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Abstract

As a broad and major category in machine
reading comprehension (MRC), the generalized
goal of discriminative MRC is answer predic-
tion from the given materials. However, the
focuses of various discriminative MRC tasks
may be diverse enough: multi-choice MRC
requires model to highlight and integrate all
potential critical evidence globally; while ex-
tractive MRC focuses on higher local bound-
ary preciseness for answer extraction. Among
previous works, there lacks a unified design
with pertinence for the overall discriminative
MRC tasks. To fill in above gap, we pro-
pose a lightweight POS-Enhanced Iterative
Co-Attention Network (POI-Net) as the first
attempt of unified modeling with pertinence,
to handle diverse discriminative MRC tasks
synchronously. Nearly without introducing
more parameters, our lite unified design brings
model significant improvement with both en-
coder and decoder components. The evalua-
tion results on four discriminative MRC bench-
marks consistently indicate the general effec-
tiveness and applicability of our model, and
the code is available at https://github.
com/Yilin1111/poi-net.

1 Introduction

Machine reading comprehension (MRC) as a chal-
lenging branch in NLU, has two major categories:
generative MRC which emphasizes on answer gen-
eration (Kočiský et al., 2018), and discriminative
MRC which focuses on answer prediction from
given contexts (Baradaran et al., 2020). Among
them, discriminative MRC is in great attention of
researchers due to its plentiful application scenar-
ios, such as extractive and multi-choice MRC two
major subcategories. Given a question with cor-
responding passage, extractive MRC asks for pre-
cise answer span extraction in passage (Joshi et al.,

∗ Corresponding author. This paper was partially sup-
ported by Key Projects of National Natural Science Founda-
tion of China under Grants U1836222 and 61733011.

Multi-choice MRC Example
... In addition, Lynn’s pioneering efforts also provide public
educational forums via Green Scenes – a series of three
hour events, each focusing on specific topics teaching
Hoosiers how to lead greener lifestyles. ...
Q: What can we learn about Green Scenes?
A. It is a scene set in a three-hour film.
B. It is a series of events focusing on green life. (Golden)
C. It is a film set in Central Indiana.
D. It is a forum focusing on green lifestyle.
Extractive MRC Example
... Early versions were in use by 1851, but the most success-
ful indicator was developed for the high speed engine inven-
tor and manufacturer Charles Porter by Charles Richard
and exhibited at London Exhibition in 1862. ...
Q: Where was the Charles Porter steam engine indicator
shown?
Golden Answer: London Exhibition
Imprecise Answer 1: London Exhibition in 1862
Imprecise Answer 2: exhibited at London Exhibition

Table 1: Different focuses of multi-choice MRC task
(RACE) and extractive MRC task (SQuAD 2.0). Texts
in bold are the critical information or fallibility parts.

2017; Trischler et al., 2017; Yang et al., 2018),
while multi-choice MRC requires suitable answer
selection among given candidates (Huang et al.,
2019; Khashabi et al., 2018). Except for the only
common goal shared by different discriminative
MRCs, the focuses of extractive and multi-choice
MRC are different to a large extent due to the diver-
sity in the styles of predicted answers: multi-choice
MRC usually requires to highlight and integrate all
potential critical information among the whole pas-
sage; while extractive MRC pays more attention
to precise span boundary extraction at local level,
since the rough scope of answer span can be located
relatively easily, shown in Table 1.

In MRC field, several previous works perform
general-purpose language modeling with consid-
erable computing cost at encoding aspect (Devlin
et al., 2019; Clark et al., 2020; Zhang et al., 2020c),
or splice texts among diverse MRC tasks simply
to expand training dataset (Khashabi et al., 2020),
without delicate and specialized design for sub-
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Figure 1: Overview of POI-Net. s, c,×,MP donate the normalized attention score, similarity calculation, scalar
multiplication, and max pooling operation respectively. The shade of color represent the contribution of correspond-
ing embedding to operating question.

categories in discriminative MRC. Others utilize
excessively detailed design for one special MRC
subcategory at decoding aspect (Sun et al., 2019b;
Zhang et al., 2020a), lacking the universality for
overall discriminative MRC.

To fill in above gap in unified modeling for dif-
ferent discriminative MRCs, based on core focuses
of extractive and multi-choice MRC, we design
two complementary reading strategies at both en-
coding and decoding aspects. The encoding de-
sign enhances token linguistic representation at
local level, which is especially effective for ex-
tractive MRC. The explicit possession of word
part-of-speech (POS) attribute of human leads to
precise answer extraction. In the extractive sam-
ple from Table 1, human extracts golden answer
span precisely because “London Exhibition” is a
proper noun (NNP) corresponding to interrogative
qualifier (WDT) “Where” in the question, while im-
precise words like “1862” (cardinal number, CD)
and “exhibited” (past tense verb, VBD) predicted
by machines will not be retained. Thus, we inject
word POS attribute explicitly in embedding form.

The decoding design simulates human recon-
sideration and integration abilities at global level,
with especial effect for multi-choice MRC. To han-
dle compound questions with limited attention, hu-
man will highlight critical information in turns,
and update recognition and attention distribution
iteratively. Inspired by above reconsideration strat-
egy, we design Iterative Co-Attention Mechanism
with no additional parameter, which iteratively exe-

cutes the interaction between passage and question-
option (Q−O) pair globally in turns. In the multi-
choice example from Table 1, during the first inter-
action, model may only focus on texts related to
rough impression of Q − O pair such as “Green
Scenes”, ignoring plentiful but scattered critical in-
formation. But with sufficient iterative interaction,
model can ultimately collect all detailed evidence
(bold in Table 1). Furthermore, we explore a se-
ries of attention integration strategies for captured
evidence among interaction turns.

We combine two above methods and propose
a novel model called POI-Net (POS-Enhanced
Iterative Co-Attention Network), to alleviate the
gap between machines and humans on discrimina-
tive MRC. We evaluate our model on two multi-
choice MRC benchmarks, RACE (Lai et al., 2017)
and DREAM (Sun et al., 2019a); and two extractive
MRC benchmarks, SQuAD 1.1 (Rajpurkar et al.,
2016) and SQuAD 2.0 (Rajpurkar et al., 2018), ob-
taining consistent and significant improvements,
with nearly zero additional parameters.

2 Our Model

We aim to design a lightweight, universal and effec-
tive model architecture for various subcategories
of discriminative MRC, and the overview of our
model is shown in Figure 1, which consists of
four main processes: Encoding (§2.1), Interaction
(§2.2), Integration (§2.3) and Output (§2.4).
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Figure 2: The input representation flow of POI-Net. The subscripts of POS Embedding are POS tags of input words.

2.1 POS-Enhanced Encoder

Based on pre-trained contextualized encoder AL-
BERT (Lan et al., 2020), we encode input tokens
with an additional POS embedding layer, as Fig-
ure 2 shows. Since the input sequence will be
tokenized into subwords in the contextualized en-
coder, we tokenize sequences in word-level with
nltk tokenizer (Bird et al., 2009) additionally and
implement POS-Enhanced Encoder, where each
subword in a complete word will share the same
POS tag.

In detail, input sequences are fed into nltk POS
tagger to obtain the POS tag of each word such as
“JJ”. Subject to Penn Treebank style, our adopted
POS tagger has 36 POS tag types. Considering
on the specific scenarios in discriminative MRC,
we add additional SPE tag for special tokens (i.e.,
[CLS], [SEP ]), PAD tag for padding tokens and
ERR tag for potential unrecognized tokens. Ap-
pendix A shows detailed description of POS tags.

The input embedding in our model is the nor-
malized sum of Subword Embedding and POS Em-
bedding. Following the basic design in embedding
layers of BERT-style models, we retain Token Em-
bedding Et, Segmentation Embedding Es and Posi-
tion Embedding Ep in subword-level, constituting
Subword Embedding. For POS Embedding EPOS ,
we implement another embedding layer with the
same embedding size to Subword Embedding, guar-
anteeing all above indicator embeddings are in the
same vector space. Formulaically, the input embed-
ding E can be represented as:

E = Norm(Et + Es + Ep + EPOS),

where Norm() is a layer normalization function
(Ba et al., 2016).

2.2 Iterative Co-Attention Mechanism

POI-Net employs a lightweight Iterative Co-
Attention module to simulate human inner recon-
sidering process, with no additional parameter.

2.2.1 Preliminary Interaction
POI-Net splits all N input token embeddings into
passage domain (P ) and question (or Q−O pair)
domain (Q) to start P −Q interactive process. To
generate the overall impression of the given pas-
sage or question like humans, POI-Net concen-
trates all embeddings in corresponding domain into
one Concentrated Embedding by max pooling:

CE1
P = MaxPooling(EP0, ..., EPN ) ∈ RH ,

CE1
Q = MaxPooling(EQ0, ..., EQN ) ∈ RH ,

where H is the hidden size, PN/QN is the token
amount of P/Q domain. Then POI-Net calculates
the similarity between each token in EP /EQ and
CE1

Q/CE1
P , to generate attention score s for each

token contributing to the P −Q pair. In detail, we
use cosine similarly for calculation:

s1P0, ..., s
1
PN = Cosine([EP0, ..., EPN ], CE1

Q),

s1Q0, ..., s
1
QN = Cosine([EQ0, ..., EQN ], CE1

P ).

We normalize these scores to [0, 1] by min-max
scaling, then execute dot product with correspond-
ing input embeddings:

E1
Pi = ŝ1Pi · EPi, E1

Qi = ŝ1Qi · EQi,

where ŝPi is the normalized attention score of i-
th passage token embedding, E1

Pi is the attention-
enhanced embedding of i-th passage token after
preliminary interaction (the 1-st turn interaction).

2.2.2 t-th Turn Interaction
To model human reconsideration ability between
passage and question in turns, we add iterable mod-
ules with co-attention mechanism, as the Iterative
Interaction Layer in Figure 1. Detailed processes
in the t-th turn interaction are similar to preliminary
interaction:

CEt
Q = MaxPooling(Et−1

Q0 , ..., Et−1
QN ) ∈ RH ,

CEt
P = MaxPooling(Et−1

P0 , ..., Et−1
PN ) ∈ RH ,
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stP0, ..., s
t
PN = Cosine([EP0, ..., EPN ], CEt

Q),

stQ0, ..., s
t
QN = Cosine([EQ0, ..., EQN ], CEt

P ),

Et
P i = ŝtP i · EPi, Et

Qi = ŝtQi · EQi.

Note that, during all iteration turns, we calculate
attention scores with the original input embedding
E instead of attention-enhanced embedding Et−1

from the (t-1)-th turn, due to:
1) There is no further significant performance

improvement by replacing E with Et−1 (< 0.2%
on base size model), comparing to adopted method;

2) With the same embedding E, attention integra-
tion in §2.3 can be optimized into attention score
integration, which is computationally efficient with
no additional embedding storage1.

2.3 Attention Integration
Human recommends to integrate all critical in-
formation from multiple turns for a comprehen-
sive conclusion, instead of discarding all findings
from previous consideration. In line with above
thought, POI-Net returns attention-enhanced em-
bedding Et = ŝt · E of each turn (we only store
ŝt in an optimized method), and integrates them
with specific strategies. We design four integra-
tion strategies according to the contribution pro-
portion of each turn and adopt Forgetting Strategy
ultimately.

• Average Strategy: The attention network
treats normalized attention score ŝt of each
turn equally, and produces the ultimate rep-
resentation vector R with average value of
ŝt:

R =
1

T

T∑
t=1

ŝt · E ∈ RN×H ,

where T is the total amount of iteration turns.

• Weighted Strategy: The attention network
treats ŝt with two normalized weighted coeffi-
cients βt

P , β
t
Q, which measure the contribution

of the t-th turn calculation:

R =

∑T
t=1 β

t
P ŝ

t
P∑T

t=1 β
t
P

·EP +

∑T
t=1 β

t
Qŝ

t
Q∑T

t=1 β
t
Q

·EQ,

β̃t
P = Max(st−1

Q0 , ..., s
t−1
QN ),

β̃t
Q = Max(st−1

P0 , ..., st−1
PN ),

1Approximate 15.3% training time is saved on average for
each iteration turn.

βt
P =

β̃t
P + 1

2
, βt

Q =
β̃t
Q + 1

2
,

where s0Pi = s0Qi = 1.0. The design moti-
vation for βt

P , β
t
Q is intuitive: when Concen-

trated Embedding CEt
Q/CEt

P (calculating at-
tention score at the t-th turn) has higher con-
fidence (behaving as higher maximum value
in st−1

Q /st−1
P due to max pooling calculation),

system should pay more attention to input em-
bedding Et

P /E
t
Q at the t-th turn2.

• Forgetting Strategy: Since human will partly
forget knowledge from previous considera-
tion and focus on findings at current turn, we
execute normalization operation of attention
scores from two most previous turns itera-
tively:

R =
sTP + βt

P ŝ
T
P

1 + βT
P

· EP +
sTQ + βt

Qŝ
T
Q

1 + βT
Q

· EQ,

sTP =
sT−1
P + βt

P ŝ
T−1
P

1 + βT−1
P

,

sTQ =
sT−1
Q + βt

Qŝ
T−1
Q

1 + βT−1
Q

.

During the iterative normalization, the ulti-
mate proportion of attention scores from pre-
vious turns will be diluted gradually, which
simulates the effect of forgetting strategy3.

• Intuition Strategy: In some cases, human
can solve simple questions in intuition with-
out excessive consideration, thus we introduce
two attenuation coefficients αt

P , α
t
Q for atten-

tion scores from the t-th turn, which decrease
gradually as the turn of iteration increases:

R =

∑T
t=1 α

t
P ŝ

t
P∑T

t=1 α
t
P

·EP +

∑T
t=1 α

t
Qŝ

t
Q∑T

t=1 α
t
Q

·EQ,

αt
P =

t∏
i=1

βi
P , α

t
Q =

t∏
i=1

βi
Q.

2Setting βt
P /β

t
Q as learnable parameters cannot bring fur-

ther improvement since the contribution proportion of each
turn varies with the specific circumstance of input samples.

3Method of activation functions in LSTM (Hochreiter and
Schmidhuber, 1997) may filter out information completely
in one single-turn calculation, which cannot bring consistent
improvement in our experiments.
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2.4 Adaptation for Discriminative MRC

2.4.1 Multi-choice MRC
The input sequence for multi-choice MRC is
[CLS] P [SEP ] Q + Oi [SEP ], where + de-
notes concatenation, Oi denotes the i-th answer
options. In Output Layer, the representation vector
R ∈ RN×H is fed into a max pooling operation to
generate general representation:

R = MaxPooling(R) ∈ RH .

Then a linear softmax layer is employed to calcu-
late probabilities of options, and standard Cross
Entropy Loss is employed as the total loss. Option
with the largest probability is determined as the
predicted answer.

2.4.2 Extractive MRC
The input sequence for extractive MRC can be rep-
resented as [CLS] P [SEP ] Q [SEP ], and we
use a linear softmax layer to calculate start and end
token probabilities in Output Layer. The training
object is the sum of Cross Entropy Losses for the
start and end token probabilities:

L = ys · log(s) + ye · log(e),

s, e = softmax(Linear(R)) ∈ RN ,

where s/e are the start/end probabilities for all to-
kens and ys/ye are the start/end targets.

For answer prediction, since some benchmarks
have unanswerable questions, we first score the
span from the i-th token to the j-th token as:

scoreij = si + ej , 0 ≤ i ≤ j ≤ N,

then the span with the maximum score scorehas is
the predicted answer. The score of null answer is:
scoreno = s0 + e0, where the 0-th token is [CLS].
The final score is calculated as scorehas−scoreno,
and a threshold δ is set to determine whether the
question is answerable, which is heuristically com-
puted in linear time. POI-Net predicts the span
with the maximum score if the final score is above
the threshold, and null answer otherwise.

3 Experiments

3.1 Setup & Dataset

The experiments are run on 8 NVIDIA Tesla
P40 GPUs and the implementation of POI-Net is
based on the Pytorch implementation of ALBERT

(Paszke et al., 2019). We set the maximum itera-
tion turns in Iterative Co-Attention as 3. Table 2
shows the hyper-parameters of POI-Net achieving
reported results. As a supplement, the warmup rate
is 0.1 for all tasks.

Hyperparam LR MSL BS TE SS
DREAM 1e-5 512 24 4 400
RACE 1e-5 512 32 2 4000

SQuAD 1.1 1e-5 512 24 2 2000
SQuAD 2.0 1e-5 512 24 2 4000

Table 2: The fine-tuning hyper-parameters of POI-Net.
LR: learning rate, MSL: maximum sequence length, BS:
batch size, TE: training epochs, SS: save steps.

We evaluate POI-Net on two multi-choice MRC
benchmarks: RACE (Lai et al., 2017), DREAM
(Sun et al., 2019a), and two extractive MRC bench-
marks: SQuAD 1.1 (Rajpurkar et al., 2016) and
SQuAD 2.0 (Rajpurkar et al., 2018). The detailed
introduction is shown as following:

RACE is a large-scale multi-choice MRC task
collected from English examinations which con-
tains nearly 100K questions. The passages are in
the form of articles and most questions need con-
textual reasoning, and the domains of passages are
diversified.

DREAM is a dialogue-based dataset for multi-
choice MRC, containing more than 10K questions.
The challenge of the dataset is that more than 80%
of the questions are non-extractive and require rea-
soning from multi-turn dialogues.

SQuAD 1.1 is a widely used large-scale ex-
tractive MRC benchmark with more than 107K
passage-question pairs, which are produced from
Wikipedia. Models are asked to extract precise
word span from the Wikipedia passage as the an-
swer of the given passage.

SQuAD 2.0 retains the questions in SQuAD 1.1
with over 53K unanswerable questions, which are
similar to answerable ones. For SQuAD 2.0, mod-
els must not only answer questions when possible,
but also abstain from answering when the question
is unanswerable with the paragraph.

3.2 Results
We take accuracy as evaluation criteria for multi-
choice benchmarks, while exact match (EM) and

4Due to the test sets of SQuAD 1.1 and SQuAD 2.0 are
not open for free evaluation with different random seeds, we
report the results on development set instead.
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Model DREAM RACE SQuAD 1.1 SQuAD 2.0
Dev Test Dev(M/H) Test(M/H) EM F1 EM F1

BERTbase (Devlin et al., 2019) 63.4 63.2 64.6 (– / –) 65.0 (71.1 / 62.3) 80.8 88.5 77.6 80.4
ALBERTbase (Lan et al., 2020) 64.5 64.4 64.0 (– / –) – (– / –) 82.3 89.3 77.1 80.0
BERTlarge (Devlin et al., 2019) 66.0 66.8 72.7 (76.7 / 71.0) 72.0 (76.6 / 70.1) 85.5 92.2 82.2 85.0
SG-Net (Zhang et al., 2020c) – – – (– / –) 74.2 (78.8 / 72.2) – – 85.6 88.3
RoBERTalarge (Liu et al., 2019) 85.4 85.0 – (– / –) 83.2 (86.5 / 81.8) – – 86.5 89.4
RoBERTalarge+MMM (Jin et al.,
2020)

88.0 88.9 – (– / –) 85.0 (89.1 / 83.3) – – – –

ALBERTxxlarge (Lan et al., 2020) 89.2 88.5 – (– / –) 86.5 (89.0 / 85.5) 88.3 94.1 85.1 88.1
ALBERTxxlarge + DUMA (Zhu
et al., 2020)

89.9 90.4 88.1 (– / –) 88.0 (90.9 / 86.7) – – – –

ALBERTbase (rerun) 65.7 65.6 67.9 (72.3 / 65.7) 67.2 (72.1 / 65.2) 82.7 89.9 77.9 81.0
POI-Net on ALBERTbase 68.6 68.5 72.4 (76.3 / 70.0) 71.0 (75.7 / 69.0) 84.5 91.3 79.5 82.7
ALBERTxxlarge (rerun) 88.7 88.3 86.6 (89.4 / 85.2) 86.5 (89.2 / 85.4) 88.2 93.9 85.4 88.5
POI-Net on ALBERTxxlarge 90.0 90.3 88.1 (91.2 / 86.3) 88.3 (91.5 / 86.8) 89.5 95.0 87.7 90.6

Table 3: Results of BERT-style models on DREAM, RACE, SQuAD 1.1 and SQuAD 2.0. Results in the first
domain are from the leaderboards and corresponding papers4.

a softer metric F1 score for extractive benchmarks.
The average results of three random seeds are
shown in Table 3, where we only display several
BERT-style models with comparable parameters.
Appendix B reports the complete comparison re-
sults with other public works on each benchmark.

The results show that, for multi-choice bench-
marks, our model outperforms most baselines and
comparison works, and passes the significance test
(Zhang et al., 2021) with p − value < 0.01 in
DREAM (2.0% average improvement) and RACE
(1.7% average improvement). And for extractive
benchmarks, though the performance of baseline
ALBERT is strong, our model still boosts it es-
sentially (1.3% average improvement on EM for
SQuAD 1.1 and 2.3% for SQuAD 2.0). Further-
more, we report the parameter scale and train-
ing/inference time costs in §4.4.

4 Ablation Studies

In this section, we implement POI-Net on
ALBERTbase for further discussions, and such set-
tings have the similar quantitative tendency to POI-
Net on ALBERTxxlarge.

4.1 Ablation

Model RACE SQuAD 1.1
Acc EM F1

Baseline (ALBERTbase) 67.88 82.66 89.91
POI-Net on ALBERTbase 72.44 84.48 91.28

- POS Embedding 71.74 83.51 90.64
- Iterative Co-Attention 69.02 83.65 90.77

Baseline (rerun BERTbase) 64.73 81.21 88.84
POI-Net on BERTbase 68.02 83.43 90.47

Table 4: Ablation studies on RACE and SQuAD 1.1.

To evaluate the contribution of each component
in POI-Net, we perform ablation studies on RACE
and SQuAD 1.1 development sets and report the
average results of three random seeds in Table 4.
The results indicate that, both POS Embedding and
Iterative Co-Attention Mechanism provide consid-
erable contributions to POI-Net, but in different
roles for certain MRC subcategory.

For multi-choice MRC like RACE, Iterative Co-
Attention Mechanism contributes much more than
POS Embedding (3.86% v.s. 1.14%), since multi-
choice MRC requires to highlight and integrate
critical information in passages comprehensively.
Therefore, potential omission of critical evidence
may be fatal for answer prediction, which is guar-
anteed by Iterative Co-Attention Mechanism, while
precise evidence span boundary and POS attributes
are not as important as the former.

On the contrary, simple POS Embedding even
brings a little more improvement than the well-
designed Iterative Co-Attention (0.99% v.s. 0.85%
on EM) for extractive MRC. In these tasks, model
focuses on answer span extraction with precise
boundaries, and requires to discard interference
words which not exactly match questions, such as
redundant verbs, prepositions and infinitives (“po-
litically and socially unstable” instead of “to be
politically and socially unstable”), or partial inter-
ception of proper nouns (“Seljuk Turks” instead
of “Turks”). With the POS attribute of each word,
POI-Net locates the boundaries of answer spans
precisely5. Since extractive MRC does not require
comprehensive information integration like multi-

5Note that, the improvement of POI-Net on EM score is
consistently higher than F1 score, as corroboration.
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choice MRC, the improvement from Iterative Co-
Attention Mechanism is less significant.

Besides, we also implement POI-Net on other
contextualized encoders like BERT, and achieve
significant improvements as Table 4 shows. The
consistent and significant improvements over vari-
ous baselines verify the universal effectiveness of
POI-Net.

4.2 Role of POS Embedding

POS Type Golden Answer POI-Net Baseline
NN 11192 11254 11504
CD 3511 3723 3816

NNS 2875 2812 2743
JJ 1654 1671 1774
IN 396 308 242

VBN 348 321 299
RB 339 315 284

VBG 331 328 293

Table 5: The POS type statistics of boundary words
in golden answer, predicted answer by POI-Net and
baseline ALBERTbase. We only display POS types
whose occurrence is higher than 300.

NN NNS JJ IN CD RB VBN VBG
POS Types

0
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900

Er
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POS Embedding
Difference

Figure 3: Error POS classification case statistics of POI-
Net and baseline. For explanation, the first square pillar
(Height: 866) means, there are 866 cases whose POS
type of boundary word in golden answer is “NN”, but
the baseline predicts an error word in a non-“NN” type.

To study how POS Embedding enhances token
representation, we make a series of statistics on
SQuAD 1.1 development set about: 1) POS type of
boundary words from predicted spans, as Table 5
shows; 2) error POS classification of POI-Net and
its baseline ALBERTbase, as Figure 3 shows.

The statistical results show, with POS Embed-
ding, the overall distribution of the POS types of
answer boundary words predicted by POI-Net is
more similar to golden answer, compared with its
baseline; and the amount of error POS classifica-
tion cases by POI-Net also reduces significantly.
And there are also two further findings:

1) The correction proportion of error POS clas-
sification (8.09%) is much higher than correction
proportion of overall error predictions (1.82%) in
POI-Net, which indicates the correction of POS
classification benefits mostly from the perception
of word POS attributes by POS Embedding, instead
of the improvement on overall accuracy.

2) Though answers in SQuAD 1.1 incline to dis-
tribute in several specific POS types (“NN”, “CD”,
“NNS” and “JJ”), POS Embedding prompts model
to consider words in each POS type more equally
than the baseline, and the predicted proportions
of words in rarer POS type (“IN”, “VBN”, “RB”,
“VBG” and so on) increase.

4.3 Research on the Robustness of POS
Embedding

Robustness is one of the important indicators to
measure model performance, when there is numer-
ous rough data or resource in applied tasks. To
measure the anti-interference of POS Embedding,
we randomly modify part of POS tags from nltk
POS tagger to error tags, and the results on SQuAD
1.1 development set are shown in Table 6.

Model EM F1
Baseline (ALBERTbase) 82.66 89.91
POI-Net on ALBERTbase 84.48 91.28

5% error POS tags 84.35 91.21
10% error POS tags 84.06 91.05
20% error POS tags 83.87 90.80
- POS Embedding 83.51 90.64

Table 6: Results of robustness research of POS Embed-
ding on dev sets from SQuAD 1.1.

The results indicate that, POI-Net possesses sat-
isfactory POS Embedding robustness, and the im-
provement brought by POS Embedding will not
suffer a lot with a slight disturbance (5%). We
argue that the robustness of POI-Net may bene-
fit from the integration with other contextualized
embeddings, such as Token Embedding Et which
encodes the contextual meaning of current word or
subword. Though more violent interference (20%)
may further hurt token representations, existing ma-
ture POS taggers achieve 97% + accuracy, which
can prevent the occurrence of above situations.

4.4 Role of Iterative Co-Attention Mechanism

To explore the most suitable integration strat-
egy and maximum iteration turn in Iterative Co-
Attention Mechanism, we implement our proposed
strategies with different maximum iteration turns,
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together with a baseline replacing Iterative Co-
Attention mechanism by a widely used Multi-
head Co-Attention mechanism (Devlin et al., 2019;
Zhang et al., 2020a, 2021) for comparison in Fig-
ure 4. We take RACE as the evaluated benchmark
due to the significant effect of attention mechanism
to multi-choice MRC.
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Figure 4: Comparative experiments on Iterative Co-
Attention Mechanism. When iteration turn is 0, the
model is equivalent to baseline with POS Embedding.

As the figure shows, forgetting strategy leads to
the best performance, with slight improvement than
weighted strategy. Both these two strategies are in
line with the logical evidence integration in human
reconsidering process, while average strategy and
intuition strategy may work against common hu-
man logic. From the trends of four strategies in
multiple iterations, we conclude that 2 or 3 iter-
ation turns for Iterative Co-Attention lead to an
appropriate result, due to:

1) Fewer iteration turns may lead to inadequate
interaction between passage and question, and
model may focus on rough cognition instead of
exhaustive critical information;

2) Excessive iteration turns may lead to over-
integration of information, declining the contribu-
tion by real critical evidence.

Compared to the typical Multi-head Co-
Attention mechanism, our proposed Iterative Co-
Attention mechanism obtains higher performance
with more iterations, indicating it has stronger iter-
ative reconsideration ability.

Besides, Iterative Co-Attention defeats Multi-
head Co-Attention on both parameter size and train-
ing time cost. As the parameter comparison in Ta-
ble 7 shows, POI-Net basically brings no additional
parameter except an linear embedding layer for
POS Embedding. Multi-head Co-Attention mecha-
nism and models based on it (like DUMA in Table
3) introduces much more parameters, with slightly

Model Parameters
ALBERTbase (Lan et al., 2020) 12M
ALBERTbase (rerun) 11.14M
Multi-head Co-Attention on
ALBERTbase

17.94M

POI-Net on ALBERTbase 11.15M
ALBERTxxlarge (Lan et al., 2020) 235M
ALBERTxxlarge (rerun) 212.29M
Multi-head Co-Attention on
ALBERTxxlarge

404.50M

POI-Net on ALBERTxxlarge 212.30M

Table 7: Training parameters in POI-Net and baselines.

lower performance. We also record time costs on
RACE for one training epoch on ALBERTbase, It-
erative Co-Attention costs 54, 62, 72, 83, 96 min-
utes from 0-turn iteration to 4-turn iterations, while
Multi-head Co-Attention costs 54, 65, 76, 89, 109
minutes instead, with 8.3% increase on average.

4.5 Visualization

We perform a visualization display for discrimina-
tive MRC examples in Table 1, as Figure 5 shows.
For the extractive example, benefited from POS
Embedding, POI-Net predicts the precise answer
span, based on the interrogative qualifier “where”
and POS attributes of controversial boundary to-
kens “exhibited”, “at”, “London”, “Exhibition”,

“1862”.
And for the multi-choice example, without pro-

posed Iterative Co-Attention Mechanism, the over-
all distribution of attention is more scattered. The
baseline can only notice special tokens like [CLS]
at the 0-th turn, and even interrogative qualifier
“how” due to the similar usage to “what” in the ques-
tion. With the execution of Iterative Co-Attention,
POI-Net pays more attention on discrete critical
words like “Green Scenes” and “events” at the 1-st
turn, “series” and “focusing” at the 2-nd turn and
“greener lifestyle” at the 3-rd turn. After the integra-
tion of all above critical evidence, POI-Net predicts
the golden option ultimately.

5 Related Studies

5.1 Semantic and Linguistic Embedding

To cope with challenging MRC tasks, numerous
powerful pre-trained language models (PLMs) have
been proposed (Devlin et al., 2019; Lewis et al.,
2020; Raffel et al., 2020). Though advanced PLMs
demonstrate strong ability in contextual represen-
tation, the lack of explicit semantic and linguistic
clues leads to the bottleneck of previous works.

8689



G
re

en
Sc

en
es

[C
LS

] -- a
se

rie
s of

th
re

e
ho

ur
ev

en
ts ,

ea
ch

fo
cu

si
ng on

sp
ec

ifi
c

to
pi

cs
te

ac
hi

ng H
o

#o
si

#e
rs

ho
w to

le
ad

gr
ee

n
#e

r
lif

es
ty

le #s .

Turn 0
Turn 1
Turn 2
Turn 3 0.0

1.0

Sc
or

es

·
·
·
·

···

Question-Option: What can we learn about Green Scenes? It is a series of events focusing on green life.

Baseline
POI-Net

·
·
·
·

m
an

uf
ac

tu
re

r
C

ha
rle

s
Po

rte
r by

C
ha

rle
s

R
ic

ha
rd

an
d

ex
hi

bi
te

d at
Lo

nd
on

Ex
hi

bi
tio

n in
18

62
.

Question: Where was the Charles Porter steam engine indicator shown?
Softmaxed Start Logits

0.0020

0.0060

Lo
gi

ts

·
·
·
·

m
an

uf
ac

tu
re

r
C

ha
rle

s
Po

rte
r by

C
ha

rle
s

R
ic

ha
rd

an
d

ex
hi

bi
te

d at
Lo

nd
on

Ex
hi

bi
tio

n in
18

62
.

Softmaxed End Logits

Figure 5: Visualization of POI-Net and its baseline on extractive example (upper) and multi-choice example (lower)
in Table 1. The indicator for extractive example is softmaxed logit, and for multi-choice example is normalized
attention score ŝtP .

Benefited from the development of semantic
role labeling (Li et al., 2018) and dependency syn-
tactic parsing (Zhou and Zhao, 2019), some re-
searchers focus on enhancing semantic representa-
tions. Zhang et al. (2020b) strengthen token rep-
resentation by fusing semantic role labels, while
Zhang et al. (2020c) and Bai et al. (2021) imple-
ment additional self attention layers to encode syn-
tactic dependency. Furthermore, Mihaylov and
Frank (2019) employ multiple discourse-aware se-
mantic annotations for MRC on narrative texts.

Instead of semantic information, we pay atten-
tion to more accessible part-of-speech (POS) infor-
mation, which has been widely used into non-MRC
fields, such as open domain QA (Chen et al., 2017),
with much lower pre-processing calculation con-
sumption but higher accuracy (Bohnet et al., 2018;
Strubell et al., 2018; Zhou et al., 2020). However,
previous application of POS attributes mostly stays
in primitive and rough embedding methods (Huang
et al., 2018), leading to much slighter improvement
than proposed POI-Net.

5.2 Attention Mechanism

In discriminative MRC field, various attention
mechanisms (Raffel and Ellis, 2015; Seo et al.,
2017; Wang et al., 2017; Vaswani et al., 2017) play
increasingly important roles. Initially, attention
mechanism is mainly adopted on extractive MRC
(Yu et al., 2018; Cui et al., 2021), such as multi-
ple polishing of answer spans (Xiong et al., 2017)
and multi-granularity representations generation

(Zheng et al., 2020; Chen et al., 2020). Recently,
researchers notice its special effect for multi-choice
MRC. Zhang et al. (2020a) model domains bidirec-
tionally with dual co-matching network, Jin et al.
(2020) use multi-step attention as classifier, and
Zhu et al. (2020) design multi-head co-attentions
for collaborative interactions.

We thus propose a universal Iterative Co-
Attention mechanism, which performs interaction
between paired input domains iteratively, to hope-
fully enhance discriminative MRC. Unlike other
works introducing numerous parameters by compli-
cated attention network (Zhang et al., 2020a), our
POI-Net is more effective and efficient with almost
no introduction of additional parameters.

6 Conclusion

In this work, we propose POS-Enhanced Iterative
Co-Attention Network (POI-Net), as a lightweight
unified modeling for multiple subcategories of dis-
criminative MRC. POI-Net utilizes POS Embed-
ding to encode POS attributes for the preciseness of
answer boundary, and Iterative Co-Attention Mech-
anism with integration strategy is employed to high-
light and integrate critical information at decoding
aspect, with almost no additional parameter. As the
first effective and unified modeling with pertinence
for different types of discriminative MRC, evalu-
ation results on four extractive and multi-choice
MRC benchmarks consistently indicate the general
effectiveness and applicability of our model.
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Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. 2018. The NarrativeQA reading
comprehension challenge. TACL, 6:317–328.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Zuchao Li, Shexia He, Jiaxun Cai, Zhuosheng Zhang,
Hai Zhao, Gongshen Liu, Linlin Li, and Luo Si. 2018.
A unified syntax-aware framework for semantic role
labeling. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2401–2411, Brussels, Belgium. Association
for Computational Linguistics.

Rui Liu, Junjie Hu, Wei Wei, Zi Yang, and Eric Ny-
berg. 2017. Structural embedding of syntactic trees
for machine comprehension. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 815–824, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Todor Mihaylov and Anette Frank. 2019. Discourse-
aware semantic self-attention for narrative reading
comprehension. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP),
pages 2541–2552, Hong Kong, China. Association
for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Colin Raffel and Daniel P. W. Ellis. 2015. Feed-forward
networks with attention can solve some long-term
memory problems.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In International
Conference on Learning Representations.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5027–5038, Brussels, Belgium. Association for Com-
putational Linguistics.

Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi,
and Claire Cardie. 2019a. DREAM: A challenge
data set and models for dialogue-based reading com-
prehension. Transactions of the Association for Com-
putational Linguistics, 7:217–231.

8692

https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D18-1262
https://doi.org/10.18653/v1/D18-1262
https://doi.org/10.18653/v1/D17-1085
https://doi.org/10.18653/v1/D17-1085
https://doi.org/10.18653/v1/D19-1257
https://doi.org/10.18653/v1/D19-1257
https://doi.org/10.18653/v1/D19-1257
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1512.08756
http://arxiv.org/abs/1512.08756
http://arxiv.org/abs/1512.08756
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264


Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2019b.
Improving machine reading comprehension with gen-
eral reading strategies. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2633–2643, Minneapolis, Minnesota.
Association for Computational Linguistics.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. NewsQA: A machine comprehen-
sion dataset. In Proceedings of the 2nd Workshop
on Representation Learning for NLP, pages 191–200,
Vancouver, Canada. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, volume 30.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching networks
for reading comprehension and question answering.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 189–198, Vancouver, Canada.
Association for Computational Linguistics.

Caiming Xiong, Victor Zhong, and Richard Socher.
2017. Dynamic coattention networks for question
answering. In ICLR.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 5754–5764.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Adams Wei Yu, David Dohan, Quoc Le, Thang Luong,
Rui Zhao, and Kai Chen. 2018. Qanet: Combining
local convolution with global self-attention for read-
ing comprehension. In International Conference on
Learning Representations.

Shuailiang Zhang, Hai Zhao, Yuwei Wu, Zhuosheng
Zhang, Xi Zhou, and Xiang Zhou. 2020a. DCMN+:
Dual co-matching network for multi-choice reading
comprehension. In AAAI.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020b.
Semantics-aware BERT for language understanding.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
9628–9635. AAAI Press.

Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng
Duan, Hai Zhao, and Rui Wang. 2020c. Sg-
net: Syntax-guided machine reading comprehension.
AAAI.

Zhuosheng Zhang, Junjie Yang, and Hai Zhao. 2021.
Retrospective reader for machine reading comprehen-
sion. In AAAI.

Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan,
Wanxiang Che, Daxin Jiang, Ming Zhou, and Ting
Liu. 2020. Document modeling with graph attention
networks for multi-grained machine reading compre-
hension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6708–6718, Online. Association for Computa-
tional Linguistics.

Junru Zhou, Zhuosheng Zhang, Hai Zhao, and Shuail-
iang Zhang. 2020. LIMIT-BERT : Linguistics in-
formed multi-task BERT. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 4450–4461, Online. Association for Computa-
tional Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy. Association for Computational
Linguistics.

Pengfei Zhu, Hai Zhao, and Xiaoguang Li. 2020. Dual
multi-head co-attention for multi-choice reading com-
prehension. arXiv preprint arXiv:2001.09415.

8693

https://doi.org/10.18653/v1/N19-1270
https://doi.org/10.18653/v1/N19-1270
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/P17-1018
https://doi.org/10.18653/v1/P17-1018
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=B14TlG-RW
https://openreview.net/forum?id=B14TlG-RW
https://openreview.net/forum?id=B14TlG-RW
https://aaai.org/ojs/index.php/AAAI/article/view/6510
https://doi.org/10.18653/v1/2020.acl-main.599
https://doi.org/10.18653/v1/2020.acl-main.599
https://doi.org/10.18653/v1/2020.acl-main.599
https://doi.org/10.18653/v1/2020.findings-emnlp.399
https://doi.org/10.18653/v1/2020.findings-emnlp.399
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230


A Part-Of-Speech Tags List

In this appendix, we list all 39 POS tags (including
POS tags from nltk POS tagger and defined by us)
in Table 9.

B Complete Comparison Results on
Benchmarks

We show complete public works on DREAM,
RACE, SQuAD 1.1 and SQuAD in this appendix,
as Tables 8 10, 11 and 12 show.

The results show that, our POI-Net outperforms
most of comparison models and baselines, ex-
pect models: 1) with massive and incompara-
ble parameters like T5 (Raffel et al., 2020) and
Megatron-BERT (Shoeybi et al., 2019); 2) in more
advanced baseline architecture like XLNet (Yang
et al., 2019), ELECTRA (Clark et al., 2020); 3) in
special model design for one single subcategory of
discriminative MRC task (Zhang et al., 2021).

Model Dev Test
FTLM++ (Sun et al., 2019a) 58.1 58.2
BERTbase (Devlin et al., 2019) 63.4 63.2
BERTlarge (Devlin et al., 2019) 66.0 66.8
XLNetlarge (Yang et al., 2019) – 72.0
RoBERTalarge (Liu et al., 2019) 85.4 85.0
RoBERTalarge + MMM (Jin et al.,
2020)

88.0 88.9

ALBERTxxlarge + DUMA (Zhu
et al., 2020)

89.9 90.4

ALBERTxxlarge + DUMA + MTL – 91.8
ALBERTbase (rerun) 65.7 65.6
POI-Net on ALBERTbase 68.6 68.5
ALBERTxxlarge (rerun) 89.2 88.5
POI-Net on ALBERTxxlarge 90.0 90.3

Table 8: Public submissions on DREAM. The results in
the first domain are from the leaderboard. MTL denotes
multi-task learning.

POS Tag Meaning
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating con-

junction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO To
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular

present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb
SPE Special tokens: [CLS], [SEP]
PAD Padding tokens
ERR Unrecognized tokens

Table 9: The complete list for all POS tags in POI-Net.
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Model Dev (M / H) Test (M / H)
BERTbase (Devlin et al., 2019) 64.6 (– / –) 65.0 (71.1 / 62.3)
BERTlarge (Devlin et al., 2019) 72.7 (76.7 / 71.0) 72.0 (76.6 / 70.1)
XLNetlarge (Yang et al., 2019) 80.1 (– / –) 81.8 (85.5 / 80.2)
XLNetlarge + DCMN+ (Zhang et al., 2020a) – (– / –) 82.8 (86.5 / 81.3)
RoBERTalarge (Liu et al., 2019) – (– / –) 83.2 (86.5 / 81.8)
RoBERTalarge + MMM (Jin et al., 2020) – (– / –) 85.0 (89.1 / 83.3)
T5-11B (Raffel et al., 2020) – (– / –) 87.1 (– / –)
ALBERTxxlarge + DUMA (Zhu et al., 2020) 88.1 (– / –) 88.0 (90.9 / 86.7)
T5-11B + UnifiedQA (Khashabi et al., 2020) – (– / –) 89.4 (– / –)
Megatron-BERT-3.9B (Shoeybi et al., 2019) – (– / –) 89.5 (91.8 / 88.6)
ALBERTxxlarge + SC + TL (Jiang et al., 2020) – (– / –) 90.7 (92.8 / 89.8)
ALBERTbase (rerun) 67.9 (72.3 / 65.7) 67.2 (72.1 / 65.2)
POI-Net on ALBERTbase 72.4 (76.3 / 70.0) 71.0 (75.7 / 69.0)
ALBERTxxlarge (rerun) 86.6 (89.4 / 85.2) 86.5 (89.2 / 85.4)
POI-Net on ALBERTxxlarge 88.1 (91.3 / 86.3) 88.3 (91.5 / 86.8)

Table 10: Public submissions on RACE. The results in the first domain are from the leaderboard. SC denotes single
choice and TL denotes transfer learning.

Model EM F1
SAN (Liu et al., 2017) 76.2 84.1
R.M-Reader (Hu et al., 2018) 81.2 87.9
ALBERTbase (Lan et al., 2020) 82.9 89.3
BERTbase (Devlin et al., 2019) 80.8 88.5
BERTlarge (Devlin et al., 2019) 85.5 92.2
ALBERTxxlarge (Lan et al., 2020) 88.3 94.1
SpanBERT∗ (Joshi et al., 2020) 88.8 94.6
XLNetlarge (Yang et al., 2019) 89.7 95.1
RoBERTalarge + LUKE (Yamada
et al., 2020)

89.8 95.0

ALBERTbase (rerun) 82.7 89.9
POI-Net on ALBERTbase 84.5 91.3
ALBERTxxlarge (rerun) 88.2 94.1
POI-Net on ALBERTxxlarge 89.5 95.0

Table 11: Comparison works on SQuAD 1.1 develop-
ment set. Results with ∗ are from (Clark et al., 2020).

Model EM F1
ALBERTbase (Lan et al., 2020) 77.1 80.0
BERTbase (Devlin et al., 2019) 77.6 80.4
NeurQuRI (Back et al., 2020) 80.0 83.1
BERTlarge (Devlin et al., 2019) 82.2 85.0
SemBERT (Zhang et al., 2020b) 84.2 87.9
ALBERTxxlarge (Lan et al., 2020) 85.1 88.1
SpanBERT∗ (Joshi et al., 2020) 85.7 88.7
XLNetlarge (Yang et al., 2019) 87.9 90.6
ELECTRA (Clark et al., 2020) 88.0 90.6
ALBERTxxlarge + Retro-Reader
(Zhang et al., 2021)

87.8 90.9

ALBERTbase (rerun) 77.3 80.4
POI-Net on ALBERTbase 79.8 82.9
ALBERTxxlarge (rerun) 85.4 88.5
POI-Net on ALBERTxxlarge 87.7 90.6

Table 12: Comparison works on SQuAD 2.0 develop-
ment set. Results with ∗ are from (Clark et al., 2020).
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