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Abstract

Question answering over temporal knowledge
graphs (KGs) efficiently uses facts contained
in a temporal KG, which records entity rela-
tions and when they occur in time, to answer
natural language questions (e.g., “Who was the
president of the US before Obama?”). These
questions often involve three time-related chal-
lenges that previous work fail to adequately
address: 1) questions often do not specify ex-
act timestamps of interest (e.g., “Obama” in-
stead of 2000); 2) subtle lexical differences
in time relations (e.g., “before” vs “after”); 3)
off-the-shelf temporal KG embeddings that pre-
vious work builds on ignore the temporal order
of timestamps, which is crucial for answering
temporal-order related questions. In this paper,
we propose a time-sensitive question answering
(TSQA) framework to tackle these problems.
TSQA features a timestamp estimation mod-
ule to infer the unwritten timestamp from the
question. We also employ a time-sensitive KG
encoder to inject ordering information into the
temporal KG embeddings that TSQA is based
on. With the help of techniques to reduce the
search space for potential answers, TSQA sig-
nificantly outperforms the previous state of the
art on a new benchmark for question answer-
ing over temporal KGs, especially achieving
a 32% (absolute) error reduction on complex
questions that require multiple steps of reason-
ing over facts in the temporal KG.

1 Introduction

Temporal knowledge graphs (KGs) record the re-
lations between entities and the timestamp or time
period when such relation hold, e.g., in the form of
a quadruple: (Franklin D. Roosevelt, position held,
President of USA, [1933, 1945]). This makes them
a perfect source of knowledge to answer questions
that involve knowledge of when certain events oc-
curred as well as how they are related temporally
(see Figure 1 for an example). Unlike question
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Figure 1: An example of complex temporal question on
a temporal KG.

answering (QA) over non-temporal KGs that is
mainly concerned with relational inference, a core
challenge in temporal KGQA is correctly identi-
fying the time of reference mentioned explicitly
or implicitly in the question, and locating relevant
facts by jointly reasoning over relations and times-
tamps.

Inspired by work on relational KGQA (Huang
et al., 2019; Saxena et al., 2020), where knowl-
edge graph embeddings (Dasgupta et al., 2018;
García-Durán et al., 2018; Goel et al., 2020; Wu
et al., 2020; Lacroix et al., 2020) learned indepen-
dently of question answering are used as input to
KGQA models, previous work (Saxena et al., 2021)
employs temporal KG embeddings to attack the
problem of temporal KGQA. Despite its relative
success on simple temporal questions that directly
queries facts in the KG with one out of the four
facts left as the answer (e.g., “When was Franklin
D. Roosevelt the President of USA?” or “What po-
sition did Franklin D. Roosevelt hold between 1933
and 1945?”), this approach still struggles to handle
questions that require multiple steps of relational-
temporal reasoning (e.g., the example in Figure
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1).

We identify three main challenges that hinder
further progress on temporal KGQA. Firstly, com-
plex temporal questions often require inferring the
correct point of reference in time, which is not con-
sidered by previous work. For instance, to correctly
answer the question in Figure 1, it is crucial that
we first identify that World War II took place be-
tween 1939 and 1945, and look for entities with
the desired relation with President of USA in the
time interval specified by these times. Secondly,
unlike entity relations, which are usually expressed
in natural language with a handful of content words
that correspond well with their recorded relations
in KGs (e.g., “What position did ... hold ...” vs the
“position held” relation), temporal relations often
involve just one or two prepositions (e.g., “before”
or “during”) and are expressed only implicitly in
temporal KGs (e.g., nowhere is it clearly stated that
1931 is earlier than, or before, 1934, by a gap of 3
years). As a result, a small lexical change can dras-
tically alter the temporal relation expressed by the
question, and therefore the answer set. Thirdly, pre-
vious work on temporal KGQA build on temporal
KG embeddings, where each timestamp is assigned
a randomly initialized vector representation that is
jointly optimized with entity and relation represen-
tations to reconstruct quadruples in the KG from
embeddings. While sound as a standalone method
for encoding knowledge in temporal KGs, this ap-
proach does not guarantee that the learned times-
tamp representations can recover implicit temporal
relations like temporal orders or distance, which
are crucial for temporal KGQA.

In this paper, we propose a time-sensitive ques-
tion answering framework (TSQA) to address these
challenges. We first equip the temporal KGQA
model with a time estimation module that infers
the unstated timestamps from questions as the first
step of reasoning, and feed the result into relational
inference as a reference timestamp. Even without
explicit training data for this module, the explicit
factorization of the problem yields significant im-
provement over previous work on complex ques-
tions that require reasoning over multiple tempo-
ral quadruples. To improve the sensitivity of our
question encoder to time relation words, we also
propose auxiliary contrastive losses that contrast
the answer prediction and time estimation for ques-
tions that differ only by the time relation word (e.g.,
“before” vs “after”). By leveraging the mutual ex-

clusiveness of answers and the prior knowledge
regarding potential time estimates from different
time relation words, we observe further improve-
ments in model performance on complex questions.
Next, to learn temporal KG embeddings with prior
knowledge of temporal order and distance built in,
we introduce an auxiliary loss of time-order classifi-
cation between each pair of timestamp embeddings.
As a result, the knowledge in the temporal KG can
be distilled into the entity, relation, and timestamp
embeddings where the timestamp embeddings can
naturally recover order and distance information be-
tween the underlying timestamps, thus improving
the performance of temporal KGQA where such
information is crucial. Finally, we enhance TSQA
with KG-based approaches to narrow the search
space to speed up model training and inference,
as well as reduce the number of false positives in
model prediction. As a result, TSQA outperforms
the previous state of the art on the CRONQUES-
TIONS benchmark (Saxena et al., 2021) by a large
margin.

To summarize, our contributions in this paper
are: a) we propose a time-sensitive question an-
swering framework (TSQA) that performs time
estimation for complex temporal answers; b) we
present contrastive losses that improve model sen-
sitivity to time relation words in the question; c) we
propose a time-sensitive temporal KG embedding
approach that benefits temporal KGQA; d) with the
help of KG-based pruning technique, our TSQA
model outperforms the previous state of the art by
a large margin.

2 Related Work

Temporal Knowledge Graph Embedding.
Knowledge graph embedding learning (Bordes
et al., 2013; Yang et al., 2014; Trouillon et al.,
2016; Dettmers et al., 2018; Shang et al., 2019;
Sun et al., 2019; Tang et al., 2019; Ji et al., 2021)
has been an active research area with applications
directly in knowledge base completion and relation
extractions. Recently, there are several works
that extended the static KG embedding models
to temporal KGs. Jiang et al. (2016) first attempt
to extend TransE (Bordes et al., 2013) by adding
a timestamp embedding into the score function.
Later, Hyte (Dasgupta et al., 2018) projects each
timestamp with a corresponding hyperplane
and utilizes the TransE score in each space.
García-Durán et al. (2018) extend TransE and
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DistMult by utilizing recurrent neural networks
to learn time-aware representations of relation
types. TCompLEx (Lacroix et al., 2020) extends
the ComplEx with time based on the canonical
decomposition of tensors of order 4.
Temporal QA on Knowledge Graph. Temporal
QA have mostly been studied in the context of read-
ing comprehension. ForecastQA (Jin et al., 2021)
formulates the forecasting problem as a multiple-
choice question answering task, where both the
articles and questions include the timestamps. The
recent released TORQUE (Ning et al., 2020) is
a dataset that explores the temporal ordering re-
lations between events described in a passage of
text.

Another direction is the temporal question an-
swering over knowledge bases (KB) (Jia et al.,
2018b,a), which retrieves time information from
the KB. TempQuestions (Jia et al., 2018a) is a
KGQA dataset specifically aimed at temporal QA.
Based on this dataset, Jia et al. (2018b) design a
method that decomposes and rewrites each ques-
tion into nontemporal sub-question and temporal
sub-question. Here the KG used in TempQuestions
is based on a subset of FreeBase which is not a
temporal KG. Later Jia et al. (2021) proposes a
first end-to-end system (EXAQT) for answering
complex temporal questions, which takes advan-
tage of the question-relevant compact subgraphs
within the KG, and relational graph convolutional
networks (Schlichtkrull et al., 2018) for predicting
the answers. All previous datasets only include a
limited number of temporal questions. Recently, a
much larger temporal KGQA dataset CRONQUES-
TIONS (Saxena et al., 2021) is released, which in-
cludes both the temporal questions and the tempo-
ral KG with time annotation for all edges. Based on
this dataset, the CronKGQA model (Saxena et al.,
2021) is presented that exploits recent advances
in Temporal KG embeddings and achieves perfor-
mance superior to all baselines.

3 Method

In this section, we first give the problem defini-
tion of temporal question answering over temporal
knowledge graph. Then, we introduce the frame-
work to solve this problem, which integrates time
sensitivity into KG embedding and answer infer-
ence. Finally, we describe the key modules of our
proposed system in details.

3.1 Problem Definition and Framework
QA on Temporal KG aims at finding out the an-
swer from a given temporal KG G = (V, E ,R, T )
for a given free-text temporal question Q contain-
ing implicit temporal expression, and the answer
is either an entity of entity set V or a timestamp
of timestamp set T . Here, E ⊆ V × V is a set of
edges, and R is the set of relations. Edge from
a quadruple (s, r, [ts, te], o) indicates the relation
r ∈ R holds between subject entity s and object
entity o during time interval [ts, te] (ts < te and
te/s ∈ T ).
Framework. Our framework resorts to KG em-
beddings along with pretrained language models
to perform temporal KGQA. Figure 2 shows the
architecture which consists of two modules: 1)
time-aware TKG encoder; 2) time-sensitive ques-
tion answer.

The time-aware TKG encoder extends the exist-
ing TKG embedding method by adding an auxiliary
time-order learning task to consider the quadruple
orders. And the time sensitive QA module first per-
forms neighboring graph extraction to reduce the
search space for question answer, then performs
joint training for answer/time prediction and time-
sensitive contrastive learning to enhance the model
ability in capturing temporal signals in free-text
question. Next, we will introduce these two mod-
ules in details.

3.2 Time-aware KG Encoder
We first briefly review a time-aware KG embed-
ding method based on TCompLEx (Lacroix et al.,
2020) since it has been used in (Saxena et al., 2021)
for TKGQA and shows competitive performance.
Next, we show that how to perform TCompLEx on
temporal KG, then analyze its weakness in TKGQA
especially for complex question and further over-
come such weakness by introducing an auxiliary
time-order learning task in TKG embedding.
TCompLEx for TKG. TCompLEx is an extension
of ComplEx considering time information, which
not only encodes the entity and relation to complex
vectors, but also maps each timestamp to a complex
vector. To perform TCompLEx over temporal KG
in our problem definition, we first reformulate each
quadruple to a set of new quadruples by

(s, r, [ts, te], o) = {(s, r, t, o)|ts ≤ t ≤ te} (1)

Let es, er, et, eo ∈ Cd be the complex-value
embeddings of s, r, t, o, respectively. Then, TCom-
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Figure 2: The architecture of our TSQA model (Left: Time-aware TKG encoder; Right: Time-Sensitive TKG-QA).

pLEx scores each quadruple (s, r, t, o) by

S(s, r, o, t) = Re(⟨es, er, eo, et⟩) (2)

where Re(.) denotes the real part of a complex
vector, and ⟨⟩ denotes the multi-linear product.

Finally, we use a loss function similar to the
negative sampling loss for effectively TCompLEx
training.

LTC = −log(ϕ(γ − S(s, r, o, t)))

− 1

K

K∑
i=1

(log(ϕ(S(s′i, r, o′i, t′i)− γ))),
(3)

where γ is a fixed margin, ϕ is the sigmoid function,
(s′i, r, o

′
i, t

′
i) is the i-th negative quadruple.

According to the loss function in equation 3, we
observe that TCompLEx only cares about whether
the quadruple is true or false and ignores the orders
of different quadruples occur. However, the time or-
ders are critical to find the correct answer in knowl-
edge graphs. For example, to answer the ‘Who is
the President of USA before William J. Clinton?”,
we need not only the two facts (President of USA,
Position Held, Ronald Reagan, [1981, 1989]) and
(President of USA, Position Held, William J. Clin-
ton, [1993, 2001]), but also the time order of these
facts. To overcome such a limit of TCompLEx
in TKGQA, we introduce an auxiliary time-order
learning task over time-embeddings.
Time-order learning in TKG. To keep the time
order in embedding spaces, we first sort the
timestamps in T by an ascending order and get
(t1, t2, · · · , t|T |) and ti < tj if 1 ≤ i < j ≤ |T |.

Let ti = [Re(eti), Im(eti)] ∈ R2d be the con-
catenation the real and imaginary components of
embedding eti of timestamp ti. Inspired by posi-
tion embedding in (Vaswani et al., 2017), we first
initialize the timestamp embedding ti as follows.

ti[2k] = sin(
i

100002k/2d
)

ti[2k + 1] = cos(
i

100002k/2d
)

(4)

where 0 ≤ k ≤ d− 1.
Afterwards, for any pair of timestamps (ti, tj),

we calculate the probability of time order as:

pt(i, j) = sigmoid((t1 − t2)
TWt), (5)

where Wt ∈ R2d represents a parameter vector.
Based on the time-order probabilities, we intro-

duce a binary cross-entropy loss as a time-order
constraint over timestamp embeddings as follow:

LTO =− δ(i, j) log(pt(i, j))

− (1− δ(i, j)) log(1− pt(i, j)),
(6)

where δ(i, j) = 1 if ti < tj else δ(i, j) = 0.
Joint-training. A weighted sum of T-CompLEx
training loss and time-order constraint is consid-
ered as the final objective function for the joint
training for TKG embedding.

3.3 Time-Sensitive TKG-QA

In this section, we introduce our time-sensitive
question answering module from the following as-
pects in details: 1) question decomposition which
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divides the questions as entities and relations de-
scribed in free-text; 2) entity neighboring sub-
graph extraction which reduces the search space of
candidate timestamps and answer entities; and 3)
time-sensitive question answer which explores the
time information implied in both KG and questions
to help the model find the answer.

3.3.1 Question Decomposition and Encoder
For each question Q, we first identify all the entities
{Ent1, Ent2, · · · , Entk} in Q which also appear in
KG G, i.e., Enti ∈ E (1 ≤ i ≤ k). Then, by
replacing the entities in question Q with special
token [subject] and [object] in order, we obtain an
entity-independent temporal relation description in
free-text named temporal expression Q̂.

Taking the question “When did Obama hold the
position of President of USA?” as an example, by
replacing the identified entities “President of USA”
and “Obama”, we get its temporal expression as
“When did subject hold the position of object?”.

Next [CLS] + Q̂ are fed into BERT that outputs
[CLS] token embedding as eq ∈ Rdbert , where
dbert is the output dimension of BERT, and two
kinds of question representations as follows.

qr = W r
q (δ(Weq)) (7)

qt = W t
q (δ(Weq)), (8)

where qr, qt ∈ R2d represents the embedding of
relation and time implied in question, respectively.
W ∈ Rdbert×2d, W r

q , W t
q ∈ R2d×2d are the pa-

rameter matrix, and δ represents the activation
function. Finally, to facilitate the calculation with
KG embeddings, we reformulate qr, qt in complex
space as:

qr = qr[0 : d] +
√
−1 · qr[d : 2d] (9)

qt = qt[0 : d] +
√
−1 · qt[d : 2d] (10)

3.3.2 Entity Neighbor Graph Extraction
Let {Ent1, Ent2, · · · , Entk} be the k entities ex-
tracted from question Q, we first extract the m-
hop neighboring sub-graph Gi for each entity Enti.
Then, by combining these k sub-graphs, we obtain
the search graph Gq for question Q: Gq = ∪k

i=1Gi.
Suppose that Eq and Tq are the sets of entities
and timestamps appearing in Gq, respectively, they
constitute the search space of time and entity pre-
diction in our TKG-QA method. In training stage,
we set the hop number m as the minimum value
which results in correct answer entity appearing in

Gq. In testing stage, we set m as the largest hop
number used in training stage. In practice, the size
of graph Gq in usually much smaller than that of
whole graph G. For example, in CronKGQA, the
average value of |Gq|/|G| is about 3%.

Entity Neighboring graph extraction aims at re-
ducing the search space of candidate timestamps
and answer entities. This results in not only more
efficient training procedure, but also performance
improvement of question answer because a larger
number of candidates usually means a much more
difficult learning problem.

3.3.3 Time-Sensitive Question Answering
For temporal question answer over KG, the in-
teraction of time and answer entity prediction is
very important since the time range brings a strong
constraint on the search space of answers. How-
ever, the existing method (Saxena et al., 2021) usu-
ally performs such two predictions independently
which results in poor performance especially for
complex questions which need to consider multiple
facts to get the answer. To overcome this limitation,
we directly feed the intermediate time represen-
tation tq learned from time estimation to answer
prediction to enhance the interaction of these two
tasks.
Time Estimation. Based on the embeddings es
and eo of subject entity s and object entity o from
KG and the time embedding qt from a question, we
design the time estimation function FT for learning
the time embedding tq as follows:1

tq = FT (es, qt, eo)

= W t
q ([Re(⟨es, qt, eo⟩), Im(⟨es, qt, eo⟩)]),

(11)
where W t

q ∈ R2d×2d represents the parameter ma-
trix. [.] is the concatenation function, Re(.) de-
notes the real part of a complex vector and Im(.)
is the imaginary part.

After getting the time embedding w.r.t. question
tq, for timestamp prediction, the following score
function to estimate the score for each timestamp
t ∈ Tq as follow:

St = Re(⟨tq, t⟩) (12)

Entity Prediction. In enhance the interaction be-
tween time prediction and answer prediction, we

1A simple temporal question might contain the timestamp
(e.g. 2001). In this case, we set tq as the linear combination
of this learned time embedding and the timestamp embedding
from KG.
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update the embedding of entity w.r.t. question by
considering time embedding tq by an entity func-
tion FE as follow:

eq = FE(es, qr, tq) = ⟨es, qr, tq⟩ (13)

Finally, we score the entity e ∈ Eq by:

Se = Re(⟨eq, e⟩) (14)

The answer entity of the question is either times-
tamp or entity. Let Sa be the answer score and thus
Sa = St or Se when the answer is timestamp or en-
tity. Suppose C represents the number of candidate
answers (i.e., C = |Eq|+ |Tq|), then we can define
the probability of i-th candidate answer being true
as:

Pa,i =
exp(Sa,i)∑C

j=1 exp(Sa,j))
. (15)

Finally, we train the answer prediction model by
minimizing the cross-entropy loss as follow:

Lanswer = −
C∑
i

yi log(Pa,i), (16)

where yi = 1 if the i-th candidate is the true answer,
otherwise yi = 0.

3.3.4 Temporal Contrastive Learning
The temporal question answer system should be
sensitive to the temporal relation implied in the
question. For example, the answer of “What does
happen before a given event?” is quite different
from that of “What does happen after a given
event?”. Existing works on TKG-QA usually re-
sort to pre-trained language models for question
understanding. But these models are not sensitive
to the difference of temporal expressions in free-
text (Ning et al., 2020; Dhingra et al., 2021; Shang
et al., 2021; Han et al., 2021), and thus prone to
wrong predictions.

To make the system sensitive to the temporal re-
lation implied in question, we resort to a contrastive
learning method: we construct a contrastive ques-
tion to the original question, then add auxiliary
contrastive learning tasks to distinguish the latent
temporal representation and prediction results com-
ing from the pair of contrastive questions.
Contrastive Question Generation. To generate
the contrastive question Q̄ for the given question
Q, we first extract all the temporal words based on
large number of questions in temporal question an-
swer dataset, and then build a contrastive word pair

dictionary by finding the antonyms. The dictionary
consists of Dcontr = {(first, last), (before, after),
(before, during), (during, after), (before, when),
(when, after)}. Based on such dictionary, we re-
place the temporal word in given question Q by its
antonym to generate its contrastive question Q̄.
Contrastive time order learning. For the con-
trastive question pair Q and Q̄, we follow the same
encoder in Eq. 11 to get the corresponding time-
aware embeddings tq and tqc , respectively. Mean-
while, according to the contrastive temporal word
pair dictionary, suppose that we pickup the pair
(word1, word2) ∈ Dcontr for contrastive question
construction, we can construct a question order la-
bel yo: yo = 0 if Q̄ is achieved by replacing word1
as word2, else yo = 1.

Afterward, we distinguish the temporal orders
implied by word1 and word2 by predicting of the
order label yo based on tq and tqc as follow:

po = sigmoid((tq − tqc)
TWo) (17)

Lorder = −yo log(po)− (1− yo) log(1− po),
(18)

where Wo ∈ R2d represents the parameter vector
to be learned.
Answer-guided Contrastive Learning. Let S =
[s1, · · · , sC ], S̄ = [s1, · · · , sC ] be the answer
scores w.r.t. questions Q and its contrastive ques-
tion Q̄, respectively, where C = |Eq| + |Tq|. By
stacking these two scores together, we get Sq =
[S; S̄] ∈ R2×C . Then, we can apply softmax over
Sq along the last dimension and get the proba-
bility scores Pq = softmax(Sq) ∈ R2×C and
sum(Pq[:, i]) = 1 for i = 1, · · · , C.

Due to the fact that the answers of question
Q are definitely not for question Q̄, we con-
struct an answer-guided learning labels as ya =
[y1, · · · , yC ], where yi = 1 if and only if the i-th
candidate is true answer for Q, otherwise yi = 0.
Then, we get an answer-guided contrastive loss as
follow:

Lcontrast = − 1

C

C∑
j=0

yi log(Pq[0, i]) (19)

Joint Training. We combine the answer prediction
loss and contrastive losses as the final objective
function for joint training:

Loss = Lanswer+λo·Lorder+λc·Lcontrast, (20)

where λo > 0, λc > 0 are the weight factors to
make tradeoffs between different losses.
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4 Experiments

In this section, we conduct experiments to assess
the effectiveness of our proposed method TSQA for
TKG-QA. Our experimental results show that our
approach obtains significant improvements over the
baseline models.

Category Train Dev Test
Simple Entity 90,651 7,745 7,812
Simple Time 61,471 5,197 5,046
Before/After 23,869 1,982 2,151

First/Last 118,556 11,198 11,159
Time Join 55,453 3,878 3,832

Entity Answer 225,672 19,362 19,524
Time Answer 124,328 10,638 10,476

Total 350,000 30,000 30,000

Table 1: CRONQUESTIONS dataset statistics as well
as the numbers of questions across different types of
reasoning required and answer types.

4.1 Experimental Setup

Data. CRONQUESTIONS2 is the largest known
Temporal KGQA dataset consisting of two parts: a
KG with temporal annotations, and a set of free-text
questions requiring temporal reasoning. This Tem-
poral KG has 125k entities and 328k facts (quadru-
ples), while a set of 410k questions is given. The
facts have the time spans in the edge. These time
spans or timestamps were discretized to years.

This dataset consists of questions that can be
categorized into two groups based on their answer
type: entity questions where the answer is an entity
in the KG, and time questions where the answer
is a timestamp. The authors also categorize these
questions into “simple reasoning” (including sim-
ple entity and simple time subtypes) and “complex
reasoning” (including before/after, first/last and
time join subtypes). Table 1 provides the num-
ber of questions across different categories. Com-
plex questions require complex temporal reasoning
which takes advantage of multiple facts and tempo-
ral order of these facts.

Evaluation Metrics include Hits@1 and Hits@10 ,
which is the standard evaluation metrics on CRON-
QUESTIONS (Saxena et al., 2021).

Hyper-parameter setting. We train the TSQA
models by setting the hyper-parameters as: learning
rate = {1e−4, 2e−5, 1e−5 }, λo = {0.5, 1.0, 2.0, 3.0,
5.0} and λc = {0.5, 1.0, 2.0, 3.0, 5.0}, and pick up

2https://github.com/apoorvumang/
CronKGQA

the best hyper-parameters on dev set by the overall
Hits@1 metrics. Our models are implemented by
PyTorch and trained using NVIDIA Tesla V100
GPUs.
Baselines. We select several recent SOTA TKG-
QA models as our baselines as follow:

• EmbedKGQA (Saxena et al., 2020) is the first
method to use KG embeddings for the multi-hop
KGQA task. It uses ComplEx (Trouillon et al.,
2016) embeddings and can only deal with non-
temporal KGs and single entity questions.

• T-EaE-add/replacement (Saxena et al., 2021) are
two modifications of KG enhanced language
model EaE (Févry et al., 2020), which inte-
grates entity knowledge into a transformer-based
language model and has been used for TKG-
QA (Saxena et al., 2020). T-EaE-add has all
grounded entities and time spans marked in the
question, and T-EaE-replace replaces the BERT
embeddings with the entity/time embeddings in-
stead of adding them with token embeddings.

• CronKGQA (Saxena et al., 2021) extends Em-
bedKGQA to the temporal QA task, and takes
advantage of the temporal KG embeddings to an-
swering temporal questions. This is the current
SOTA model on CRONQUESTIONS.

4.2 Main Results
Table 2 compares different TKG-QA methods in
terms of Hits@1 and Hits@10. From this table, we
observe that: 1) our proposed TSQA has achieved
state-of-the-art performance in terms of all types
of questions on both Hits@1 and Hits@10. 2) The
performance improvement over the SOTA model is
significant. TSQA outperforms the SOTA results
by more than 82% Hits@1 relative improvement
(32% absolute error reduction) on complex ques-
tions and 21% Hits@10 relative improvement on
simple questions. These results proved the excel-
lent performance of our proposed TSQA on ques-
tion answering on the temporal knowledge graph,
especially for complex temporal reasoning.

We also compare our method with baselines in
terms of Hits@1 on different subtype questions
in Table 3. From this table, we observe that: on
complex questions, our proposed TSQA model out-
performs all baseline models significantly. The
relative improvement is up to 75%, 94%, 56%, for
“before/after”, “first/last” and “Time Joint”, respec-
tively. The first two kinds of questions are more
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Model
Hits@1 Hits@10

Question Type Answer Type Question Type Answer Type
Overall Complex Simple Entity Time Overall Complex Simple Entity Time

EmbedKGQA 0.288 0.286 0.290 0.411 0.057 0.672 0.632 0.725 0.850 0.341
T-EaE-add 0.278 0.257 0.306 0.313 0.213 0.663 0.614 0.729 0.662 0.665

T-EaE-replace 0.288 0.257 0.329 0.318 0.231 0.678 0.623 0.753 0.668 0.698
CronKGQA 0.647 0.392 0.987 0.699 0.549 0.884 0.802 0.992 0.898 0.857

TSQA 0.831 0.713 0.987 0.829 0.836 0.980 0.968 0.997 0.981 0.978

Table 2: Comparison of different TKG-QA models on CRONQUESTIONS dataset.

Question type Before
After

First
Last

Time
Join

Simple
Entity

Simple
Time

EmbedKGQA 0.199 0.324 0.223 0.421 0.087
T-EaE-add 0.256 0.285 0.175 0.296 0.321

T-EaE-replace 0.256 0.288 0.168 0.318 0.346
CronKGQA 0.288 0.371 0.511 0.988 0.985

TSQA 0.504 0.721 0.799 0.988 0.987

Table 3: Comparison of different models w.r.t. question
type in terms of Hits@1.

challenging as they require a better understand-
ing of the temporal expressions in question. Our
method is better in capturing such time-sensitivity
change in temporal words and thus results in great
improvement. Moreover, for the simple questions,
our method still keeps competitive performance
compared to the SOTA model.

4.3 Ablation Study

To understand the contributions of the proposed
modules in our method, we perform an ablation
study by sequentially removing the following com-
ponents from our proposed TSQA: temporal Con-
trastive learning (TC), time-aware TKG embed-
dings (TKE), entity neighboring graph extractor
(NG), and time estimation for question answer (TE)
in Table 4. It is noted that removing TKE means
that we replace TKE with T-CompLEx as KG en-
coder, and removing NG means that we perform
QA over the whole knowledge graph.

By comparing the two adjacent rows of this ta-
ble, we can infer the contributions of TC, TKE,
NG and TE, respectively: 1) all these modules im-
prove the overall performance in terms of Hits@1,
especially for complex questions; 2) by comparing
the last two adjacent rows, the proposed time es-
timation brings significant Hits@1 improvement
(14.5%), since this module supplies the latent time
embedding which not only enhances the interac-
tion of timestamp estimation and answer estimation
but also supplies a good anchor for finding the an-
swer entity, which is very crucial for answering
complex questions; 3) entity neighboring graph
extraction gets 7.8% Hits@1 improvement over

complex questions by comparing rows “TC-TKE”
and “TC-TKE-NG”, since it significantly narrows
down the search space of the candidate answers; 4)
by comparing the first three rows, time-aware TKG
embedding (TKE) and temporal contrastive learn-
ing (TC) further boost the Hits@1 over complex
questions. This is because the complex questions
usually require the model to capture time order-
ing information implied in temporal words of the
question. And these two modules enhance tem-
poral order learning by adding explicit time-order
constraints.

Model
Hits@1

Question Type Answer Type
Overall Complex Simple Entity Time

TSQA 0.831 0.713 0.987 0.829 0.836
-TC 0.821 0.696 0.984 0.820 0.822
-TC-TKE 0.816 0.688 0.985 0.816 0.818
-TC-TKE-NG 0.757 0.583 0.986 0.797 0.687
-TC-TKE-NG-TE 0.661 0.412 0.989 0.719 0.556

Table 4: Results of the ablation study. “-” means to
remove a module.

5 Conclusion

In this paper, we propose a time-sensitive ques-
tion answering framework (TSQA) over temporal
knowledge graphs (KGs). To facilitate the reason-
ing over temporal and relational facts over multiple
facts, we propose a time estimation component to
infer the unstated timestamp in the question. To
further improve the model’s sensitivity to time re-
lation words in the question and facilitate temporal
reasoning, we enhance the model with a temporal
KG encoder that produces KG embeddings that can
recover the implicit temporal order and distance be-
tween different timestamps, and with contrastive
losses that compare temporally exclusive questions.
With the help of answer search space pruning from
entity neighboring sub-graphs, our TSQA model
significantly improves the performance on complex
temporal questions that require reasoning over mul-
tiple pieces of facts, and outperforms the previous
state of the art by a large margin.
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