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Abstract

Pre-trained sequence-to-sequence language
models have led to widespread success in
many natural language generation tasks. How-
ever, there has been relatively less work on
analyzing their ability to generate structured
outputs such as graphs. Unlike natural lan-
guage, graphs have distinct structural and se-
mantic properties in the context of a down-
stream NLP task, e.g., generating a graph that
is connected and acyclic can be attributed to its
structural constraints, while the semantics of a
graph can refer to how meaningfully an edge
represents the relation between two node con-
cepts. In this work, we study pre-trained lan-
guage models that generate explanation graphs
in an end-to-end manner and analyze their abil-
ity to learn the structural constraints and se-
mantics of such graphs. We first show that
with limited supervision, pre-trained language
models often generate graphs that either vio-
late these constraints or are semantically inco-
herent. Since curating large amount of human-
annotated graphs is expensive and tedious, we
propose simple yet effective ways of graph per-
turbations via node and edge edit operations
that lead to structurally and semantically pos-
itive and negative graphs. Next, we leverage
these graphs in different contrastive learning
models with Max-Margin and InfoNCE losses.
Our methods lead to significant improvements
in both structural and semantic accuracy of ex-
planation graphs and also generalize to other
similar graph generation tasks. Lastly, we
show that human errors are the best negatives
for contrastive learning and also that automat-
ically generating more such human-like nega-
tive graphs can lead to further improvements.1

1 Introduction

Pre-trained sequence-to-sequence language mod-
els (PLMs) like BART (Lewis et al., 2020) and

1Our code and models are publicly available at https:
//github.com/swarnaHub/ExplagraphGen.
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Figure 1: Two representative examples from Expla-
Graphs (Saha et al., 2021b) showing the belief, argu-
ment, stance, gold explanation graph, and T5-generated
explanation graph. The dashed nodes represent com-
monsense nodes and the dashed edges are incorrect
edges. The first generated graph is structurally incor-
rect and the second graph is semantically incorrect.

T5 (Raffel et al., 2020) have led to significant ad-
vances in many natural language generation tasks
like text summarization and machine translation.
The models are pre-trained on massive amounts
of text data with self-supervision, thus enabling
them to construct coherent natural language sen-
tences for downstream tasks. This then raises
the question whether pre-trained language mod-
els, trained on free-form natural language data, can
also adapt themselves to generate structured out-
puts like graphs. Graphs are common in NLP tasks
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that involve representing structured knowledge in
the form of knowledge bases (Guarino and Gia-
retta, 1995), constructing event chains from doc-
uments (Chambers and Jurafsky, 2009), or more
recent work on encoding reasoning chains, explana-
tions, or deductive proofs (Saha et al., 2020; Tafjord
et al., 2021; Dalvi et al., 2021).

Graphs differ from free-form natural language.
In the context of NLP, natural language graphs (con-
sisting of textual nodes and edges) can have distinct
structural and semantic properties. For example,
consider a recently proposed commonsense expla-
nation graph generation task shown in Fig. 1 (Saha
et al., 2021b). Each example shows a belief, an
argument and an explanation graph explaining how
the argument supports or refutes the belief. These
explanation graphs encode structured knowledge
(augmented with commonsense) and consist of con-
cepts as nodes and relations from ConceptNet (Liu
and Singh, 2004) as edges. For example, the sec-
ond graph encodes the knowledge that “both salads
and fast food are part of mcdonalds and hence mc-
donalds is not greasy and fattening”, thus explicitly
refuting the belief. From prior work, the structural
constraints enforce the graphs to be connected di-
rected acyclic and the nodes to contain at least two
concepts from the belief and two from the argu-
ment. The semantic aspect deals with common-
sense and evaluates whether each edge expresses
coherent relational knowledge and if the whole
graph explains the stance.

Following Saha et al. (2021b), we represent
graphs as strings composed of concatenated edges
and fine-tune T5 to generate graphs in an autore-
gressive manner. We observe that while moderate
amount of supervision enables the model to learn
valid graph encodings, the graphs frequently vio-
late task-specific structural constraints (like con-
nectivity). For instance, the first example in Fig. 1
shows a graph generated by T5 that is disconnected
and hence structurally incorrect. Moreover, for the
fraction of graphs that are structurally correct, the
model also makes commonsense mistakes, a type
of semantic error, by inferring wrong or incoher-
ent relations between concepts. Both T5-generated
graphs shown in Fig. 1 contain incoherent or non-
commonsensical edges (marked by dashed arrows)
like “fast food; has context; salads”. Based on these
observations, we study PLMs that generate expla-
nation graphs in an end-to-end manner and analyze
their ability to learn the structural constraints as

well as the semantics of such graphs.

While a general recipe towards improving the
structural and semantic aspects of graph generation
can be via large-scale training with more human-
annotated graphs, it is prohibitive under most prac-
tical scenarios because of the cognitive load associ-
ated with a complex data creation task like graph
annotation (Dalvi et al., 2021; Saha et al., 2021b).
Hence, we propose simple yet effective methods
of graph perturbations that perform various kinds
of node and edge addition, deletion, and replace-
ment operations to construct structurally and se-
mantically positive (correct) and negative (incor-
rect) graphs. Overall, we leverage three types of
negative graphs (synthetic structural, synthetic se-
mantic, and human-created semantic) and develop
multiple contrastive learning models (Hjelm et al.,
2018; Chen et al., 2020a; Khosla et al., 2020; Gunel
et al., 2020) for effectively distinguishing between
correct and incorrect graphs. Our first method is a
Generate-and-Refine model that first generates an
initial graph and further refines it using another T5
model. Next, we propose two improved models –
one that uses the negative graphs in a max-margin
formulation and another that uses both positive and
negative graphs with a InfoNCE (van den Oord
et al., 2018) contrastive loss. On two real-world
tasks of explanation graph generation and temporal
graph generation, with varied node and edge se-
mantics, we observe that our proposed methods and
graph perturbation techniques generalize well and
lead to improvements in both structural and seman-
tic accuracy of graphs. Further analysis of different
types of negative graphs reveal that the human-error
graphs are the hardest, most diverse, and hence the
best type of negatives to learn from in contrastive
learning. Hence, we also develop methods to auto-
matically generate more such human-like semantic
negative graphs, which leads to further improve-
ments. We summarize our contributions as follows.

• We present a detailed analysis of graph structure
and semantics for end-to-end explanation graph
generation via pre-trained language models.

• We propose simple yet effective graph pertur-
bation techniques for constructing positive and
negative graphs and use them in different graph
contrastive learning models.

• Our methods lead to significant improvements in
both structural and semantic accuracy of expla-
nation graphs and also generalize to other similar
graph generation tasks.
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2 Related Work

Graph Generation from Language Models.
Representative works on graph generation from lan-
guage models include knowledge graph completion
models like Comet (Bosselut et al., 2019; Hwang
et al., 2021) that fine-tune GPT (Radford et al.,
2019; Brown et al., 2020) and BART (Lewis et al.,
2020), generation of event influence graphs (Tan-
don et al., 2019; Madaan et al., 2020), partially
ordered scripts (Sakaguchi et al., 2021), tempo-
ral graphs (Madaan and Yang, 2021), entailment
trees (Dalvi et al., 2021), proof graphs (Saha et al.,
2020; Tafjord et al., 2021; Saha et al., 2021a)
and commonsense explanation graphs (Saha et al.,
2021b). Linguistic tasks like syntactic parsing
(Zhou et al., 2020; Mohammadshahi and Hender-
son, 2021; Kondratyuk and Straka, 2019) and se-
mantic parsing (Chen et al., 2020b; Shin et al.,
2021) have also made use of language models.
There is also a large body of work on building
generative models for learning unconditional graph
distributions (You et al., 2018; Simonovsky and
Komodakis, 2018; Grover et al., 2019; Liao et al.,
2019; Shi* et al., 2020) without any semantics at-
tached to the graphs. Our novelty lies in presenting
the first systematic analysis of structure and se-
mantics of graph generation for two downstream
NLP tasks using pre-trained language models and
improving them via constrastive learning.
Data Augmentation and Contrastive Learning.
Data Augmentation for NLP (Hedderich et al.,
2020; Feng et al., 2021; Chen et al., 2021) has
been a powerful tool in low-data settings, ranging
from its early usages with synonym replacement
(Kolomiyets et al., 2011; Wang and Yang, 2015) to
more recent methods of perturbing hidden represen-
tations (Miyato et al., 2016; Shen et al., 2020). Con-
trastive learning, beyond its historical use in learn-
ing robust image representations (Chopra et al.,
2005; Hadsell et al., 2006; Gutmann and Hyväri-
nen, 2010; Hoffer and Ailon, 2015; Hjelm et al.,
2018; Chen et al., 2020a; He et al., 2020) has been
explored in supervised scenarios (Khosla et al.,
2020; Gunel et al., 2020) and for NLP, in train-
ing self-supervised language models (Fang et al.,
2020), learning sentence representations (Gao et al.,
2021), document clustering (Zhang et al., 2021),
summarization (Liu and Liu, 2021; Cao and Wang,
2021) and generic text generation (Lee et al., 2020).
It has also been used in unconditional graph repre-
sentation learning (You et al., 2020; Hassani and

Khasahmadi, 2020; Zhu et al., 2021). We follow
this rich line of work to explore their applicabil-
ity in supervised graph generation tasks from pre-
trained language models in low-resource settings.
Generative Commonsense Reasoning. While tra-
ditional commonsense reasoning tasks are discrim-
inative in nature (Zellers et al., 2018; Talmor et al.,
2019; Sap et al., 2019; Bisk et al., 2020; Sakaguchi
et al., 2020; Talmor et al., 2021), recent focus
on generative evaluation have led to the develop-
ment of tasks and benchmarks that explore unstruc-
tured commonsense sentence generation (Lin et al.,
2020), event influence graph generation (Madaan
et al., 2020), commonsense explanation graph gen-
eration (Saha et al., 2021b), etc. We experiment
with two graph generation tasks, primarily focus-
ing on ExplaGraphs (Saha et al., 2021b) because
of the clear distinction in the underlying structural
constraints and the semantic aspect dealing with
commonsense.

3 Motivation and Background

Our primary task of interest is a recently pro-
posed commonsense explanation graph genera-
tion task called ExplaGraphs (Saha et al., 2021b).
In Sec. 6.4, we also experiment with another re-
lated task of temporal graph generation (Madaan
et al., 2020). In both these tasks, the structural
aspect deals with satisfying certain task-specific
constraints on the graph (like connectivity) and
the semantic aspect deals with the construction of
meaningful edges (that adhere to commonsense).
Below we discuss ExplaGraphs briefly and ana-
lyze pre-trained language models for their ability
to generate explanation graphs.

ExplaGraphs (Saha et al., 2021b). In this task,
given a belief and an argument, an agent has to
perform two sub-tasks – predict the stance (sup-
port/counter) and also generate an explanation
graph explaining the stance. Explanation graphs
are structured explanations that capture explicit rea-
soning chains between the belief and the argument,
thereby making models more interpretable. For-
mally, an explanation graph is a connected DAG
with nodes as concepts and edges as commonsense
relations between two concepts (See Fig. 1). The
concepts are either part of the belief or the argu-
ment (represented with solid boxes) or any exter-
nal commonsense phrase (represented with dashed
boxes). Each edge in the graph forms a coher-
ent sentence and the graph, when read as a whole,
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forms reasoning structures explaining why the ar-
gument supports or refutes the belief. Saha et al.
(2021b) evaluate explanation graphs by defining
two accuracy metrics – (1) Structural Correctness
Accuracy (StCA): Fraction of graphs that satisfy
all structural constraints, and (2) Semantic Correct-
ness Accuracy (SeCA): Fraction of graphs that are
both structurally and semantically correct. A graph
is considered structurally correct if it satisfies the
following constraints: (1) it is connected, (2) it is a
DAG, (3) the edge relations belong to a pre-defined
list, (4) there are at least two concepts from the
belief and two from the argument. If all these con-
straints are satisfied, the graph is next evaluated
for semantic correctness by a model-based met-
ric (Saha et al., 2021b). It works on the principle
that an explanation graph is semantically correct if
the stance inferred from the belief and the graph
matches the gold stance. Refer to Appendix A for
a detailed description of all evaluation metrics.

Baseline T5 Model. Following prior work (Saha
et al., 2021b), we generate explanation graphs as
post-hoc explanations by conditioning on the belief,
argument and the predicted stance.2 The stance pre-
diction model is a fine-tuned RoBERTa model (Liu
et al., 2019) which we keep unaltered from prior
work and focus on the graph generation sub-task.
We generate graphs as linearized strings in an end-
to-end manner by leveraging an encoder-decoder
pre-trained language model, T5 (Raffel et al., 2020).
The input to the model is the concatenated belief,
argument and the stance along with a prefix “Gen-
erate an Explanation Graph for”. The graphs are
encoded as concatenated bracketed edges, in which
the edges are ordered according to the Depth First
Search (DFS) order of the nodes. While we choose
T5 because of its superior performance (Saha et al.,
2021b), we do not make any model-specific as-
sumptions and graphs can be generated via any
encoder-decoder style pre-trained language model
(e.g., see Appendix E for results with BART).

Analysis of T5 Baseline. We analyze the quality
of the explanation graphs generated by T5 in Ta-
ble 1. We vary the amount of training data from 500
to 2368 samples (all) and report StCA and SeCA
along with other metrics like Graph-BertScore (G-
BS) introduced in prior work (Saha et al., 2021b).

2These are rationalizing models (Rajani et al., 2019; Hase
et al., 2020) that first predict the stance, followed by the graph.
While graphs can also be generated first, followed by the
stance, we experiment with one model family for this work.

Count StCA↑ SeCA↑ G-BS↑ GED↓ EA↑

500 42.5 20.7 36.3 0.68 20.4
1000 49.2 23.7 42.2 0.63 26.2
1500 50.7 33.2 43.4 0.61 28.2
2368 51.0 34.7 43.9 0.61 29.5

Table 1: Performance of T5-large with varying amount
of training data on ExplaGraphs test set.

While the structural accuracy improves with in-
crease in training data, the gain saturates quickly
and even after training on the entire data, we find
a significant fraction of graphs to violate the struc-
tural constraints. We note that a high 91% of T5’s
generations are valid graph encodings i.e., the gen-
erated strings can be parsed into graphical struc-
tures (without any post-processing), suggesting that
T5 is able to learn the graph encoding from a fairly
small amount of supervision. However, it fails
to satisfy the various structural constraints – (1)
20% of the graphs are disconnected, (2) 6% of the
graphs contain cycles, and (3) 14% of the graphs
have less than two concepts from the belief or from
the argument. Note that these constraints are not
encoded in the model, thus making them fairly
hard to learn from limited supervision. On the
fraction of structurally correct graphs, the model
makes further semantic errors and a lower SeCA
of 35% demonstrates that. In Fig. 1, we show ex-
amples of structurally incorrect and semantically
incorrect graphs generated by T5. Overall, these
results indicate that there is a significant scope for
improvement both on graph structure and seman-
tics, thus motivating us to develop methods with
design choices aimed at improving both aspects.

4 Graph Perturbations

Most prior works that collect human-annotated
graphs for a downstream NLP task have found
such collection processes to be quite expensive
and tedious (Tandon et al., 2019; Dalvi et al.,
2021; Saha et al., 2021b). For instance, Saha et al.
(2021b) obtained high-quality data only after mul-
tiple rounds of refinement and Dalvi et al. (2021)
employ trained expert annotators for entailment
tree construction. The corresponding datasets are
also relatively small in size (2-3k), thus limiting
the prospect of large-scale training. Hence, our ap-
proach towards improving explanation graph gener-
ation is through data augmentation techniques that
perturb human-curated graphs to construct positive
and negative graphs. As noted earlier, we wish
to construct graphs that enable better learning of
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Figure 2: Our T5-based contrastive learning framework
for graph generation using positively and three kinds of
negatively perturbed graphs.

structural graph constraints and their semantics.

4.1 Positive Graph Perturbations

One simple method to augment existing training
data is to create synthetic positive graphs. These
graphs should be created such that all the task-
specific constraints continue to hold upon perturba-
tions. E.g., removing a node that makes the graph
disconnected is a prohibitive action. Hence, we
choose nodes (concepts) that are not part of the
belief or the argument (also termed as common-
sense nodes) and replace them with phrases that
are synonymous to the original phrases. To do so,
we select words from the concept with POS tags of
Adjective, Noun, Adverb, or Verb and replace them
with that synonym from Wordnet (Miller, 1995)
for which the cosine similarity of their word2vec
representations (Mikolov et al., 2013) is the high-
est.3 Fig. 2 shows an example of a positive graph
perturbation where the node “loss of jobs” is re-
placed with “going of business”. Note that our node
replacement operations will always lead to struc-
turally similar graphs. Automatically constructing
structurally diverse positive graphs is a challenging
problem and we leave that for future work.

4.2 Negative Graph Perturbations

In order to enable the model to learn from explicit
hard negatives, we construct three diverse types of
graphs – synthetically constructed structural nega-
tives for learning graph constraints and synthetic

3We also tried similar replacement operations with
antonyms. However, they often lead to semantically incon-
sistent graphs. E.g., A causes B does not always imply A not
causes not B or not A not causes not B.

and human-created semantic negatives to capture a
fairly large space of semantically incorrect graphs.
Below we discuss the construction of these graphs.

Synthetic & Structurally Negative Graphs
(SySt). As shown previously, one common
source of errors in the generated explanation graphs
is the violation of structural constraints. To enable
learning these constraints, we generate four types
of negative graphs by performing the following
perturbations on each ground-truth graph: (1) re-
moving an edge at random such that the resultant
graph becomes disconnected, (2) adding an edge
between two randomly chosen nodes such that the
resultant graph becomes cyclic, (3) adding and re-
moving one edge at random such that the resultant
graph becomes both disconnected and cyclic, (4)
removing a node randomly such that the resultant
graph contains less than two concepts from the
belief or argument. Fig. 2 shows an example of
a disconnected graph created as part of the struc-
turally negative graphs.

Synthetic & Semantic Negative Graphs (SySe).
We also construct semantically incorrect negative
explanation graphs. While the previous category
of negative graphs (SySt) captures structural con-
straints, SySe captures the relational knowledge
in graphs. Semantic incorrectness typically arises
from inappropriate relations that do not adhere to
human commonsense (“loss of jobs; is a; humane”).
We create such negative graphs by selecting a ran-
dom number of edges and then replacing the re-
lations with some other relations. Fig. 2 shows
a semantic negative graph in which the relations
marked with dashed lines are perturbed.

Human-created & Semantic Negative Graphs
(HuSe). The space of semantically incorrect
graphs is fairly large and in order to augment our
synthetic negative graphs with harder structurally-
diverse negatives, we make use of human-created
incorrect graphs from prior work (Saha et al.,
2021b).4 Humans make subtle errors, thus mak-
ing them ideal negative candidates for contrastive
learning. ExplaGraphs was constructed via an iter-
ative framework in which the graphs are iteratively
refined (up to two times) until they are verified as
correct. We treat these refined graphs as negatives.
Specifically, in two rounds, if an initial graph G1

4Publicly released by Saha et al. (2021b) at https:
//github.com/swarnaHub/ExplaGraphs/blob/
main/data/refinement_graphs_train.tsv.
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is refined into graphs G2 and G3 successively, then
G1 and G2 are considered as negative graphs. Un-
like SySe which only perturb the relations, these
negatives are structurally diverse (see Fig. 2) and
capture semantics not just at the level of each edge
but for the graph as a whole (e.g., a graph might
be refined because it does not explain the stance).
Note that human-created graphs can only be seman-
tically incorrect, since their structural correctness
is already ensured during construction.

5 Augmentation with Perturbed Graphs

Next we propose different methods of leveraging
these positive and negative graphs for explanation
graph generation. Our models either use only posi-
tive graphs as simple data augmentation, only neg-
ative graphs in a max-margin model, or both in a
Generate & Refine model and a Contrastive model.

5.1 Augmentation with Positive Graphs

In this first simple approach, we augment the train-
ing data with the synthetically created positive
graphs and retrain the baseline T5 model.

5.2 Max-Margin Graph Generation Model

Our next model leverages the negatively perturbed
graphs in a max-margin formulation. During train-
ing, given a (belief, argument, stance) context x, a
ground truth graph G(g) and a negative graph G(n),
linearized into a sequence of words {y(g)i }ki=1 and
{y(n)i }li=1 respectively, we define the loss function
L as a linear combination of the standard cross-
entropy loss LCE and a max-margin loss LMM ,
defined between a word y(g)i of the positive graph
and a word y(n)i of the negative graph.

LCE =
∑
i

−logPθ(y
(g)
i |y

(g)
<i , x)

LMM =
∑
i

max(0, logPθ(y
(g)
i |y

(g)
<i , x)

− logPθ(y
(n)
i |y

(n)
<i , x) + β)

L = LCE + αLMM

where α and β (margin) are hyperparameters. As
noted earlier, the baseline model often makes
commonsense mistakes in distinguishing between
positive and negative relations (“causes” vs “not
causes”) and our relation perturbing negative
graphs and the max-margin loss component facili-
tate learning a better boundary between them.

5.3 Generate & Refine Graph Generation

ExplaGraphs was constructed using a “Refinement”
phase wherein the initially constructed graphs that
are marked incorrect by human verifiers are fur-
ther refined by another set of annotators. Here
we emulate the graph refinement phase with the
help of a model. Specifically, our approach is a
2-stage pipeline – first, an initial graph is generated
by the baseline T5 model and second, an Expla-
nation Graph Refinement model conditions on the
initial graph, along with the belief, argument and
the stance to refine the graph. The refiner is also
a T5 model fine-tuned with the prefix “Refine the
Explanation Graph for” on all positive and negative
graphs described in Sec. 4. Note that our approach
differs from the actual data collection process in
two aspects. Unlike the human-annotated graphs,
which are refined only for semantic correctness, the
model-generated graphs can be both structurally
and semantically incorrect. Second, our approach
does not involve a graph verification stage and thus,
the refiner model acts on all (correct and incorrect)
graphs generated in stage 1 and is thus trained with
both correct and incorrect graphs.

5.4 Contrastive Graph Generation Model

Our Contrastive Graph Generation Model (Fig. 2)
also leverages both positive and negative graphs
but instead of doing so in a 2-stage Generate & Re-
fine model, uses a contrastive learning framework
(Khosla et al., 2020; Gunel et al., 2020). Given a
ground-truth graph G(g), a positive graph G(p) and a
set of negative graphs {G(n)i }Mi=1, contrastive learn-
ing aims to learn the graph representations such that
the gold graph’s representation is close to that of the
synthetic positive graph while being distant from
those of the negative graphs. Similar to Cao and
Wang (2021), we use the last layer of the decoder in
T5 as the representation of each token in the graph
and obtain the graph representation by averaging
over the constituent token representations. Let the
graph representations be denoted by h(g), h(p) and
{h(n)i }Mi=1. Given H(g) = {h(p)}

⋃
{h(n)i }Mi=1, our

overall loss combines the cross-entropy loss LCE

and the InfoNCE contrastive loss (van den Oord
et al., 2018) LCL as shown below.

LCL = − log
exp(sim(h(g), h(p))/τ)∑

hi∈H(g) exp(sim(h(g), hi)/τ)

L = LCE + αLCL
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SA↑ StCA↑ SeCA↑ G-BS↑ GED↓ EA↑

T5-Base (Saha et al., 2021b) 87.2 38.7 19.0 33.6 0.71 20.8
T5-Large 87.2 51.0 34.7 43.9 0.61 29.5

Generate & Refine 87.2 52.5 37.7 45.3 0.60 30.0
Pos Data Aug 87.2 54.5 41.5 46.9 0.58 30.2
Max-Margin 87.2 56.7 43.5 48.6 0.57 30.5
Contrastive 87.2 60.5 42.5 52.1 0.52 33.1

Upper Bound 91.0 91.0 83.5 71.1 0.38 46.8

Table 2: Comparison of all models across all metrics on the ExplaGraphs (Saha et al., 2021b) test set. Improvement
in SeCA is statistically significant (computed using Bootstrap test (Efron and Tibshirani, 1994)) with p < 0.005.

where α and the temperature τ are the hyperpa-
rameters and sim() denotes the cosine similarity
function between the graph representations.

6 Experiments

6.1 Impact of Different Models on Graph
Structural and Semantic Accuracy

In Table 2, we compare the various modeling tech-
niques described in Sec. 5 and their effect on the
structural and semantic correctness of the gener-
ated graphs. While our primary metrics of inter-
est are Graph Structural Accuracy (StCA) and Se-
mantic Accuracy (SeCA), following prior work
(Saha et al., 2021b), we also report Stance Accu-
racy (SA), Graph-BertScore (G-BS), Graph Edit
Distance (GED) and Edge Accuracy (EA).

Effect of Model Size and Training Data. The
T5-Large model uses the same setup as the T5-Base
model experimented with in Saha et al. (2021b).
We observe that using a larger T5 model improves
StCA by 12% and SeCA by 16%. This finding is
in line with other commonsense reasoning tasks
(Lourie et al., 2021; Elazar et al., 2021) which also
show that fine-tuning a larger language model typ-
ically leads to better performance. Together with
the results reported in Table 1, we conclude that
much of the improvement in explanation graph gen-
eration comes from increasing the training data and
using a larger model. Given its superior perfor-
mance, we build our proposed models on T5-large.

Results with Generate & Refine Model. The
Generate & Refine model (Sec. 5.3) improves all
metrics; however the gains are small. Note that
this model refines all graphs (correct or not) and
can lead to already correct graphs becoming incor-
rect after refinement. In practice, we observe that
most graphs do not change much after refinement
which we believe stems from the model’s inability
to distinguish between correct and incorrect graphs.

Effect of Positive Graph Perturbations. On re-
training T5 augmented with the positively per-
turbed graphs (Sec. 5.1), we observe that it obtains
significant improvement over T5 and Generate &
Refine both in structural and semantic accuracy.
Note that, by construction, the positive graphs only
differ in the commonsense concepts (not part of
the belief or argument) while keeping the struc-
ture intact. Hence, the model has more supervision
about the semantics of the graphs as opposed to the
structural constraints. This is reflected in the larger
improvement in SeCA. The positive graphs, being
structurally correct, also reinforces the model’s be-
lief about structural correlation with correct graphs,
thus leading to some improvement in StCA as well.

Effect of Negative Graph Perturbations. The
Max-Margin model (Sec. 5.2) leverages all struc-
turally and semantically incorrect graphs and ob-
tains up to 6% and 9% improvement in StCA and
SeCA respectively over the baseline T5 model. The
model implicitly learns the structural constraints
through relevant supervision and the margin-based
loss enables it to learn a better boundary between
correct and incorrect graphs. Similarly, the seman-
tically perturbed graphs improves the model’s rela-
tion prediction capability between concepts. The
Max-Margin model outperforms the Pos Data Aug
model because of the former having access to both
structural and semantic supervision while the latter
is only augmented with structurally similar graphs.

Effect of Positive and Negative Graph Pertur-
bations with Contrastive Learning. The Con-
trastive Graph Generation model (Sec. 5.4) lever-
ages both positive and negative graphs and im-
proves StCA to 60% with comparable SeCA to the
Max-Margin model. The overall improvements in
StCA and SeCA are 9% and 8% respectively com-
pared to T5. We hypothesize that the constrastive
model does not lead to further improvement in
SeCA because of the structurally similar positive
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StCA↑ SeCA↑ G-BS↑ GED↓ EA↑

T5-Large 46.5 31.6 36.8 0.66 26.7
+ SySt 50.2 34.1 40.7 0.64 27.4
+ SySe 50.7 35.1 40.8 0.63 27.3
+ HuSe 49.5 38.4 39.4 0.64 26.1

Table 3: Ablation study showing the effect of different
types of negative graphs on ExplaGraphs dev set.

Valid↑ StCA↑ G-BS↑

T5-Base 88.8 88.7 54.4
Max-Margin 89.1 87.7 55.7
Contrastive 97.5 96.9 57.2

Table 4: Comparison of T5, Max-Margin and Con-
trastive models for temporal graph generation.

graphs. This can potentially be improved by incor-
porating more structurally diverse graphs. Finally,
our best SeCA is far from perfect and significant
future work can be done in improving the graph
semantics. Further ablations of negative graphs
and human evaluation are done on the Max-Margin
model, due to its slightly higher SeCA.

6.2 Human Evaluation of Graph Semantics
Automatically evaluating graphs for semantic cor-
rectness is challenging. We conduct human evalua-
tion to further validate our findings. We compare
the graphs generated by T5 and our Max-Margin
model on Amazon Mechanical Turk where three
annotators choose which graph is better or if they
are mostly similar (instructions in Appendix F). For
fair comparison, we evaluate only those samples
where both models predict the correct stance and
the graphs are also structurally correct. In fact, this
lets us evaluate the semantic aspect in isolation
when both graphs are structurally correct. With
majority voting on 150 samples, we observe that
our Max-Margin model’s graphs are preferred 13%
more times compared to those of the T5 model
(43% vs 30% and statistically significant with p <
0.05) while in 22% cases, the graphs are marked
similar (remaining have no majority).

6.3 Ablation with Negative Graphs
In Table 3, we show the effect of different types
of negative graphs. We compare the results on the
ExplaGraphs validation set by leveraging Synthetic
Structural (SySt), Synthetic Semantic (SySe) and
Human-created Semantic (HuSe) graphs with the
Max-Margin graph generation model. All types
of negatives graphs lead to consistent increase in
SeCA. Leveraging human-created negative graphs
leads to a bigger gain in SeCA because of the hard-

Belief: Collectivism is terrible for society.
Argument: Collectivism increases empathy.
Stance: Counter

Increases
empathy

Collectivism
capable of

causes

Improve human
relationship

Terrible for
society

is not a
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Collectivism
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Terrible for
society

is not a
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Figure 3: Qualitative analysis of explanation graphs.

ness and diversity in these graphs and hence are the
best candidates for contrastive learning.

6.4 Generalization to Other Graph
Generation Tasks

We test the generalizability of constructing struc-
turally and semantically perturbed graphs for con-
trastive learning by also experimenting on a tempo-
ral graph generation task (Madaan and Yang, 2021)
that requires constructing a temporal graph from a
document. The nodes in the graph are events from
the document and the edges are temporal relations
between events (“before”, “after”, etc). Follow-
ing our overall goal of improving graph generation
with limited data, we randomly sample 1.3% of
the overall corpus (∼9.5k samples) as the train-
ing data such that all graphs are connected DAGs.
Similar to ExplaGraphs, we create structurally neg-
ative graphs with disconnected and cyclic graphs
and semantic negative graphs by perturbating the
temporal relations. E.g., if an edge relation is “be-
fore”, we replace it with “after”. We construct
positive graphs by replacing edges like “A before
B” with “B after A” (more details in Appendix C).
In Table 4, we report structural correctness accu-
racy (StCA) (percentage of connected DAGs) and
Graph-BertScore (G-BS) for measuring approxi-
mate semantic correctness wrt gold graphs. We
observe that our contrastive model not only gener-
ates more valid graph encodings but also improves
StCA by 8% and G-BS by 3%.
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StCA↑ SeCA↑ G-BS↑ GED↓ EA↑

SySt + SySe + HuSe 49.5 38.4 39.4 0.64 26.1
SySt + SySe + HuSe + HuSe-Gen (IP) 53.5 38.7 42.1 0.62 28.1
SySt + SySe + HuSe + HuSe-Gen (AE) 52.0 40.2 41.3 0.62 28.2

Table 5: Effect of training the Max-Margin model with additional Human-like Semantic Negative Graphs on
ExplaGraphs dev set. IP and AE refer to the two thresholding techniques for filtering generated negatives.

6.5 Analysis of Generated Graphs
Fig. 3 shows an example of the graphs generated by
different models (more examples in Appendix F).
Unlike T5, our models’ graphs are both structurally
and semantically correct with diverse common-
sense nodes (“Groupthink”, “Good Thing”). While
our models generate more correct graphs, they lack
in structural diversity – the Contrastive model gen-
erates 77% of linear graphs (i.e., the nodes are
in a linear chain) which is comparable to 75% in
the T5 model. This can be attributed to our struc-
turally similar positive graphs as the model does
not obtain enough supervision to generate diverse
graphs. Structural diversity is not a measure of
graph correctness; however, like diverse text gener-
ation (Vijayakumar et al., 2018), generating diverse
graphs is an interesting direction for future work.

6.6 Generating Human-like Semantic
Negatives (HuSe-Gen)

In ExplaGraphs, human-created negatives account
for 38% of the samples for which the initially con-
structed graph was incorrect and was refined. More-
over, we see in the previous section that human-
error graphs are the best negative candidates for
contrastive learning (which is intuitive since tricky
and subtle errors made by expert human annota-
tors would make for some of the hardest nega-
tives/distractors for a contrastive learning model to
learn from). Hence, in this final section, we further
explore whether it is also possible to automatically
imitate and generate more of such harder human-
like incorrect graphs for the remaining samples as
well. Our method consists of the following steps.
Human-like Negative Edge Generation. We first
fine-tune a T5 model that conditions on the belief,
argument and the stance to generate a set of incor-
rect edges (which is the set of edges that are present
in the incorrect graph and not in the refined graph).
Human-like Negative Graph Construction.
This generated set of incorrect edges is then added
to the correct graph to construct the incorrect graph,
such that it is structurally correct and hence repre-
sentative of human-like erroneous graphs.
Filtering High-quality Negative Graphs. Con-

trastive models will only benefit from these nega-
tives if the negative edge generation model is accu-
rate and generates edges that are actually incorrect.
Hence, we control the quality of the generated in-
correct graphs by the following two techniques –
(a) Thresholding via fraction of Acceptable Edges
(AE): We say that a generated incorrect edge is ac-
ceptable if it is not part of the correct graph and
can be added to the correct graph without violat-
ing any structural constraints. We compute the
fraction of acceptable edges for every generated
negative graph and choose only those graphs with
AE above a certain threshold δ. Intuitively, this
ensures that a high fraction of the generated edges
are actually incorrect and hence when added to the
correct graph, will lead to a sufficiently different
(human-like) incorrect graph. (b) Thresholding via
Incorrect Probability of a graph (IP): We use our
SeCA metric model (that classifies a graph into
support, counter, or incorrect class) to compute the
probability of the generated graph being incorrect
and choose those graphs that are above a certain
threshold γ of incorrect probability.

We set δ = 0.4 and γ = 0.5 (tuned on the
dev set) and train the Max-margin model using
these additionally generated human-like negative
graphs. As shown in Table 5 both thresholding
approaches lead to further improvements over us-
ing just the human-created negative graphs. These
initial promising results for emulating hard/tricky
human errors as strong negatives for contrastive
learning will hopefully lead to further future work
in this interesting direction.

7 Conclusion

We presented an empirical study of graph structure
and semantics for end-to-end explanation graph
generation from pre-trained language models and
showed that the generated graphs often violate
structural constraints or are semantically incorrect.
We significantly improve both the structural and se-
mantic accuracy of graph generation by proposing
contrastive learning models that leverage simple
yet efficient methods of graph perturbations and
also generalize to similar graph generation tasks.
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Ethical Considerations

From an ethics standpoint, we provide a brief
overview and show samples from the datasets that
our models are trained on throughout the paper and
also in the Appendix. Explanation graph genera-
tion improves the interpretability of neural com-
monsense reasoning systems and could prove to
be effective in understanding and debugging such
models. Hence we do not foresee any major risks
or negative societal impact of our work. However,
like any other ML model, the graphs generated
by our models may not always be completely ac-
curate and hence should be used with caution for
real-world applications.
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A Evaluation Metrics for ExplaGraphs

Below we provide brief descriptions of the evalu-
ation metrics used for the ExplaGraphs task. For
further details, we refer readers to prior work (Saha
et al., 2021b).

Structural Correctness Accuracy of Graphs
(StCA). It computes the fraction of graphs where
all the structural constraints are satisfied.

Semantic Correctness Accuracy of Graphs
(SeCA). SeCA is a model-based metric that com-
putes the fraction of graphs that are both struc-
turally and semantically correct. For computing
SeCA, prior work trains a 3-way RoBERTa (Liu
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SySt SySe HuSe Total

7522 2368 1336 11226

Table 6: Count of negative graphs in each category.

et al., 2019) classifier that given a belief and a gen-
erated explanation graph, infers whether the graph
supports the belief, counters the belief or is incor-
rect (because of incoherent edges). If it predicts
support or counter and this stance matches the gold
stance, then the graph is considered semantically
correct. In essense, SeCA works on the principle
that an explanation graph is semantically correct if
a stance can be unambiguously inferred from it (by
a model in this case or a human) and that stance
is the same as the gold stance. Note that SeCA is
a reference-free metric (does not use the ground-
truth graph) and hence is invariant to structural
variations in explanation graphs.

Graph-BertScore (G-BS). Graph-BertScore is
an extension of BertScore (Zhang* et al., 2020) for
computing the degree of match between the pre-
dicted graphs and the ground-truth graphs. It treats
a graph as a set of edges and computes the best
match between the gold edges and the predicted
edges, where the matching score between a pair of
edges is given by the BertScore F1.

Graph Edit Distance (GED). GED is the stan-
dard Graph Edit Distance for graphs, measuring
the number of edit operations (addition, deletion,
and replacement of nodes and edges) to transform
one graph to the other and further normalized by
an appropriate normalizing constant.

Edge Accuracy (EA). The final metric, Edge
Accuracy (EA) measures the fraction of edges in
the graph that are important. An edge is considered
important if removing it from the graph leads to a
drop in the gold stance prediction confidence.

B Statistics of Graph Perturbations

We create a total of 11k negative graphs. Ta-
ble 6 shows the respective counts of the negative
graphs belonging to synthetic structural (SySt), syn-
thetic semantic (SySe) and human-created semantic
(HuSe) categories.

C Temporal Graph Generation

The task of temporal graph generation requires con-
structing a temporal graph from a document (see
Fig. 4). The nodes in the graph are events from the

Dataset Train Dev Test

ExplaGraphs 2368 398 400
Temporal (Sampled) 9531 953 949

Table 7: Train, validation and test split sizes of the
two datasets. For Temporal Graph Generation, we ran-
domly sample 1.3% of the overall corpus (Madaan and
Yang, 2021).

document (e.g., “Markovic jailed” or “Covering
up attempted murder”) and the edges are tempo-
ral relations between the events (e.g., “Markovic
jailed; before; Covering up attempted murder”).
The authors consider five temporal relations (“be-
fore”, “after”, “simultaneous”, “is included” and
“includes”) and build an automatically constructed
large-scale dataset for the task. Following our over-
all goal of improving graph generation in limited
data settings, we randomly sample 1.3% of the over-
all corpus (∼ 9.5k samples) as the training corpus
such that all graphs are connected DAGs.5 Follow-
ing Madaan and Yang (2021), we represent graphs
in DOT format (Koutsofios and North, 1996) as
shown in Fig. 4. We find that the specifics of the
graph representations do not matter much, as long
as all the edges are concatenated in one particular
ordering (either DFS, BFS or Topological order).

We construct semantic negative graphs by ran-
domly sampling a fraction of the edges and per-
forming the following operations. If an edge rela-
tion is one of “before”, “after” or “simulatenous”,
we replace it with any other relation from this set
and if the relation is one of “is included” or “in-
cludes” we replace it with the other relation. Note
that these perturbations will always lead to incor-
rect graphs because “A before B” implies that “A
after B” or “A simultaneous B” do not hold. Fi-
nally, we construct positive graphs by randomly
sampling a fraction of edges and replacing them
using the following rules: (1) “A before B” with
“B after A” and viseversa, (2) “A simultaneous B”
with “B simultaneous A”, (3) “A includes B” with
“B is included A”. Note that all these operations
preserve the temporal meaning of the graph and
are done in a way such that the perturbed graph
continues to be a connected DAG.

5Since the dataset was constructed automatically, we found
about 10% of the graphs to be disconnected or cyclic.
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SA↑ StCA↑ SeCA↑ G-BS↑ GED↓ EA↑

T5-Base 86.2 35.4 15.5 27.7 0.75 19.8
T5-Large 86.2 46.5 31.6 36.8 0.66 26.8

Generate & Refine 86.2 46.8 34.4 37.2 0.66 27.2
Pos Data Aug 86.2 50.0 37.6 39.6 0.64 28.4
Max-margin 86.2 49.5 38.4 39.4 0.64 26.1
Contrastive 86.2 52.7 37.9 41.7 0.62 29.8

Table 8: Comparison of our models with baseline T5 models across all metrics on ExplaGraphs dev set.

SA↑ StCA↑ SeCA↑ G-BS↑ GED↓ EA↑

BART-Base 87.2 25.7 13.0 22.0 0.81 12.8
BART-Large 87.2 34.2 22.2 28.9 0.75 20.0
Contrastive 87.2 40.7 26.3 31.3 0.71 22.3

Table 9: Effect of Contrastive Learning with BART on ExplaGraphs test set.

D Experimental Setup

Table 7 shows the number of train, validation and
test samples of the two datasets we experiment
with. We build our models on top of the Hugging
Face transformers library (Wolf et al., 2020).6 All
models for the ExplaGraphs dataset7 (Saha et al.,
2021b) are trained with a batch size of 8 and an ini-
tial learning rate of 3 ∗ 10−5 for a maximum of 15
epochs. The maximum input and output sequence
lengths are both set to 150. For the max-margin
graph generation model, we set both the hyperpa-
rameters α (mixing ratio) and β (margin) to 1.0
while for the contrastive graph generation model,
we set α to 0.1. For the temporal graph genera-
tion task8 (Madaan and Yang, 2021), we train all
models with a batch size of 4 and an initial learn-
ing rate of 3 ∗ 10−5 for a maximum of 10 epochs.
The maximum input and output sequence lengths
are set to 512 and 256 respectively. On this task,
the hyperparameters α and β for the max-margin
model are again set to 1.0 while for the contrastive
graph generation model, we set α to 0.2.

Across all models and tasks, graphs are gen-
erated using beam search decoding with a beam
size of 4. The batch size and learning rate are
manually tuned in the range {4, 8, 16} and {10−5,
2 ∗ 10−5, 3 ∗ 10−5} respectively and the best mod-
els are chosen based on the respective validation
set performance. Similarly, the mixing ratio hy-
perparameter α is manually tuned in the range

6https://github.com/huggingface/
transformers

7https://github.com/swarnaHub/
ExplaGraphs

8https://github.com/madaan/
temporal-graph-gen

StCA↑ SeCA↑ G-BS↑ GED↓ EA↑

Max-Margin 56.7 43.5 48.6 0.57 30.5
+ Atomic 58.2 45.0 49.9 0.56 30.9

Table 10: Effect of fine-tuning with additional com-
monsense knowledge from Atomic.

{0.1, 0.2, 0.5, 1.0}. The random seed is set to 42
in all our experiments. The total number of param-
eters in our models is similar to T5-Base (220M)
or T5-Large (770M) depending on the base archi-
tecture. All our experiments are executed on a
single A100 Nvidia GPU. Each epoch of the con-
trastive model has an average runtime of 30 mins
for ExplaGraphs and 2.5 hours for Temporal Graph
Generation.

E Results

Table 8 shows the results of all models on the Ex-
plaGraphs (Saha et al., 2021b) validation set.

Experiments with BART. In Table 9, we show
the performance of BART (Lewis et al., 2020) on
ExplaGraphs (Saha et al., 2021b) test set. Unsur-
prisingly, a larger BART model obtains a much
higher StCA and SeCA compared to BART-Base.
However, we find T5 to perform much better on
this task. Applying contrastive learning on top
of BART leads to improvements across all met-
rics, thereby showing our method’s generalizability
across different pre-trained language models.

Effect of Additional Commonsense Knowledge.
In Table 10, we explore the impact of integrating
additional commonsense knowledge to our Max-
Margin model. Specifically, we first fine-tune a
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his guns lockedbefore

after

after

Tests by police laboratory technicians also found traces of Mr. Starkey's blood under the grip of the
weapon, he said. The police came into possession of the revolver last July 31, when Mr. Romeo's father,
Ronald, surrendered it to Nassau police officials, explaining that he ''did not believe that Anthony had the
emotional capacity to have guns around the house, ''Mr. Wilutis told the court. When told of these
charges, Mr. Scaring said: ''Why has it taken them so many months to come up with these results? Later,
however, he said he had been with Mr. Starkey on Fire Island, the documents state. Mr. Romeo told
detectives that he visited Fire Island in October and November, but contended that his guns had been
safely locked away in Locust Valley then. Mr. Scaring said his client ''was not on Fire Island at the time of
the murder, which the lawyer said ''took place at least two days after he left. ''Mr. Romeo is 22 or 23
years old and ''employed, though I don't know in exactly what capacity, ''Mr. Scaring said.''

node01: he visited island; node02: contended; node03: he left; node04: his guns locked;
node05: place took; node01 node02 before; node03 node04 before; node01 node04
after; node02 node04 after; node03 node05 after; node04 node05 before

Document

DOT representation for Graph

Temporal Graph

Figure 4: An example of the Temporal Graph Generation Task (Madaan et al., 2020) showing the source document,
the target temporal graph and the corresponding DOT representation.

Figure 5: Interface for human evaluation of commonsense explanation graphs.

T5 model on the facts based on ConceptNet rela-
tions from ATOMIC-2020 (Hwang et al., 2021),
a large-scale commonsense knowledge base. The
fine-tuning objective is to predict the target concept
given the source concept and the relation. Next,
we fine-tune this model further on the end-task of
graph generation which leads to small improve-
ments in both StCA and SeCA. This suggests that
better methods of inducing commonsense knowl-
edge in these models can potentially lead to bigger
gains with more semantically coherent graphs.

F Human Evaluation

In Fig. 5, we show the interface for human ver-
ification of commonsense explanation graphs on

Amazon Mechanical Turk. We select crowdwork-
ers who are located in the US with a HIT approval
rate higher than 96% and at least 1000 HITs ap-
proved. Since graph evaluation is a challenging
task, we first explain how to read the graphs and
also provide clear guidelines for comparing the
quality of the two graphs.9

G Examples of Generated Explanation
Graphs

In Fig. 6, 7, 8 and 9, we show various examples
of explanation graphs generated by our models. In
Fig. 6 and 7, our proposed models improve upon

9The payment for each HIT is 0.25$ at the rate of 12-15$
per hour.
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Belief: Since fast foods are greasy and fattening, banning them would control obesity.
Argument: McDonalds has salads.
Stance: Counter

mcdonalds

Fast Food

part of

not has  
context

greasy and
fattening

Gold Graph T5-generated Graph 
 Semantically Incorrect  

Max-Margin Graph Contrastive Graph

Salads

part of

Fast Food

greasy and
fattening Salads

banning them

control obesity

capable of has context

part of

causes

Salads

healthy

fast food

has context

not created by

Mcdonalds

greasy

control obesity

synonym of

not capable of

banning

not desires

has property
fast food

greasy

control obesity

has property

not capable of

salads

created by

Mcdonalds

at location

Figure 6: Example of explanation graphs generated by different models. The baseline T5-generated graph is seman-
tically incorrect (incoherent relations marked in dashed red) while our proposed models generate both structurally
and semantically correct graphs.

the incorrect semantic relations from the T5 base-
line graphs. Fig. 8 shows an example where all
generated graphs, while different, are correct. Fi-
nally, Fig 9 shows an example where although our
proposed models improve the semantic aspect com-
pared to the baseline graph, the generated graphs
are disconnected and hence structurally incorrect.
Overall, our quantitative results and human eval-
uation suggest that there is significant room for
improvement on the task of commonsense explana-
tion graph generation.

1206



Belief: Homeschooling is not great for children.
Argument: There are plenty of ways for children in homeschooling to socialize.
Stance: counter

Gold Graph Max-Margin Graph

socialize

Homeschooling

capable of

Children

desire

remote learning

synonym of

great for
children

is a

socialize

Homeschooling

capable of

great for
children

is not a

plenty of
ways

has context

children

Homeschooling

used for

socialize

capable of

great

is a

children

Homeschooling

used for

socialize

capable of

great

is a

Contrastive GraphT5-generated Graph 
 Semantically Incorrect  

Figure 7: Example of explanation graphs generated by different models. The baseline T5-generated graph is seman-
tically incorrect (incoherent relations marked in dashed red) while our proposed models generate both structurally
and semantically correct graphs.

Belief: People can relax on a journey when the autonomous car does the driving, allowing them to arrive refreshed.
Argument: Driving is exhausting.
Stance: support

Gold Graph T5-generated Graph Max-Margin Graph

autonomous
cars

capable of

driving

exhausting

not capable of 

can relax

not has context

driving

autonomous
cars

capable of

exhausting

is a

relaxation

desires

Contrastive Graph

people

used for

driving

exhausting

is a

relaxation

desires

autonomous
cars

created by

arriving
refreshed

capable of

driving

autonomous
cars

capable of

exhausting

is a

people

has context

arrive
refreshed

desires

Figure 8: Example of explanation graphs generated by different models. All models generate structurally and
semantically correct graphs while the individual nodes and edges differ.
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Belief: Autonomous cars are more dangerous than man-driven cars.
Argument: Autonomous cars are not safe for humans. 
Stance: support

Gold Graph Max-Margin Graph
Structurally Incorrect 
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cars

desires

humans

safe

not has 
 context

not safe

antonym of

safe for
humans

autonomous
cars

capable of
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has context

dangerous
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safe for
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Contrastive Graph
Structurally Incorrect 

T5-generated Graph 
 Semantically Incorrect  

Figure 9: Example of explanation graphs generated by different models. T5 generates a semantically incorrect
graph. Our models generate graphs, which while contain meaningful edges, are disconnected and hence are struc-
turally incorrect.

1208


