influence function are accurate,

we only use the negative samples when the embeddings are
close to convergence.

For the TransE loss on a single triple 〈h, r, t〉,
ϕ(h, r, t), it is easy to derive the second-order
derivatives,

∇2
h,hϕ(h, r, t) = ∇2

r,rϕ(h, r, t) (7)

= ∇2
t,tϕ(h, r, t) = ∇2

h,rϕ(h, r, t)

= ∇2
r,hϕ(h, r, t) = −∇2

h,tϕ(h, r, t)

= −∇2
t,hϕ(h, r, t) = −∇2

r,tϕ(h, r, t)

= −∇2
t,rϕ(h, r, t) = 2Id,

where Id is the identity matrix of Rd×d. We ob-
serve that the value of the second-order derivative
is independent of the triple.

The expectation of Hessian matrix of the overall
loss function L (Equation 1) consists of five parts:
E∇2

e,eL, E∇2
e,e′L, E∇2

r,rL, E∇2
r,r′L, and E∇2

e,rL,
where e, e′ and r, r′ denotes two different entities
and relations. Because we only have a single re-
lation in each triple, we can immediately see that
E∇2

r,r′L is always zero. Moreover, because we
train TransE embeddings with negative sampling,
and the relation r is the same for positive and nega-
tive samples, we know that E∇2

r,rL is zero as well.
We consider two types of training samples to

calculate the remaining terms: e and e′ appear in
a positive triple (denoted as ∇2Lpos), and e and e′

are sampled to corrupt a sample (∇2Lneg).
For the first case, when e appears in a positive

triple 〈h, r, t〉, there will be a corresponding nega-
tive sample, with 0.5 probability to be 〈h′, r, t〉,
where h′ 6= h, and 0.5 probability of 〈h, r, t′〉,
where t′ 6= t. Using Equation 7, we obtain

E∇2
e,eLpos

= C(e, ∗, ∗)(∇2
h,hϕ(h, r, t)

−0.5∇2
h,hϕ(h

′, r, t)− 0.5∇2
h,hϕ(h, r, t

′))

+C(∗, ∗, e)(∇2
t,tϕ(h, r, t)

−0.5∇2
t,tϕ(h

′, r, t)− 0.5∇2
t,tϕ(h, r, t

′))

= (C(e, ∗, ∗) + C(∗, ∗, e))Id = NeId,

E∇2
e,e′Lpos

= C(e, ∗, e′)(∇2
h,tϕ(h, r, t)

−0.5∇2
h,tϕ(h

′, r, t)− 0.5∇2
h,tϕ(h, r, t

′))

+C(e′, ∗, e)(∇2
t,hϕ(h, r, t)

−0.5∇2
t,hϕ(h

′, r, t)− 0.5∇2
t,hϕ(h, r, t

′))

= −2(C(e, ∗, e′) + C(e′, ∗, e))Id,
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and

E∇2
e,rLpos

= C(e, r, ∗)(∇2
h,rϕ(h, r, t)

−0.5∇2
h,rϕ(h

′, r, t)− 0.5∇2
h,rϕ(h, r, t

′))

+C(∗, r, e)(∇2
r,tϕ(h, r, t)

−0.5∇2
r,tϕ(h

′, r, t)− 0.5∇2
r,tϕ(h, r, t

′))

= (C(e, r, ∗)− C(∗, r, e))Id.

For the second case, since we corrupt a triple
by uniformly sampling all entities, an entity is ex-
pected to be sampled as the head entity and the tail
entity with the same probability of 1/2|E|. Using
Equation 7, we obtain

E∇2
e,eLneg

= −2C(∗, ∗, ∗)∇2
h,hϕ(h, r, t)/2|E|

= (−2|G|/|E|)Id,

E∇2
e,e′Lneg

= −C(∗, ∗, e′)∇2
h,tϕ(h, r, t)/2|E|

−C(e′, ∗, ∗)∇2
t,hϕ(h, r, t)/2|E|

−C(e, ∗, ∗)∇2
h,tϕ(h, r, t)/2|E|

−C(∗, ∗, e)∇2
t,hϕ(h, r, t)/2|E|

= (Ne/|E|+Ne′/|E|)Id,

and

E∇2
e,rLneg

= −C(∗, r, ∗)∇2
h,rϕ(h, r, t)/2|E|

−C(∗, r, ∗)∇2
t,rϕ(h, r, t)/2|E|

= 0.

Putting Lpos and Lneg together, we obtain

E∇2
e,eL = (Ne − 2|G|/|E|)Id = αeeId,

E∇2
e,rL = (C(e, r, ∗)− C(∗, r, e))Id = αerId,

E∇2
e,e′L = (Ne/|E|+Ne′/|E|

−2C(e, ∗, e′)− 2C(e′, ∗, e))Id = αee′Id,

E∇2
r,rL = 0,

E∇2
r,r′L = 0.

Derivations of Remark 2. Clearly, the magnitude
of non-zero diagonal terms of the Hessian
(i.e. ∇2

e,eL) are much larger than those of the non-
zero non-diagonal terms (i.e. ∇2

e,rL and ∇2
e,e′L),

because the former only requires the occurrence
of e (mostly hundreds or thousands of times for
human entities), while the latter requires the co-
occurrence of two terms (usually once or much
smaller than the number of occurrences of the cor-
responding entity). We therefore propose to ap-
proximate the Hessian matrix with its diagonal
elements. With such approximation, we estimate
the expectation of the Hessian matrix as

EHθ̂ ≈ diag{· · · , αeeId, · · ·︸ ︷︷ ︸
entities

, · · · , 0, · · ·︸ ︷︷ ︸
relations

},

where αee = Ne − 2|G|/|E|.
Proof of Corollary 4. We consider the case that the
TransE parameter θ̂ is learned with 〈s, rp, f〉 in KB
and we perturb it to 〈s, rp,m〉. The other direction
is identical. Following Equation 4 by setting F =
ψ(s, rp, o), z = 〈s, rg, f〉, z′ = 〈s, rg,m〉 and
ε = −1/|G|, we have

Bin ≈ 1
|G|∇θψ(s, rp, o)>H

−1
θ̂(

∇θL(z, θ̂)−∇θL(z′, θ̂)
)
.

Let d1 = 2(s+ rp − o), ∇θψ(s, rp, o)> equals

[ s rp o

.. d>1 ... d>1 ... −d>1 ..
]
.

On the other side, ∇θL(z, θ̂) − ∇θL(z′, θ̂) =
∇θψ(s, rg, f)−∇θψ(s, rg,m) by cancelling neg-
ative samples. Let d2 = 2(f −m), d3 = 2(h +
rg − f) and d4 = 2(h + rg −m), its transpose
equals

[ s rg f m

... d>2 ... d>2 ... d>3 ... −d>4 ...
]
.

Finally, by approximating Hθ̂ using EHθ̂ (Lemma
1), we see that only the product of di and d2 is
non-zero.

Derivations of Fisher et al. (2020b). To measure
gender biases in KB embeddings, Fisher et al.
(2020b) first define a function m to be the differ-
ence between link prediction error of male and
female entity,

m(θ) = ψ(s, rg,m)− ψ(s, rg, f).

Afterwards, the bias score of a person entity re-
garding an occupation o is the change of the link
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prediction error after updating the entity embed-
ding using the gradient of m (i.e., updating s to
make m larger),

B′in = ψ(s′, rp, o)− ψ(s, rp, o),
where s′= s+ η

dm

ds
.

For L2 TransE loss, the gradient equals to

dm

ds
= 2(s+ rg − f)− 2(s+ rg −m)

= 2(f −m).

Therefore,

B′in = ψ(s′, rp, o)− ψ(s, rp, o)
= (s+ 2η(f −m) + rp − o)2 − (s+ rp − o)2

= (s+ rp − o)2 + 4η(s+ rp − o)>(m− f)

+ 4η2(m− f)2 − (s+ rp − o)2

= k + 4η(s+ rp − o)>(m− f)

Omitting the constant part k = 4η2(m − f)2, we
can find that B′in is essentially the projection of link
prediction error s+ rp − o onto gender subspace
m− f , which is similar to Bin.

C Additional Results

More Figures are in the next page.
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Figure 5: Different distributions of Bin between male
and female entities. We can observe that the Bin distri-
butions of different genders are clearly different.
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Figure 6: Figure 6a-6c exhibit additional results for the validation of group influence approximation. Figure 6d-6f
show additional results for de-biasing KB embeddings by removing highly influential triples.
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