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Abstract

Simile interpretation is a crucial task in natural
language processing. Nowadays, pre-trained
language models (PLMs) have achieved state-
of-the-art performance on many tasks. How-
ever, it remains under-explored whether PLMs
can interpret similes or not. In this paper, we
investigate the ability of PLMs in simile in-
terpretation by designing a novel task named
Simile Property Probing, i.e., to let the PLMs
infer the shared properties of similes. We
construct our simile property probing datasets
from both general textual corpora and human-
designed questions, containing 1,633 exam-
ples covering seven main categories. Our em-
pirical study based on the constructed datasets
shows that PLMs can infer similes’ shared
properties while still underperforming humans.
To bridge the gap with human performance,
we additionally design a knowledge-enhanced
training objective by incorporating the simile
knowledge into PLMs via knowledge embed-
ding methods. Our method results in a gain
of 8.58% in the probing task and 1.37% in
the downstream task of sentiment classifica-
tion. The datasets and code are publicly avail-
able at https://github.com/Abbey4799/PLMs-
Interpret-Simile.

1 Introduction

A simile is a figure of speech comparing two fun-
damentally different entities via shared properties
(Paul, 1970). There are two types of similes as
illustrated in Figure 1, closed similes explicitly re-
veal the shared properties between the topic entity
and the vehicle entity, such as the property “slow”
shared by “lady” and “snail” in the sentence “The
old lady walks as slow as a snail”; while open
similes do not state the shared property such as the
sentence “The old lady walks like a snail”. Similes
play a vital role in human expression to make literal

∗Equal contribution
†Corresponding author

Figure 1: Examples of two types of similes. Whether the
component property is stated determines the type of simile.

utterances more vivid and graspable and are widely
used in the corpus of various domains (Liu et al.,
2018; Chakrabarty et al., 2020a; Zhang et al., 2020).
It is estimated that over 30% of the comparisons
can be regarded as similes in product reviews (Nic-
ulae and Danescu-Niculescu-Mizil, 2014).

Simile interpretation is a crucial task in natural
language processing (Veale and Hao, 2007; Qadir
et al., 2016; Chakrabarty et al., 2021a), which can
assist several downstream tasks such as understand-
ing more sophisticated figurative language (Veale
and Hao, 2007) and sentiment analysis (Niculae
and Danescu-Niculescu-Mizil, 2014; Qadir et al.,
2015). Take the simile “the lawyer is like a shark”
for an example. Although all words in this simile
are neutral, this simile expresses a negative affect
since “lawyer” and “shark” share the negative
property “aggressive”.

In the past few years, large pre-trained language
models (PLMs) have achieved state-of-the-art per-
formance on many natural language processing
tasks (Devlin et al., 2018; Liu et al., 2019b). Recent
studies suggest that PLMs have possessed various
kinds of knowledge into contextual representations
(Goldberg, 2019; Petroni et al., 2019; Lin et al.,
2019; Cui et al., 2021). However, the ability of
PLMs to interpret similes remains under-explored.
Although some recent work (Chakrabarty et al.,
2021a) studies the ability of PLMs in choosing or
generating the plausible continuations in narratives,
this way cannot fully reveal the ability of PLMs to
interpret similes.

In this paper, we propose to investigate the abil-
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Category Question Example %

Qualities My client is as [MASK] as a newborn lamb . A. innocent B. delicious C. legal D. guilty 27.78

Condition The toddler was running around as [MASK] as a bee. A. busy B. yellow C. idle D. messy 22.28

Sense His anger was as [MASK] as a burning ember. A. hot B. red C. cold D. warm 17.20

Measurement My new baby brother is as [MASK] as a button. A. red B. tiny C. cute D. hot 14.16

Color He was scared so much. He was as [MASK] as a ghost. A. white B. holy C. gay D. black 06.75

Time The old man walks as [MASK] as a tortoise. A. young B. little C. slow D. quick 06.57

Emotion The boy was as [MASK] as a dog that lost its bone. A. happy B. friendly C. sad D. glad 05.26

Table 1: Percentage and examples for our simile probes of different categories. The option marked with “ ” indicates the
correct answer. The italicized words one by one in each sentence are the topic, masked property, and vehicle, respectively.

ity of PLMs in simile interpretation by designing
a novel task named as Simile Property Probing,
i.e., to let the PLMs infer the shared properties
of similes. Specifically, we design a particular
masked-word-prediction probing task in the form
of multiple-choice questions. This probe masks
the explicit property of a closed simile and then
lets the PLMs discriminate it from three distractors.
To make the questions convincing and challenging,
the distractors should be not only true-negative as
they would introduce logical errors once they are
filled in the sentence, but also challenging as they
are semantically close to the correct answer. To
achieve this, we propose to obtain some similar
properties of the golden one from ConceptNet (Liu
and Singh, 2004) and COMET (Bosselut et al.,
2019), from which we select the three best dis-
tractors according to their proximity to the golden
property in the feature space. From two different
types of data sources: textual corpus collection and
human-designed questions, we collect a total of
1,633 probes with various usage frequencies and
context diversities, covering seven categories as
listed in Table 1.

Based on our designed task, we evaluate the abil-
ity of BERT (Devlin et al., 2018) and RoBERTa
(Liu et al., 2019b) to infer the shared properties
of similes. We perform an empirical evaluation
in two settings: (1) zero-shot, where the models
are off-the-shelf; (2) fine-tuned, where the models
are fine-tuned with MLM objective via masking
properties. We observe that PLMs have been able
to infer properties of similes in the pre-training
stage and the ability can be further enhanced by
fine-tuning. However, fine-tuned PLMs still per-
form worse than humans. Moreover, we find that
the simile components vehicle and topic contribute
the most when inferring the properties.

Inspired by the sufficient hints offered by the
components vehicle and topic in our empirical
study, we propose a knowledge-enhanced training
objective to further bridge the gap with human per-
formance. Considering property (p) as the relation
between topic (t) and vehicle (v), we design a simile
knowledge embedding objective function following
conventional knowledge embedding methods (Bor-
des et al., 2013) to incorporate the simile knowl-
edge (t,p,v) into PLMs. To integrate simile knowl-
edge and language understanding into PLMs, we
jointly optimize the knowledge embedding objec-
tive and the MLM objective in our design. Overall,
the knowledge-enhanced objective shows effective-
ness in our probing task and the downstream task
of sentiment classification.

To summarize, our contributions are three-fold:
(1) To our best knowledge, we are the first to sys-
tematically evaluate the ability of PLMs in inter-
preting similes via a proposed novel simile prop-
erty probing task. (2) We construct simile prop-
erty probing datasets from both general textual
corpora and human-designed questions, and the
probing datasets contain 1,633 examples covering
seven main categories of similes. (3) We also pro-
pose a novel knowledge-enhanced training objec-
tive by complementing the MLM objective with
the knowledge embedding objective. This method
gains 8.58% in the probing task and 1.37% in the
downstream task of sentiment classification.

2 Preliminaries on Simile

A sentence of simile generally consists of five
major components (Hanks, 2013; Niculae and
Danescu-Niculescu-Mizil, 2014), where four are
necessary and the remaining one is optional. The
four explicit components are as follows: (1) topic
(or tenor): the subject of the comparison acting as
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Figure 2: A process for designing our simile property probing task. In Step 1, we collect closed similes from two different
sources. In Step 2, according to four important components in each simile, we generate distractor candidates with three strategies.
In Step 3, we adopt cosine similarity to select more challenging distractors. In Step 4, we ask human annotators to ensure the
quality and obtain our final probing datasets.

source domain; (2) vehicle: the object of the com-
parison acting as target domain; (3) event: the pred-
icate indicating act or state; (4) comparator: the
trigger word of a simile such as as or like. The op-
tional component property reveals the shared char-
acteristics between the topic and the vehicle. There
are two types of similes depending on whether the
property is explicit or implicit (Beardsley, 1981).
The similes which mention the property directly
are named as the closed similes, while the others
are open similes, as shown in Figure 1.

3 The Simile Property Probing Task

3.1 Task Formulation

To estimate the ability of PLMs in simile inter-
pretation, we design a particular Simile Property
Probing task, which masks the explicit property of
a closed simile, and then lets the PLMs discrimi-
nate it among four candidates. Considering that the
shared properties between topic and vehicle may
not be unique (Lacroix et al., 2005), we specifically
design a multiple-choice question answering task
(with only one correct answer) rather than a cloze
task to probe the ability of PLMs to infer proper-
ties of similes, since the latter one may result in
multiple correct answers.

Formally, given a simile text sequence S =
(w1, w2, ..., wi−1,[MASK], wi+1, ..., wN ), where
the shared property wi between the topic and vehi-

cle is masked, the probing task requires the PLMs
to find the correct property from four options,
where the other three options are hard distractors.

3.2 Probing Data Collection

We construct datasets for the proposed probing task
in four steps. The overview of our probing data
collection process is described in Figure 2.

3.2.1 Data Sources
We construct our datasets from two different
sources to detect the capability of PLMs from two
perspectives: textual corpus collection and human-
designed questions. To avoid laborious human la-
beling on the implicit properties of open similes,
we collect closed similes with explicit properties.

General Corpus. Following (Hanks, 2005; Nic-
ulae and Yaneva, 2013), we adopt two general cor-
pora, British National Corpus (BNC)1 and iWeb2.
To identify closed similes, we extract the sentences
matching the syntax as ADJ as (a, an, the) NOUN.
Through syntactic pattern matching, we finally col-
lect 1,917 sentences.

Teacher-Designed Quizzes. Questions about
similes designed by teachers from educational re-
sources are ideal sources for assessing the ability to
understand similes. Hence, we choose Quizizz3, an

1https://www.english-corpora.org/bnc/
2https://www.english-corpora.org/iweb/
3https://quizizz.com/
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Figure 3: Illustration of the distractor selection method.

emerging learning platform founded in 2015. On
this platform, users can create quizzes on a specific
topic as teachers to assess students’ understanding
of related knowledge. We collect a set of quizzes
with titles concerning similes and extract the com-
plete closed simile sentences from the questions
and answers in these quizzes. Finally, we retrieve
875 complete closed similes from 1,235 quizzes.

To assure the quality of our constructed datasets
and prepare for further analysis, three annotators
are required to decide whether the extracted sen-
tences are similes or not, and annotate their corre-
sponding simile components. The inter-annotator
agreement on identifying similes is 0.77 using
Fleiss’ Kappa score (Fleiss, 1971). All the proper-
ties in our datasets are single-token by replacing
multi-token properties with their single-token syn-
onyms in the knowledge base WordNet (Miller,
1995) and ConceptNet (Liu and Singh, 2004).

3.2.2 Distractor Design

To make our probes convincing, three distractors
are designed against the original property in each
simile with two criteria (Haladyna et al., 2002; Ren
and Zhu, 2020): true-negative and challenging. We
argue that well-designed distractors should be illog-
ical when filled into the questions (true-negative)
while being semantically related to the correct an-
swer (challenging). Our distractor design mainly
involves three phases: 1) distractor generation; 2)
distractor selection; 3) Human Confirmation.

Distractor Generation. To meet the require-
ment of challenging, we generate distractor candi-
dates from the four semantic-related components
of a simile, i.e., topic, vehicle, event, and prop-
erty. Given the original property, we harvest its
antonyms from the knowledge base WordNet and
ConceptNet. With regard to three other compo-
nents, we extract their properties from two sources

Dataset General
Corpus Quizzes

#Sentence 775 858

#Unique topic concept 415 366
#Unique property concept 280 160
#Unique vehicle concept 522 250
#Unique event concept 147 66

#Unique topic-vehicle pair 743 684
#Unique topic-property-vehicle pair 751 701

Maximum sentence length 98 44
Average sentence length 25.80 12.69

Minimum sentence length 7 7

@Start 34.32% 20.40%
@Middle 43.23% 63.29%

@End 22.45% 16.32%

Table 2: Statistics of our simile property probing datasets. @
denotes the position of the simile in the given sentence.

as follows. Given a component, we utilize the
HasProperty relation from ConceptNet (Liu and
Singh, 2004) and COMET (Bosselut et al., 2019)
to retrieve the property. Moreover, we rank the ad-
jectives or adverbs concerning4 each component in
Wikipedia and BookCorpus corpus5 by frequency
and select the top ten candidates with a frequency
of more than one.

Distractor Selection. To select the most chal-
lenging distractors from the generated distractor
candidates, we propose to measure the similarity
between the original sentence with the correct prop-
erty and the sentence with a distractor. Intuitively,
the more similar the two sentences, the more chal-
lenging the distractor. An example of the distractor
selection process is depicted in Figure 3. Given the
original sentence or the new sentence replacing the
correct property with a distractor, we first utilize
RoBERTaLARGE to extract two types of features.
One feature is context embedding, which is the sen-
tence embedding of [CLS], while the other feature
is word embedding, which is the token embedding
of the answer or distractors. We then concatenate
the embeddings of the two features to compute the
cosine similarity between sentences with the an-
swer and a distractor. Finally, we select the top 3
distractors with the highest similarities.

Human Confirmation. To ensure the distrac-
tors are true-negative, three human annotators are
asked to label each selected distractor. If more than
two annotators are uncertain about its correctness,
we replace it with another suitable candidate.

4We adopt dependency parsing via the StanfordNLP tool
to find adjectives and adverbs related to components.

5https://huggingface.co/datasets/
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3.2.3 Statistics of the Datasets
Table 2 presents the statistics of our constructed
datasets. We count unique components and compo-
nent pairs to present the usage frequencies of simi-
les. The length of the sentences in each dataset indi-
cates the diversities of context. Additionally, we an-
alyze the distribution of the position of simile in the
sentences in each dataset, where start, middle and
end correspond to the positions of the three equally
divided parts of each sentence. We also investigate
the categories covered by our datasets. The results
and details about the category classification are pro-
vided in Appendix C. Overall, the Quizzes dataset
provides similes commonly expressed by people,
while the General Corpus dataset presents similes
with more diverse contexts.

3.3 Supervision for Fine-Tuning PLMs
Besides evaluating the ability of PLMs in the zero-
shot setting where the models are off-the-shelf,
we also study whether the performance could be
improved through fine-tuning with the MLM ob-
jective via masking properties. To achieve this,
we collect training data from Standardized Project
Gutenberg Corpus6 (SPGC) (Gerlach and Font-
Clos, 2020). SPGC is a 3 billion words corpus
collected from about 60 thousand eBooks. We
extract similes via matching the syntactic pattern
(Noun ... as ADJ as ... NOUN) and end up with
4,510 sentences. Additionally, we adopt depen-
dency parsing7 to automatically annotate the simile
components of each sentence without human labor.

4 Empirical Study on PLMs

In this section, we first conduct a set of experiments
to probe the ability of PLMs to infer properties
in similes and then evaluate the influence of each
component on the model performance.

4.1 Ability to Infer Shared Properties
4.1.1 Experiment Set-up
To disentangle what is captured by the original
representations and what is introduced from fine-
tuning stage, we apply two different types of set-
tings: (1) zero-shot; (2) fine-tuning. In our first set-
ting, we use BERT and RoBERTa with pre-trained
masked-word-prediction heads to perform our prob-
ing task. In the second setting, we utilize the MLM
training objective inherited from PLMs to fine-tune

6https://github.com/pgcorpus/gutenberg/
7https://stanfordnlp.github.io/CoreNLP/

Setting Models General
Corpus Quizzes Gain

ConScore (Zheng et al., 2019) 27.48 34.85 -
Meta4meaning (Xiao et al., 2016) 27.74 47.44 -

EMB (Qadir et al., 2016) 28.27 47.90 -
MIUWE (Bar et al., 2020) 30.97 53.85 -

Zero-Shot

BERTBASE 64.13 74.36 -
BERTLARGE 72.39 83.22 -

RoBERTaBASE 69.55 82.87 -
RoBERTaLARGE 78.97 87.41 -

Fine-tuned

MLM-BERTBASE 67.74 82.05 +5.65
MLM-BERTLARGE 73.85 84.58 +1.40

MLM-RoBERTaBASE 70.58 84.69 +1.43
MLM-RoBERTaLARGE 78.97 88.97 +0.78

Human Performance 87.60 93.60 -

Table 3: Accuracy of different models in our simile property
probing task.

the models. We replace the property of each simile
with the special token [MASK] in our constructed
supervised datasets (Section 3.3) and ask models
to recover the original property. The experimental
details are provided in the Appendix B.

We mainly compare the model accuracy of
PLMs with the following baselines: (1) EMB
(Qadir et al., 2016): It obtains the composite simile
vector by performing an element-wise sum of the
word embedding for the vehicle and event, then
selects the answer with the shortest cosine distance
from the composite vector. (2) Meta4meaning
(Xiao et al., 2016) : This method prefers the prop-
erties which are strongly associated with both topic
and vehicle. It also prefers the properties that are
more relevant to the vehicle than to the topic. The
association is measured by statistical significance.
(3) ConScore (Zheng et al., 2019) : It suggests
that better properties would have a smaller and bal-
anced distance to the topic and vehicle in the word
embedding space. (4) MIUWE (Bar et al., 2020)
: The ranking method assigns each property a list
of scores, including the statistical co-occurrences
and similarity to the collocations of the topic and
vehicle. The baselines above mainly consider the
statistical information and embedding similarities
between the properties and the simile components.
The other baseline is human performance. We sam-
ple 250 random questions from both datasets, and
for each question, we gather answers from three
people. We take the majority vote as the human
performance of our probing task and ensure that
three annotators agree on the questions that they
gave completely different annotation results.

4.1.2 Results

The accuracies of different methods under two dif-
ferent settings on our datasets are listed in Table 3,
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where the last column represents the average ab-
solute gains of each PLM after fine-tuning with
the MLM objective. All the results of our experi-
ments are averaged over three random seeds. First
of all, the prediction accuracies of both BERT and
RoBERTa in the zero-shot setting are much higher
than the baselines only considering the statistical
information and embedding similarities between
simile components. This phenomenon indicates
that the knowledge learning from the pre-train stage
can help infer the simile properties. Moreover, the
performance can be further improved by training
with the MLM objective, demonstrating that the
fine-tuning phase with the supervised dataset can
introduce related knowledge about similes. How-
ever, models still underperform humans by several
accuracy points, leaving room for improvement in
our probing task.

Overall, all the models perform better on
Quizzes Dataset than on General Corpus Dataset,
indicating that more diverse contexts increase the
difficulty of inferring the shared properties. Also,
RoBERTa consistently outperforms BERT, likely
due to a larger pre-training corpus containing more
similes. More complementary results are provided
in the Appendix A.1.

4.2 Influence of Important Components

4.2.1 Experiment Set-up

Due to the high performance of off-the-shelf PLMs,
we are interested in the contributions of each com-
ponent to infer shared properties in the zero-shot
setting. First, the information of each component
is hidden through a certain strategy. Specifically,
for topic, vehicle and comparator, we replace their
tokens with a special token [UNK] which means
unknown. With regard to event, we convert it into
a suitable copula, such as “am” and “is”, to ensure
the integrity of syntax. Furthermore, we also set
up a baseline by randomly replacing a token with
[UNK] in the context. Examples corresponding to
all settings are shown in Table 8 in the Appendix B.
We finally report the model accuracy and declined
absolute accuracy after hiding the information of
each component.

4.2.2 Results

The results in Table 4 show varying degrees of the
decline of all settings. If the model’s performance
decreases more, it means that the influence of the
component is more significant than others. Three

Figure 4: An overview of our objective function design

major components (i.e., vehicle, topic and com-
parator) obtain higher declined absolute accuracy
than random token, which demonstrates that the
information of these simile components is more
valuable than other words to infer the shared prop-
erties. Among all the components, removing the
comparator may cause the most significant perfor-
mance drop. This result is mostly because PLMs
cannot identify the sentence as a simile without an
obvious indicator. When it comes to the remaining
3 components, vehicle contributes the most, fol-
lowed by topic. Hence, we argue that it may be
beneficial to explicitly leverage both the informa-
tion of vehicle and topic to infer the properties.

5 Enhancing PLMs with Knowledge

5.1 Knowledge-enhanced Objective

Benefiting from the result that topic and vehicle are
the two most essential components for predicting
the shared properties of similes, we catch an insight
that property can be seen as the relation between
topic and vehicle following a set of knowledge em-
bedding (KE) methods (Bordes et al., 2013; Wang
et al., 2014; Ji et al., 2015).

To integrate the insight mentioned above into our
training procedure, we design an objective function
as shown in Figure 4. Inspired by triplets repre-
senting the relational facts, we can also extract the
topic, property, and vehicle from a simile as a triplet
(t, p, v). The distance between topic and vehicle
in the embedding space represents the plausibility
of property. The plausibility can be measured by
scoring functions (Bordes et al., 2013; Wang et al.,
2014; Ji et al., 2015). To this end, we follow the
scoring function from TransE (Bordes et al., 2013)
and define the following Mean Square Error (MSE)
loss as our KE loss:

LKE = MSE(Et + Ep, Ev) (1)
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Datasets Models Topic Vehicle Event Comparator Random

General
Corpus

BERTBASE 59.87(-04.26) 54.58(-09.55) 62.84(-01.29) 46.32(-17.81) 63.05(-01.08)
BERTLARGE 67.74(-04.65) 61.16(-11.23) 70.19(-02.20) 46.06(-26.33) 69.07(-03.32)

RoBERTaBASE 65.29(-04.26) 61.03(-08.52) 68.52(-01.03) 50.32(-19.23) 67.31(-02.24)
RoBERTaLARGE 76.90(-02.07) 69.68(-09.29) 77.55(-01.42) 54.97(-24.00) 77.72(-01.25)

Quizzes

BERTBASE 67.02(-07.34) 62.35(-12.01) 73.43(-00.93) 52.80(-21.56) 71.91(-02.45)
BERTLARGE 77.86(-05.36) 64.57(-18.65) 82.63(-00.59) 55.24(-27.98) 79.91(-03.31)

RoBERTaBASE 76.11(-06.76) 69.00(-13.87) 81.47(-01.40) 55.24(-27.63) 77.58(-05.29)
RoBERTaLARGE 83.80(-03.61) 74.24(-13.17) 86.60(-00.81) 60.84(-26.57) 85.12(-02.29)

Table 4: Accuracy of PLMs in the zero-shot setting before and after hiding the information of each component on two datasets.

Datasets Models LMLM LOurs Gain

General
Corpus

BERTBASE 67.74 69.25 +1.51
BERTLARGE 73.85 74.07 +0.22

RoBERTaBASE 70.58 71.74 +1.16
RoBERTaLARGE 78.97 78.97 +0.00

Quizzes

BERTBASE 82.05 82.94 +0.89
BERTLARGE 84.58 85.94 +1.36

RoBERTaBASE 84.69 84.89 +0.20
RoBERTaLARGE 88.97 89.40 +0.43

Table 5: Accuracy of PLMs using MLM and our objectives in
our probing task.

where Et, Ep, Ev are the representations of topic,
property and vehicle encoded by PLMs. We also
try more advanced methods such as TransH (Wang
et al., 2014) and TransD (Ji et al., 2015) for the
knowledge embedding objective, and their results
are presented in Table 7 in the Appendix A.2.

Finally, our training procedure is to optimize
MLM loss and KE loss jointly:

LOurs = αLKE + LMLM (2)

where α is a hyperparameter used to balance two
objective functions.

5.2 Results

Table 5 presents the performance of the mod-
els fine-tuned with the MLM objective and our
knowledge-enhanced objective on the two datasets,
where the last column shows the performance
gains brought by our improvement to the train-
ing objective. Overall, each model trained with
our knowledge-enhanced objective outperforms
the one trained with the MLM objective on both
datasets, demonstrating the effectiveness of our ob-
jective in the probing task.

For the Quizzes dataset, BERT achieves more
performance gains than RoBERTa does, which is
probably because RoBERTa has better modeled the
relationship among topic, property and vehicle in
the similes with simple syntactic structure during

Models Original LMLM LOurs

BERTBASE 84.96 85.45 85.63
BERTLARGE 86.02 86.65 86.95

RoBERTaBASE 88.51 88.61 89.51
RoBERTaLARGE 88.84 89.08 90.21

Table 6: Accuracy of PLMs with three settings in the down-
stream task of sentiment classification.

fine-tuning with the MLM objective. For the Gen-
eral Corpus dataset, the BASE version of models
tends to yield higher performance improvements,
probably because the models with larger parame-
ter sizes can better capture the relationship among
simile components in the similes with more diverse
contexts when fine-tuning with the MLM objective.

5.3 Experiments with Downstream Tasks
Similes generally transmit a positive or negative
view due to the shared properties (Fishelov, 2007;
Li et al., 2012; Qadir et al., 2015). Taking the
simile “the lawyer is like a shark” as an exam-
ple, the implicit shared property “aggressive” be-
tween “lawyer” and “shark” indicates the negative
polarity. Therefore, we design a sentiment polarity
downstream task to validate the improvement of
our method to infer shared properties.

Our experiments are based on the Amazon re-
views dataset8 which provides reviews and their
corresponding sentiment ratings. Following (Mu-
dinas et al., 2012; Haque et al., 2018), we first
process the dataset into a binary sentiment classifi-
cation task by defining the 1-star and 2-star ratings
as negative, the 4-star, and 5-star ratings as posi-
tive, while excluding the 3-star neutral ratings. To
further address the label imbalance problem, we
then sample the positive and negative reviews at
1:1. The final dataset consists of 5,023 reviews and
is split into a ratio of 6:2:2 for the train/dev/test set.

When performing the sentiment classification
task, we only update the parameters of the multi-

8https://www.kaggle.com/bittlingmayer/amazonreviews
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Figure 5: The average semantic distances between the repre-
sentations of topic(t), property(p), and vehicle(v) in the last
layer’s hidden state given by BERTBASE with MLM and our
objectives.

layer perceptron (MLP) classifiers on top of PLM’s
contextualized representation. The parameters of
PLM are fixed and from three settings: (1) zero-
shot; (2) fine-tuned with the MLM objective in the
probing task; (3) fine-tuned with the knowledge-
enhanced objective in the probing task. The re-
sults are shown in the Table 6. First of all, fine-
tuning with the MLM objective improves the per-
formance of all models in the sentiment classifi-
cation task, demonstrating that improving models’
ability to infer the properties of similes can enhance
models’ understanding of the sentiment polarity.
Moreover, the performance is further improved
by our knowledge-enhanced objective, especially
for RoBERTa whose main gains are mostly con-
tributed by our additional knowledge embedding
objective. This indicates the effectiveness of our
knowledge-enhanced objective in the downstream
task of sentiment analysis.

5.4 Analysis

Furthermore, we investigate the mechanism of how
knowledge-enhanced objective brings improve-
ment. We first calculate the L2 distance between
the representations in the last hidden states of each
pair of components. The results are shown in Fig-
ure 5. In all pairs, the distance given by our objec-
tive is generally shorter than MLM-BERT, which
indicates that modeling the relationships among the
three important components is efficient to enhance
the model performance.

Specifically, we visualize the final layer repre-
sentation of a simile into two-dimensional spaces
via Principal Component Analysis (PCA) (Pearson,
1901) in Figure 6. In both MLM and our objective,
the models are required to fill in the masked token
in the same simile sentence. The model fine-tuned
with the MLM objective predicts wrongly, while
our fine-tuned model predicts correctly. We find
that our representations of the three components
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Figure 6: PCA representations of tokens in the last layer’s hid-
den state given by BERTBASE with MLM and our objectives.

are closer to each other.

6 Related Work

Simile Processing. Simile processing mainly in-
volves 3 fields: simile detection, simile genera-
tion, and simile interpretation. The bulk of work
in similes mainly focuses on identifying similes
and their components (Niculae, 2013; Niculae and
Danescu-Niculescu-Mizil, 2014; Liu et al., 2018;
Zeng et al., 2020). Recent years have witnessed
a growth of work to transfer literal sentences to
similes (Zhang et al., 2020; Chakrabarty et al.,
2020b). (Chakrabarty et al., 2021b) study the abil-
ity of PLMs to recognize textual entailment related
to similes. With regard to simile interpretation,
(Qadir et al., 2016; Xiao et al., 2016; Bar et al.,
2020; Zheng et al., 2019) rank the properties by the
statistical co-occurrence and embedding similari-
ties with other simile components. (Chakrabarty
et al., 2021a) interpret similes by choosing or gen-
erating continuation for narratives via PLMs. Dif-
ferent from these works, we investigate the ability
of PLMs to infer shared properties of similes.

Probing Tasks for PLMs. Many studies inves-
tigate whether PLMs encode knowledge in their
contextual representations by designing probing
tasks. Early studies mainly focus on the linguistic
knowledge captured by PLMs (Liu et al., 2019a;
Tenney et al., 2019). (Petroni et al., 2019) first
propose a word prediction task to probe factual
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knowledge stored in PLMs. Similar methods are
utilized to evaluate various commonsense knowl-
edge, such as symbolic reasoning ability (Talmor
et al., 2020; Zhou et al., 2020), numerical com-
monsense knowledge (Lin et al., 2020), properties
associated with concepts (Weir et al., 2020). To
our best knowledge, we are the first work to inves-
tigate the ability of PLMs to interpret similes by
proposing a simile property probing task.

Enhance PLMs via Knowledge Regulariza-
tion. Recently, many researchers integrate exter-
nal knowledge with PLMs by complementing the
MLM objective with an auxiliary knowledge-based
objective. For example, there are works that intro-
duce span-boundary objective for span-level pre-
diction (Joshi et al., 2020), copy-based training ob-
jective for mention reference prediction (Ye et al.,
2020), knowledge embedding objective for factual
knowledge (Wang et al., 2021) and arithmetic rela-
tionships of linguistic units for universal language
representation (Li and Zhao, 2021). Different from
these works, we incorporate simile knowledge with
the training objective by modeling the relationship
between the salient components of similes.

7 Conclusion

In this work, we are the first to investigate the abil-
ity of PLMs in simile interpretation via a proposed
novel simile property probing task. We construct
two multi-choice probing datasets covering two
data sources. By conducting a series of empirical
experiments, we prove that PLMs exhibit the ability
to infer simile properties in the pre-training stage
and further induce more related knowledge during
the fine-tuning stage, but there is still a gap between
PLMs and humans in this task. Furthermore, we
propose a knowledge-enhanced training objective
to bridge the gap, which shows effectiveness in the
probing task and the downstream task of sentiment
classification. In future work, we are interested in
exploring the interpretation of more sophisticated
figurative language, such as metaphor or analogy.
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A Additional Experimental Results

A.1 Performance on Different Categories

We investigate whether PLMs are better at infer-
ring the properties of certain categories. Figure 7
presents the performance of the strongest version
from each group of models for each category in the
zero-shot setting. We found that models perform
significantly well when inferring the color, which
is probably because each object often has a specific
color which in many cases can be inferred without
context. However, when it comes to the properties
requiring an understanding of the context, such as
the personality and qualities (intelligent, brave),
temporal properties (ancient, swift) and short-term
state (busy, safe), models tend to have relatively
lower accuracy.

Figure 7: The average accuracy for each category in the zero-
shot setting. We select the strongest version from each group
of models.

A.2 Comparison of Knowledge Embedding
Methods

We also exploit the effects of different knowl-
edge embedding methods when designing our
knowledge-enhanced objective. Table 7 shows the
performance given by the objectives applying dif-
ferent knowledge embedding methods. First of
all, complementing the MLM objective with our
knowledge embedding methods generally improves
the performance, demonstrating the effectiveness
of our approach to enhancing PLMs with simile
knowledge. Moreover, following the scoring func-
tion from TransE (Bordes et al., 2013) brings the
best result in most cases, which indicates that the
knowledge embedding methods of simple design
are sufficient to incorporate simile knowledge into
PLMs in our objective design.

Datasets Models LMLM LOurs LTransH LTransD

General
Corpus

BERTBASE 67.74 69.25 69.72 68.38
BERTLARGE 73.85 74.07 74.33 73.85

RoBERTaBASE 70.58 71.74 71.18 70.97
RoBERTaLARGE 78.97 78.97 78.97 78.97

Quizzes

BERTBASE 82.05 82.94 82.25 82.05
BERTLARGE 84.58 85.94 85.24 84.69

RoBERTaBASE 84.69 84.89 84.81 84.81
RoBERTaLARGE 88.97 89.40 89.32 88.96

Table 7: Comparison of different knowledge embedding meth-
ods when designing the knowledge-enhanced objective in our
probing task.

B Experimental Details

We introduce details about the implementation of
our experiments. The implementations of all the
PLMs in our paper are based on the HuggingFace
Transformers10. During fine-tuning for the probing
task, the experiments are run with batch sizes in
{8, 16}, α in {3, 5, 10}, a max sequence length
of 128, and a learning rate of 1e-5 for 10 epochs.
For each model, we use the same hyper-parameters
when applying different training objectives. During
fine-tuning for the sentiment analysis task, we only
update the parameters of the multi-layer perceptron
(MLP) classifiers on top of PLM’s contextualized
representation. We set the learning rate in {2e-5,
3e-5, 4e-5}, batch size of 32, max sequence length
of 128 and train for 200 epochs. Additionally, we
present examples of the experimental setup for eval-
uating the influence of important components in
Table 8.

Component Sentence Example

Original Johan runs as [MASK] as a deer to the toilet
after he had some spicy gravy .

Topic [UNK] runs as [MASK] as a deer to the toilet
after he had some spicy gravy .

Vehicle Johan runs as [MASK] as [UNK] to the toilet
after he had some spicy gravy .

Event Johan is as [MASK] as a deer to the toilet
after he had some spicy gravy .

Comparator Johan runs [UNK] [MASK] [UNK] a deer to the toilet
after he had some spicy gravy .

Random Johan runs as [MASK] as a deer [UNK] the toilet
after he had some spicy gravy .

Table 8: Examples of experiment set-up for evaluating the
influence of important components.

C Dataset Description

We introduce details about our classification of the
categories of properties. We ask two annotators
to label the category of each property in the given
sentence and ensure that they agree on the ques-
tions that they gave completely different annotation

10https://github.com/huggingface/transformers/
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Category Property Example %

Qualities strong, weak, cruel, intelligent, brave 27.78
Condition bad, busy, idle, safe, vain 22.28

Sense cold, warm, bitter, soft, loud 17.20
Measurement big, scarce, numerous, tall, tiny 14.16

Color red, black, green, white, blue 06.75
Time ancient, new, swift, slow, regular 06.57

Emotion excited, angry, sad, mad, nervous 05.26

Table 9: Percentage and examples of each category of proper-
ties in constructed simile property probing datasets.

results. Table 9 shows the percentage and five ex-
amples for each category (possibly more than one
category per property). In particular, properties in
Quialities describe the long-term feature of a mate-
rial or a person’s character, while properties in Con-
dition depict a short-term state. Table 1 presents
the percentage and examples for our simile probes
of different categories.
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