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Abstract
To effectively characterize the nature of para-
phrase pairs without expert human annotation,
we propose two new metrics: word position
deviation (WPD) and lexical deviation (LD).
WPD measures the degree of structural alter-
ation, while LD measures the difference in
vocabulary used. We apply these metrics to
better understand the commonly-used MRPC
dataset and study how it differs from PAWS,
another paraphrase identification dataset. We
also perform a detailed study on MRPC and
propose improvements to the dataset, show-
ing that it improves generalizability of models
trained on the dataset. Lastly, we apply our
metrics to filter the output of a paraphrase gen-
eration model and show how it can be used to
generate specific forms of paraphrases for data
augmentation or robustness testing of NLP
models.

1 Introduction

A robust understanding of semantic meaning, de-
spite variances in sentence expression, is an integral
part of natural language processing (NLP) tasks.
However, many existing NLP models exhibit short-
comings in understanding real-world variations in
natural language. These models are often over-
reliant on learned spurious correlations resulting
in poor generalization (Sanchez et al., 2018; Mc-
Coy et al., 2019). This problem is challenging to
address since it is difficult to distinguish spurious
correlations from useful features (Gardner et al.,
2021).

One way of improving the performance and ro-
bustness of NLP model is to increase the size of
the dataset (Hestness et al., 2017). It is possible to
do so in an efficient manner through data augmen-
tation, or the process of generating new data out of
existing examples, thus creating more training data
or test cases (Feng et al., 2021; Chen et al., 2021).
This would also enhance the capability to detecting
error in a wide range of NLP systems. We can also

condition language models to generate paraphrases
of input sentences (Witteveen and Andrews, 2019)
through the use of large language models such as
GPT (Radford et al., 2019). However, commonly
used paraphrase datasets and paraphrase generation
techniques that rely on such datasets suffer from
several shortfalls, such as being noisy due to loose
labelling in these datasets and lack of accurate, con-
trollable generation. In this paper, we make three
key contributions to address this issue.

Firstly, we propose two new metrics for better
understanding of paraphrase pairs: word position
deviation and lexical deviation. We show, with ex-
amples, how these metrics are more effective at
quantitatively capturing the linguistic characteris-
tics of paraphrase pair than existing methods such
as ROGUE-L, SELF-BLEU and edit distance.

Secondly, we apply the proposed metrics to bet-
ter understand the commonly used Microsoft Re-
search Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005) dataset. We also study how MRPC
differs from Paraphrase Adversaries from Word
Scrambling (PAWS) (Zhang et al., 2019), another
paraphrase identification dataset. In the process,
we perform a detailed study on MRPC and pro-
pose some revisions to the dataset. We demonstrate
that this improves the quality of paraphrase iden-
tification models trained on MRPC, with higher
transferability to other paraphrase identification
datasets.

Lastly, we demonstrate the applicability of our
proposed metrics. By applying our metrics to filter
the output of a paraphrase generation model, we
show how it can be used to generate specific forms
of paraphrases, which can be used as training data
for data augmentation purposes and to generate test
cases for robustness testing of NLP models.

2 Related Work

There have been several survey papers done to bet-
ter understand the task of paraphrase identification
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and generation. A Survey of Paraphrasing and
Textual Entailment Methods (Androutsopoulos and
Malakasiotis, 2010) presented a comprehensive sur-
vey and review on the the aforementioned tasks. In
this paper, the authors helped to properly define
the tasks and identified some methods and their
associated challenges. This was followed up by
a more recent survey specifically on the task of
paraphrase identification, A Survey on Paraphrase
Recognition (Magnolini, 2014), where the focus
of the survey was the performance of various sta-
tistical and non-deep learning approaches on para-
phrase identification on the MRPC dataset. Addi-
tionally, in On Paraphrase Identification Corpora
(Rus et al., 2014), the authors performed a survey
of various paraphrase datasets, also highlighting
several issues with paraphrase datasets, including
MRPC, and providing some recommendations for
improving the curation of paraphrase datasets.

There have also been previous work on the task
of better quantifying various characteristics of para-
phrase pairs. In Texygen: A Benchmarking Plat-
form for Text Generation Models (Zhu et al., 2018),
SELF-BLEU was proposed to measure the diver-
sity in text generation. However, it suffers from
limitations inherent to BLEU-style metrics: it cap-
tures the differences in presence of n-grams, but
not their sequence, and is thus mostly limited to
capturing the differences of vocabulary, but not the
overall structure of a sentence. In Paraphrasing
with Large Language Models (Witteveen and An-
drews, 2019), ROUGE-L is used as a measurement
of paraphrase diversity, where lower ROUGE-L
scores correspond to greater diversity in paraphras-
ing generation. However, ROUGE-L mainly mea-
sures degree of similarity in sub-sequences, but not
the order in which the sub-sequences occur, and
thus cannot accurately capture the possible struc-
tural differences present in paraphrase pairs.

In our paper, we take a deeper look at some of the
issues related to MRPC, proposing some useful im-
provements. We also build upon previous attempts
to characterise paraphrases through the use of quan-
titative metrics, demonstrating how our proposed
metrics can capture various different paraphrasing
techniques better than previously proposed metrics.

3 What is a Paraphrase?

3.1 Definition of Paraphrase

To facilitate more precise discussions in our paper,
we clearly define a paraphrase as follows:

Definition 1 (Paraphrase). A sentence is a para-
phrase of another sentence if they are not identical
but share the same semantic meaning.

Therefore, there are two distinct criteria in order
to fulfill the definition of being a paraphrase pair:

1. The two sentences must have the same mean-
ing: it is impossible to derive different in-
formation from a paraphrase of a sentence.
Where two sentences are not certain to have
exactly the same meaning, a common interpre-
tation of both sentences should be the same
in order for it to be a reasonable paraphrase.
This also implies that both sentences in a para-
phrase pair necessarily entail each other.

2. The two sentences must not be identical, for
example having lexical differences (differ-
ences in vocabulary) or structural differences
(differences in word order, punctuation and
syntax).

In A Survey of Paraphrasing and Textual Entail-
ment Methods (Androutsopoulos and Malakasiotis,
2010), the following example is provided, which
we shall discuss:

1. Wonderworks Ltd. constructed the new bridge.

2. The new bridge was constructed by Wonder-
works Ltd.

3. Wonderworks Ltd. is the constructor of the
new bridge.

It is argued that sentence 3 is not a precise para-
phrase of sentences 1 and 2 as it is not stated pre-
cisely in sentence 3 that the bridge was completed.
For the purposes of our discussion, we would con-
sider sentence 3 a reasonable paraphrase as well
as it is very likely that all three sentences would
be interpreted in the same way, and thus share the
same semantic meaning based on the most common
interpretation of the sentences.

These examples illustrate that it is non-trivial to
precisely define what is a paraphrase pair, as there
is some variance (depending on subjective interpre-
tation) on what would be a precise paraphrase. This
problem is observed to have caused issues due to
the imprecise definitions used while creating para-
phrase datasets, such as the MRPC dataset which
is very widely used. By adhering strictly to the
definition of a paraphrase as detailed in this section,
we hope to better facilitate discussion throughout
the paper.
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3.2 Paraphrase Datasets
In this paper, we will utilize and compare two com-
monly used paraphrase datasets, MRPC and PAWS.

3.2.1 Microsoft Research Paraphrase Corpus
(MRPC)

The Microsoft Research Paraphrase Corpus
(MRPC) is a corpus consists of sentence pairs col-
lected from web news articles (Dolan and Brockett,
2005). This dataset is widely used as a benchmark
for the paraphrase identification task. It can be
used directly or indirectly as part of the GLUE
benchmark (Wang et al., 2019). In particular, as
part of the GLUE benchmark, the dataset has been
used for training and evaluation in more than 50 re-
search papers as can be determined from the GLUE
leaderboard1. It is also less commonly used as a
paraphrase generation dataset, in works such as
(Huang and Chang, 2021). MRPC contains 4076
training and 1725 test examples.

3.2.2 Paraphrase Adversaries from Word
Scrambling (PAWS)

The Paraphrase Adversaries from Word Scrambling
(PAWS) is a dataset contains sentence pairs ex-
tracted from Wikipedia and the Quora Question
Pairs (QQP) dataset (Zhang et al., 2019). While
it is less commonly used than MRPC, it is a high
quality and larger dataset, and is used in a num-
ber of papers such as (Yu and Ettinger, 2021), (Tu
et al., 2020) and (Chen et al., 2020) for the pur-
pose of paraphrase identification. PAWS contains
49,401 training, 8000 development and 8000 test
examples.

4 Proposed Metrics

4.1 Objectives
Our objective is to comprehensively evaluate the
diverse linguistic phenomena involved in paraphras-
ing, which can include techniques such as synonym
substitution, negation, diathesis alternation, coordi-
nation changes and more. We can broadly classify
these techniques into the use of structural alterna-
tions and lexical alternations to achieve paraphras-
ing.

Thus, to better characterise a paraphrase pair, we
propose two metrics: word position deviation and
lexical deviation. These two metrics are introduced
so as to provide a quantitative understanding on
what type of paraphrase it is along the two types

1https://gluebenchmark.com/leaderboard

of changes. A key design consideration of these
metrics is the need to be able to capture the extents
of structural and lexical alterations in an efficient
manner, without resorting to costly human annota-
tion or large amounts of computation. We will use
these metrics to provide a good understanding of
the characteristics of paraphrase pairs both at a in-
dividual (paraphrase pair) level and at an aggregate
level over the whole dataset. In addition, we ap-
ply these metrics to filter outputs from paraphrase
generation systems to select for specific types of
paraphrases.

4.2 Key Definitions
In this section, we define some terms that will be
used across various metrics computations. Let s1
and s2 denote two sentences. We will also refer to
the pair of sentences (s1, s2) as a paraphrase pair.

Definition 4.1 (Set of common words). The set of
common words C(s1,s2) of a paraphrase pair is the
set of words, in uncased lemmatized form, which
occurs in both s1 and s2.

Definition 4.2 (Set of all words). The set of all
words A(s1,s2) of a paraphrase pair is the complete
set of words, in uncased lemmatized form, which
occurs in either or both sentences s1 and s2.

Thus, given two sentences:

• s1: Yesterday, Bob met Tom at the store.

• s2: Tom met Bob yesterday while they were
at the store.

• C(s1,s2):
{ yesterday, bob, meet, tom, at, the, store }

• A(s1,s2):
{ yesterday, bob, meet, tom, at, the, store,
while, they, be }

We will also use the notation NC(s1,s2) to refer to
the size of set C(s1,s2) and NA(s1,s2)

to refer to the
size of set A(s1,s2). We use NC and NA for short
when it is obvious which statements s1 and s2 we
are referring to. For a word W and a sentence s,
we denote by Ns(W ) the number of times that the
word W appears in the sentence s.

4.3 Word Position Deviation (WPD)
We propose the word position deviation (WPD) of a
paraphrase pair as a metric that effectively captures
the degree of deviation in the structure of para-
phrased sentences by looking at changes in word
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positions. WPD can be intuitively understood as
the mean of how much words shift in position after
a paraphrase. We find that this proposed metric
is effective in identifying the amount of structural
alterations present in paraphrase pairs.

To properly define WPD, we first introduce the
concept of normalized word position in a para-
phrase pair.

Definition 4.3 (Normalized Word Position). Let
s be a sentence and W be a word. For 1 ≤ n ≤
Ns(W ), the normalized word position ρs,n(W ) of
n-th appearance of W in s is its index divided by
the index of the last word. Thus, a normalized
word position value ranges from the first word in
the sentence having a value of 0.0 and last word
having value of 1.0. For example, if the second
appearance of W has index a and the last word has
index b in the sentence s, then ρs,2(W ) = a/b.

In WPD, we consider the mean differences be-
tween the normalized word positions. For any
given word that is common in both sentences in
a paraphrase pair (s1, s2), we can calculate the rel-
ative position shift as the difference in normalized
word position.

Definition 4.4 (Relative Position Shift). The rel-
ative position shift of a word W with respect to
sentence s1 in paraphrase pair (s1, s2) is denoted
as δs1,s2(W ), only defined for words in C(s1,s2),
and has the expression

δs1,s2(W ) =

Ns1 (W )∑
n=1

min
1≤k≤Ns2 (W )

|ρs1,n(W )− ρs2,k(W )|
Ns1(W )

.

(1)

For each occurrence ofW in s1, we calculate the
smallest difference between its normalized word
position and that of the occurrences of W in s2.
We then average these smallest differences over all
occurrence of W in s1 to get the relative position
shift of W with respect to s1 in paraphrase pair
(s1, s2).

In a simple case with only one occurrence of
W in each sentence, this reduces to the distance
between ρs1,1(W ) and ρs2,1(W ), which is

δs1,s2(W ) = |ρs1,1(W )− ρs2,1(W )|. (2)

To the concepts described above, a simple exam-
ple is provided in Figure 1 below.

We can see that if we had a word W is near
the start of s1 and near the end of s2, δs1,s2(W ) is

Figure 1: Illustration of individual words’ relative posi-
tion shifts.

close to 1.0. Conversely, if the word W is near the
start of s1 and near the start of the s2, δs1,s2(W ) is
close to 1.0.

In a generalised case where there can be multi-
ple occurrences of W can be present in s1 or s2,
the mean distance between one occurrence and the
nearest occurrence in the other sentence is con-
sidered. However, such instances are much rarer.
We illustrate the handling of using a real example,
showing how the word his occurs twice, resulting
in a mean δ(”his”) of 0.263.

Figure 2: Illustration of a special case where multiple
instances of a word occurs.

Thus, we can now define WPD.

Definition 4.5 (Word Position Deviation). Let
(s1, s2) be a paraphrase pair. The WPD of (s1, s2),
denoted as σpos(s1, s2), is the mean of all the rel-
ative position shifts of all the words in the set
C(s1,s2), namely,

σpos(s1, s2) =

1

NC

∑
W∈C

max{δs1,s2(W ), δs2,s1(W )}. (3)

Below are additional examples of the WPD com-
putation on paraphrases in the MRPC dataset. To
aid visualization of what the metric measures, the
common words are underlined and coloured to aid
comparison.

4.4 Lexical Deviation (LD)

We propose lexical deviation (LD), a metric that
effectively captures the degree of deviation in the
vocabulary used between the sentences in a para-
phrase pair. We find that the proposed metric is ef-
fective in identifying and ranking paraphrase pairs

8595



from various datasets according to meaningful dif-
ferences in their usage of lexical changes to per-
form paraphrasing.

Definition 4.6 (Lexical Deviation). Let (s1, s2) be
a paraphrase pair. The lexical deviation σlex(s1, s2)
for a paraphrase pair (s1, s2) is defined by

σlex(s1, s2) = 1− NC
NA

. (4)

For a case where there is complete reuse of
words (in other words, NC = NA), the metric will
compute to 0.0. Likewise, in a case where there is
no reuse of words, the metric computes to 1.0.

For the purpose of computing the total set of
words and the set of common words, we consider
words that are the same after lemmatization (ig-
noring capitalization) to be the same word. There-
fore, we do not consider words that are of different
forms (e.g. tense) and capitalization to be different
words. This allows our metric to more accurately
capture the range of vocabulary used. As word
forms tend to vary when used as part of different
sentence structures, we do not wish to capture that
in this metric, which focuses on the diversity of
vocabulary (using of different words), and not the
grammatical usage of a word. In addition, we con-
sider changes in capitalization a trivial paraphrase,
and hence do not consider it in this metric.

5 Application of Metrics

To demonstrate the applicability of our proposed
metrics of WPD and LD, we compare them against
other metrics with similar purposes: ROGUE-L
(Lin, 2004), SELF-BLEU (Zhu et al., 2018) and
Damerau–Levenshtein edit distance (Levenshtein,
1965). In the examples below, we show that with
WPD and LD, we can effectively distinguish be-
tween different types of paraphrases that have sim-
ilar scores via various other metrics.

Figure 3: Example Pair 1

In Example Pair 1 (Figure 3), we show that

two paraphrases can have very similar ROGUE-
L scores of 0.76 and 0.75, where ROUGE-L pri-
marily measures the degree of sub-string similar-
ity (longest common sub-strings). However, with
WPD, we are able to additionally distinguish the
degree in which the similar sub-strings have been
shuffled in position, which is a structural alteration
to the sentence.

Figure 4: Example Pair 2

In Example Pair 2 (Figure 4), we again show
that two paraphrases can have very similar SELF-
BLEU scores of 0.60 and 0.59, where SELF-BLEU
primarily measures the degree n-gram overlap.
However, similar to Example Pair 1, in one of the
paraphrases, the two "halves" of the sentence has
been swapped in position, and this structural alter-
ation is captured by the WPD score.

Figure 5: Example Pair 3

Lastly, in Example Pair 3 (Figure 5), we show
that two paraphrases can have very similar Dam-
erau–Levenshtein edit distance, but feature two
completely different types of paraphrasing method.

5.1 Comparing MRPC and PAWS

5.1.1 Degree of Structural Paraphrasing
Using WPD, we are able to obtain an aggregate
view of both the MRPC and PAWS datasets. We see
that both datasets feature similar distributions of
structural paraphrasing, where the average amount
of structural paraphrasing is fairly low and MRPC
features more structural paraphrasing compared to
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PAWS. A visualization is provided in Figure 6 be-
low. Hence, we would expect the MRPC dataset to
be somewhat more diverse in structural paraphrases
as compared to PAWS.

Figure 6: Visualization of WPD in MRPC and PAWS.

5.1.2 Degree of Lexical Paraphrasing
Using LD, we are able to obtain an aggregate view
of both the MRPC and PAWS datasets to see that
both datasets feature a very different distribution of
lexical paraphrasing. A visualization is provided
in Figure 7 below. MRPC features a large amount
of lexical paraphrasing, in contrast to PAWS where
lexical paraphrasing is almost absent. Hence, we
would expect the MRPC dataset to be substantially
more diverse in having different examples of lexical
paraphrases as compared to PAWS.

Figure 7: Visualization of LD in MRPC and PAWS.

We investigated the source of high LD in MRPC
and determined that the reason is due to large in-
consistencies in entities, such as named entities and
quantities, present in MRPC paraphrase pairs. We
can see that many of the examples at the high-end
of lexical deviation are not reasonable paraphrases
of each other as they contain extremely different
information in each sentence.

Figure 8: Some problematic sentence pairs from
MRPC that are not reasonable paraphrases.

When used as training data for paraphrase iden-
tification or generation tasks, this can introduce
undesired behaviour into models. For example,

this can make paraphrase generation models more
prone to "hallucinating" additional information in
paraphrases, while paraphrase identification mod-
els are less able to detect such inconsistencies.

Hence, this motivates us to more closely inspect
the quality and consistency of labels in the MRPC
dataset, and then propose improvements.

5.2 Evaluation of MRPC Label Quality

Despite its wide usage as a benchmark for para-
phrase identification, the labels in the MRPC
dataset are not of a consistently high quality. This
is a result of the annotation process used to create
the MRPC dataset.

The annotation process used for MRPC, as de-
scribed in the paper Automatically constructing a
corpus of sentential paraphrases (Dolan and Brock-
ett, 2005), is as follows: a collection of news arti-
cles is collected from the web over a 2-year period,
and candidates for paraphrase pairs are extracted
using automated approaches, followed by human
evaluation used to determine if two similar sen-
tences are paraphrases. However, the instructions
given to the human annotators of the pairs were "ill-
defined". Compounding the issue is that several
classes of named entities in the text were replaced
by generic tags, introducing large amounts of ambi-
guity. As a result, the annotators labelled sentences
with very inconsistent entities as valid paraphrases,
leading to a relatively large number of sentences
inside that are not in fact reasonable paraphrases,
despite being labelled as such. Thus, models that
perform well on MRPC may not able to correctly
identify paraphrases in a precise manner. We can
show this in Section 5.2.2, where a state-of-the-art
language model that performs well on MRPC has
nearly random performance on PAWS, despite both
being paraphrase identification datasets.

To illustrate this issue, we use an example of a
sentence pair, labelled as a paraphrase, from the
MRPC dataset:

1. The stock rose $2.11, or about 11 percent, to
close Friday at $21.51 on the New York Stock
Exchange.

2. PG&E Corp. shares jumped $1.63 or 8 percent
to $21.03 on the New York Stock Exchange on
Friday.

In this example, which is labelled as a
paraphrase-pair, there are a total of 9 entities across
the paraphrase pair, but only 2 ("the New York
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Stock Exchange" and "Friday") are present across
the two. In other words, there is a great inconsis-
tency in the entities present between each of the
paraphrase pairs. In this case, this results in a large
discrepancy in the information contained in each
sentence, and thus the two sentences are not in
fact paraphrases despite being labelled as such in
MRPC. In MRPC, there are a total of 3900 para-
phrase pairs. Of those, 3016 (77%) have at least 1
inconsistent entity. Thus, this is a common issue in
MRPC.

5.2.1 Proposed Amendments to MRPC
With the aim to improve the precision of sentence
pairs labelled as paraphrases in MRPC, we pro-
posed some amendments to MRPC, including the
following specific objectives:

1. Automatically correcting the inconsistency in
entities;

2. Rectifying the labels where automated correc-
tion is not possible.

Our process to achieve this has two main steps.
First, we search for inconsistent examples where

the inconsistency is limited to singular instances of
any type of quantity. For example, one instance of a
monetary value that differs between two sentences
in a paraphrase pair.

Next, when a match is found, we proceed with a
to correct the paraphrase. In this specific scenario,
as we know that both values share the same type,
we can correct one of the values to be identical to
the instance in the other sentence, making it a more
precise paraphrase. In order to avoid being overly
zealous in this replacement, we inspect the most
frequent replacements to ensure that no unintended
replacements occur.

Of the 3016 inconsistent paraphrase pairs in
MRPC, 476 (16%) can be corrected using our
approach. For the rest of the paraphrase pairs
that we cannot correct, we label them as non-
paraphrases. After the corrections, 2064 (53%)
out of the original 3900 paraphrase pairs are re-
labelled as non-paraphrases. This also changes the
ratio of paraphrase:non-paraphrase in MRPC from
approximately 8:5 to approximately 4:8. We term
this revised version of MRPC as MRPC-R1.

To illustrate the corrections to text performed
during the creation of MRPC-R1, a few examples
are shown in the table below:

Figure 9: Correcting some examples from MRPC

5.2.2 Evaluating Changes to MRPC
In order to evaluate the differences in quality of the
datasets, we compare the transferability of a model
trained on MRPC and MRPC-R1 to the PAWS test
set.

Our training setup is as follows: We used a state-
of-the-art DeBERTa (He et al., 2021) pretrained
langauage model and fine-tuned it on each of the
following: MRPC training set, MRPC-R1 training
set, and lastly for a baseline, the PAWS training
set). We performed the training using the Hugging-
Face Transformers library (Wolf et al., 2020) and
PyTorch (Paszke et al., 2019), learning rate of 1e-5,
and the Adam optimizer (Kingma and Ba, 2015).
For MRPC and MRPC-R1, we use a batch size of
32, and for PAWS, which has a much larger training
set, we use a batch size of 128. We did not perform
extensive hyper-parameter tuning. We tested two
variations of the DeBERTa model: DeBERTa-base
(140M parameters) and DeBERTa-large (400M pa-
rameters) Each of the models are evaluated every
50 steps on the PAWS development set, and the best
model checkpoint is evaluated against the PAWS
test set. We report the results below (median from
5 runs).

Model Training Data Dev F1 Test F1
DeBERTa-base PAWS (baseline) 92.77 91.98

DeBERTa-large PAWS (baseline) 95.12 94.32

DeBERTa-base MRPC 35.67 35.07

DeBERTa-large MRPC 30.80 30.80

DeBERTa-base MRPC-R1 52.25 50.83

DeBERTa-large MRPC-R1 56.04 55.22

From our results, we can see that training on
MRPC-R1 results in much better scores on the
PAWS test set for both models. Additionally, if
we use the more powerful DeBERTa-large model,
the model overfits more on MRPC training data.
Thus, DeBERTa-large scores lower than DeBERTa-
base on the PAWS test set. However, DeBERTa-
large performs better than DeBERTa-base when
trained on MRPC-R1, showing that more powerful
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models benefit more from MRPC-R1. Thus, we can
see that that MRPC-R1 has greater transferability
to the PAWS test set. These results demonstrate
that we have increased the generalization ability
of the trained model through the improving the
consistency and quality of the labels in MRPC.

5.3 Evaluation and Filtering for Paraphrase
Generation

To demonstrate the applicability of our metrics
to filter and thus control the output from a para-
phrase generation model, we combine the para-
phrase pairs from MRPC-R1 and PAWS to form
a corpus to train a sequence-to-sequence T5 (Raf-
fel et al., 2020) transformer language model to
generate paraphrases. We performed the training
using the HuggingFace Transformers library and
PyTorch, using the the pretrained T5-large model
(770M parameters). We performed training for a
total of 10 epochs with a batch size of 16, learning
rate of 1e-5, the Adam optimizer and did not per-
form extensive hyper-parameter tuning. By using
WPD and LD, we are able to effectively filter for
specific types of paraphrases.

In the following example, we pass "I keep a glass
of water next to my bed when I sleep." as an input
to be paraphrased by the model. Some of the out-
puts are sampled and ranked below according to
WPD, showing how WPD can be used to select
paraphrases with varying extents of structural para-
phrases, and the results can be seen in the table
below:

Generated Paraphrase WPD
I keep a glass of water beside my bed when I sleep. 0.02

A glass of water is kept next to my bed when I
sleep.

0.10

When I sleep, I always keep a glass of water near
my bed.

0.37

We can also do the same for LD, where we can
see that the lower the the extent of word overlap
between the original and paraphrase, the greater
the LD value. Words are marked with italics to
visually indicate words that have changed from the
source sentence. The results can be seen in the
table below:

Generated Paraphrase LD
When I sleep I keep a glass of water next to my
bed.

0.00

I keep a glass of water beside my bed when I sleep. 0.23

During the night, I keep a glass of water next to
my bed.

0.33

Thus, we can use WPD, LD, or a combination of
both to select specific types of paraphrases, there-
fore efficiently obtaining specific variations of data
for data augmentation or robustness testing pur-
poses.

6 Ethical Considerations

To the best of our knowledge, we do not introduce
any ethical concerns in this work. Our work is
based on the existing MRPC and PAWS datasets,
which are sampled from online news articles as
well as Wikipedia. Hence we expect our findings
to generalize well to other English datasets in the
general domain. Generalization of our work to
domains where usage of language is markedly dif-
ferent (for example, in some forms of technical
writing) is not certain. When our proposed metrics
are used in conjunction with other technology (such
as large generative language models), it does not
affect the existing ethical considerations of using
those technology.

7 Conclusions and Future Work

In our paper, we have proposed two new metrics
to better understand paraphrase pairs: word posi-
tion deviation (WPD) and lexical deviation (LD).
We have applied these metrics to better understand
the MRPC and PAWS datasets, and also to filter
the output of a paraphrase generation model to ob-
tain specific forms of paraphrases. However, our
metrics still have some limitations, which can be
address in future work. Although we are able to
measure the extent of structural and lexical alter-
ations, we cannot determine the fine-grained type
of alterations that is being made, for example, a
specific form of structural alteration or word sub-
stitution. We anticipate that improvements in this
area would be valuable to improve our ability to
effectively characterize various properties of para-
phrases, leading to better data augmentation and
robustness testing approaches that eventually re-
sulting in better performing NLP systems.
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A Appendix

A.1 Models Checkpoints, Data, Hardware
This section lists down the specific pretrained
model checkpoints and data used for various pur-
poses in this paper.

• Lemmatization (used for WPD, LD compu-
tation): SpaCy Lemmatizer, which uses the
spacy-lookups-data package.

• Named Entity Recognition (used for MRPC
dataset corrections): SpaCy en_core_web_trf
model.

• Paraphrase classification models: Fine-
tuned from the microsoft/deberta-base and
microsoft/deberta-large checkpoints.

• Paraphrase generation model: Fine-tuned
from the t5-large checkpoint.

For model fine-tuning, a single RTX 3090 was
used. Automatic mixed precision and TF32 is en-
abled.

A.2 Code Implementation
The code relevant to this paper can be found in this
GitHub repository: https://github.com/
tlkh/paraphrase-metrics

A.3 Additional Examples from MRPC
This section contains additional examples of WPD
and LD applied to data from the MRPC training
set.

A.4 Additional Examples from PAWS
This section contains additional examples of WPD
and LD applied to data from the PAWS training set.
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