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Abstract

End-to-end simultaneous speech-to-text trans-
lation aims to directly perform translation
from streaming source speech to target text
with high translation quality and low latency.
A typical simultaneous translation (ST) sys-
tem consists of a speech translation model
and a policy module, which determines when
to wait and when to translate. Thus the
policy is crucial to balance translation qual-
ity and latency. Conventional methods usu-
ally adopt fixed policies, e.g. segmenting the
source speech with a fixed length and gener-
ating translation. However, this method ig-
nores contextual information and suffers from
low translation quality. This paper proposes
an adaptive segmentation policy for end-to-
end ST. Inspired by human interpreters, the
policy learns to segment the source streaming
speech into meaningful units by considering
both acoustic features and translation history,
maintaining consistency between the segmen-
tation and translation. Experimental results
on English-German and Chinese-English show
that our method achieves a good accuracy-
latency trade-off over recently proposed state-
of-the-art methods.

1 Introduction

Recent years have witnessed extensive studies and
rapid progress of Simultaneous translation (ST).
It aims to perform translation from source speech
into the target language with high quality and low
latency and is widely used in many scenarios, such
as international conferences, press releases, etc.

Generally, the research of ST falls into two cat-
egories: the cascaded method, and the end-to-end

∗ Corresponding author.
1In German, each singular noun is assigned a gender, either

masculine, feminine, or neuter, which determines whether the
definite article (like “The” in English) preceding the noun is
“Der”, “Die” or “Das”. Therefore, translating “The” hastily
without receiving the following noun may cause mistransla-
tion.
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Figure 1: An En-De example illustrates three segmen-
tation policies for end-to-end simultaneous translation.
The yellow line indicates the sampling frequency of
the source speech. (a) Fixed-length policy generates
a target word for each interval. (b) Word-based pol-
icy detects word boundaries and generates target word
once a source word is detected (green triangle). (c) Our
method detects meaningful units and generates transla-
tion. Both the Fixed-length policy and Word-based pol-
icy incorrectly generate “Die” without consideration of
following context1. The last blue blocks denote the
translation after receiving the complete speech. Mis-
translated words are annotated in red.

method. The cascaded method consists of an au-
tomatic speech recognition (ASR) model which
transcribes the source speech into source streaming
text (Moritz et al., 2020; Wang et al., 2020b; Li
et al., 2020a), and a followed-by machine transla-
tion (MT) model that generates translation based
on the ASR output. Since there are no sentence or
segment boundaries in the streaming source text
output by ASR, a segmentation policy is required
to link the ASR and the MT to determine when to
read more source tokens and when to start transla-
tion (Oda et al., 2014; Dalvi et al., 2018; Ma et al.,
2019; Arivazhagan et al., 2019; Zhang et al., 2020;
Wilken et al., 2020). However, cascaded methods

7862



face two main challenges. One is the error propa-
gation that the ASR errors may hurt the translation
quality. The other is the increase of latency because
the translation model has to wait for the output of
the ASR model.

To overcome these limitations, the end-to-end
method attempts to directly translate from source
speech to target text, without explicitly transcribing
the source speech (Bansal et al., 2018; Di Gangi
et al., 2019b; Jia et al., 2019). To balance the trans-
lation quality and latency, the key challenge lies in
the segmentation policy that determines the trans-
lation boundaries of the speech frames.

Most of the previous work used fixed policies.
Some of them take fixed-length policy (Nguyen
et al., 2021; Ma et al., 2020b, 2021) that splits
speech at a fixed frequency, for example, to gen-
erate one target word every Ts ms (Figure 1 (a)).
Other work adopts word-based policy that splits the
speech into words and generates one target word
whenever a new source word is detected, which
calls for an auxiliary source word detector (Ren
et al., 2020; Elbayad et al., 2020; Ma et al., 2020b;
Zeng et al., 2021; Chen et al., 2021), see Figure 1
(b). However, both the above methods are “hard”
policies, which do not consider the contextual in-
formation and result in low translation quality (Ari-
vazhagan et al., 2019; Zhang et al., 2020).

In this paper, we propose an adaptive segmenta-
tion policy for end-to-end simultaneous translation
based on Meaningful Unit (MU). The idea is bor-
rowed from human interpreters, who do interpreta-
tion based on a unit with clear meaning rather than
fixed frame length or word. We model the speech
segmentation policy as a binary classification that
determines whether a speech segment is an MU.
Once an MU is detected, it is fed into an end-to-end
speech translation model, as illustrated in Figure
1 (c). We propose a supervised training method,
using both acoustic features and translation fea-
tures to train the policy. Besides, we propose an
incremental decoding method to construct training
data from speech and translation pairs. Concretely,
we first train a full speech translation modelMST ,
and then gradually expand speech frames to simu-
late simultaneous translation. When the translation
of the current speech segment is a prefix of the full
speech translation, the segment is extracted as an
MU. At inference time, we employ the sameMST
to maintain the consistency between segmentation
and translation. Our method is more flexible than

fixed policies, as it dynamically detects meaningful
units according to contextual information. Exper-
iments on two language pairs show that the pro-
posed approach outperforms the strong baselines
in balancing translation quality and latency.

2 Related Work

Cascade Simultaneous Translation. To elimi-
nate the impact of ASR errors, most previous work
of cascade ST use golden transcript, rather than
ASR result, to explore different read/write policies
in ST. Existing policies can be classified into two
categories: 1) The fixed policy segments the source
text based on fixed lengths (Ma et al., 2019; Dalvi
et al., 2018). For example, wait-k (Ma et al., 2019)
is a typical fixed policy that first read k source
words, then generates one target word immediately
after receiving one subsequent source word. 2) The
adaptive policy learns to segment the source text
according to its context (Oda et al., 2014; Cho and
Esipova, 2016; Gu et al., 2017; Arivazhagan et al.,
2019; Ma et al., 2020a; Zhang et al., 2020). It has
been proven that the adaptive policy is more effec-
tive than the fixed policy in balancing translation
quality and latency (Zhang et al., 2020).

End-to-End Simultaneous Translation. The
method has shown great potential over the cas-
caded method (Bérard et al., 2016; Weiss et al.,
2017; Bansal et al., 2018; Jia et al., 2019; Wang
et al., 2020a; Li et al., 2020b; Ansari et al., 2020).
End-to-end ST contains a speech translation model,
along with a policy to decide when to translate.
However, most previous studies are based on fixed-
length policy that translate every Ts ms (Nguyen
et al., 2021; Ma et al., 2020b), or decide to trans-
late whenever a fixed number of words are detected
(Ren et al., 2020; Elbayad et al., 2020; Zeng et al.,
2021; Ma et al., 2021; Chen et al., 2021), following
the fixed policy of cascade ST systems.

This paper presents an adaptive policy for end-to-
end simultaneous translation. We are motivated by
an adaptive policy proposed for cascade ST (Zhang
et al., 2020), which proposed to perform translation
when a source text segment is detected to be a unit
with clear meaning. However, there are three main
differences. First, our method is proposed for end-
to-end ST, while Zhang et al. (2020) is for cascade
ST. Second, our method directly detects MU on
speech rather than on the streaming text of the
output of ASR. Third, we propose a multi-modal
MU detection model using both acoustic features
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and translation history.

3 Adaptive Speech Segmentation Policy

The overall framework of our adaptive speech seg-
mentation policy is illustrated in Figure 2. Given
a streaming speech s, we incrementally detect
whether a speech clip s≤t (t = 1, 2, ...) is an MU,
where s≤t denotes the head tF frames of s, and F
is the detection interval. Once an MU is detected,
the speech translation model produces its transla-
tion y′ with the translation history yp force decoded
as a translation prefix. Meanwhile, y′ is displayed
to users and added to the translation history yp to
improve MU detection. In the following, we first
introduce our MU detection model (Section 3.1),
then propose a method to construct MU training
data (Section 3.2). Finally, we describe the training
details in Section 3.3.

3.1 Multi-modal MU Detection

We model the MU detection as a classification prob-
lem. Given a source speech s, the detector incre-
mentally reads speech clips at each time t, to make
a decision whether s≤t is an MU.

We propose a multi-modal detector that uses
both acoustic features and translation history. See
the bottom green block of Figure 2 for illustra-
tion. For the acoustic feature extractor Ef

a , we use
stacked temporal convolutional layers performed
on raw speech features (80-channel log-mel filter-
banks). Each of the convolutional layers is fol-
lowed by layer normalization and a GELU acti-
vation function (Hendrycks and Gimpel, 2016),
following Baevski et al. (2020). For the context
feature extractor Ef

t , we use a trainable word em-
bedding layer.

The outputs of the feature extractors are fed to
the acoustic encoder Ee

a and context encoder Ee
t

to generate latent representation, respectively. We
add a position embedding to the textual embedding,
as in BERT (Devlin et al., 2019), and add a convo-
lutional layer as the relative positional embedding
to the acoustic embedding, similar to Mohamed
et al. (2019); Baevski et al. (2019). Both Ee

t and
Ee

a follow the Transformer architecture (Sperber
et al., 2018; Devlin et al., 2019).

cy = Ee
t (E

f
t (yp))

cs = Ee
a(E

f
a (s≤t))

(1)

where cy = {c1y, ..., cNy } is the textual encoding of

yp = {y1p, y2p, ..., yNp }, and cs = {c1s, ..., cTs } is for
speech encoding2.

Next, we add different type embeddings eType

(e[TXT ] and e[AUD]) to both text and audio em-
beddings to indicate their source type. These two
sequences are then concatenated and fed to a 6-
layer Transformer for cross-modal fusion. Special
tokens [CLS] and [SEP] are added in this process
following BERT (Devlin et al., 2019). The final
hidden state corresponding to [CLS] is used as the
aggregated sequence representation to predict the
classification result l′ using a fully-connected layer,
followed by a softmax.

l′ = Softmax(fc(Emm([cy; cs] + eType))) (2)

where Emm denotes the multi-modal fusion Trans-
former and fc performs a fully-connection layer.

3.2 Constructing MU Training Data
Since there are no standard MU segmentation train-
ing corpora, we propose a simple method to auto-
matically extract meaningful speech units to con-
struct MU training samples.

We expect that MUs can be translated prop-
erly without waiting for future speech. There-
fore, we define MU as the minimum speech seg-
ment whose translation will not be changed by
subsequent speech. This requires MUs to contain
enough information to generate stable translation.
Accordingly, we propose to extract meaningful
speech units by comparing the translation of every
speech prefix segment and the full-speech transla-
tion with a pre-trained speech translation model
MST . For a speech segment s≤t, if its transla-
tion y′ =MST (s≤t) is a prefix of the full-speech
translation ỹ = MST (s), we identify that s≤t is
sufficient to provide a stable translation and anno-
tate it to an MU.

We propose an incremental-translation paradigm.
We incrementally translate s≤t, t = 1, 2, ..., to
judge whether its translation y′ is a prefix of ỹ. If
so, we extract s≤t as an MU, and force-decode its
translation y′ as a prefix in detecting subsequent
speech segments. This is to keep consistent with
the force-decoding strategy at the inference stage.

Moreover, while comparing y′ with ỹ, as illus-
trated in Figure 3, we propose a tail-truncation
strategy that discards the last k words from the par-
tial decoding results y′. This is to avoid translation

2Note that the length of acoustic encoding T is not equal
to the number of source frames tF for the temporal sampling
of convolutional feature extractor layers.
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Figure 2: (a). The overall framework of our proposed adaptive policy for end-to-end ST includes an MU detection
module and a speech translation module. Once an MU s≤t is detected, it will be translated with the translation
history yp decoded first, then decode until EOS (</s>). The new translation y′ will be added to the translation
history for detecting subsequent MUs. (b). The MU detection module performs a multi-modal classification based
on acoustic features cis and translation context ciy . (c). The speech translation module shares Ef

a and Ee
a with the

MU Detection module. It first force decodes yp (in gray) and then generates y′ (in black) at inference time.

errors caused by ambiguous speech fragments. For
example, s≤3 pronounces “The dog has” is trans-
lated to “Der Hund hat”, which is not a prefix of the
full-speech translation ỹ due to the current received
speech is ambiguous3. However, after truncated the
tail word, y′ turn to be “Der Hund” and becomes a
prefix of ỹ. Therefore, discarding tail words from
y′ enables the model to discover translation that
partially matches ỹ in advance, thus shortening the
granularity of extracted MUs and reducing latency.
At the inference stage, we also remove tail k words
from the translation of detected MUs.

With the incremental-translation paradigm, we
can extract four MUs for the example in Figure 3,
i.e., s≤2, s≤3, s≤4 and s≤5.

3.3 Training with Shared Acoustic Encoders

Our pre-trained speech translation model MST
includes an acoustic feature extractor Ef

a , an acous-
tic encoder Ee

a, and a textual translation decoder,
as shown in Figure 2(c). Ef

a and Ee
a are shared

with the multi-modal MU detection model so that
the acoustic forward computation can be shared at
inference time. The translation decoder is based
on Transformer, which links the acoustic encoder
through cross-attention (Vaswani et al., 2017).

Note that to keep MU detection consistency in
both training and decoding, we initialize the acous-
tic feature extractor and context encoder with the
weights fromMST , and keep them frozen in train-
ing MU detection, instead of joint training with

3The English word "has" can be translated to either "ist"
or "hat" in most cases, depending on what follows.

Der Hund ist weg.

Source Speech

Full-Speech Translation𝑆𝑇(𝑠≤1)

𝑆𝑇(𝑠≤2)

𝑆𝑇(𝑠≤3)

Source Transcript

𝑆𝑇(𝑠≤5)

𝑆𝑇(𝑠≤4)

෤𝑦Die

Der Hund

Der Hund hat

Der Hund ist gegangen

Der Hund ist weg

The   dog has gone missing

.

Figure 3: A running example of extracting MUs. While
translating each speech segment s≤t, the last k words
will be discarded (in gray) from the generated transla-
tion (k=1 in this example). If the rest decoding result
(in blue) is a prefix of the full-speech translation (in
yellow), then s≤t is annotated as an MU, and the tail-
truncated translation is force-decoded (green dashed
lines) in translating subsequent speech segments. Note
that the Source Transcript is invisible in extracting
MUs and here is shown only for illustration.

MST .

Formally, the MST model optimizes the two
acoustic encoders and the translation decoder first
with auto-regressive loss LST :

LST = −
∑

(s,y)∈DST

N∑
i=1

log p(yi|s, y<i; θae, θtd)

(3)
Then the MU detection model is optimized without
gradients back-propagated to the acoustic encoders:
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LMU = −
∑

(s,yp,l)∈DMU

log p(l|s, yp; θte, θmm)

(4)
where θae denotes weights of the two acoustic
encoders, θtd is the translation decoder ofMST ,
θte is the textual encoders for yp and θmm is the
weights of the multi-modal fusion. DST is the
speech translation dataset and DMU contains train-
ing triplets generated by the pre-trained MST
model.

4 Experiments

We carry out experiments on English-German (En-
De) and Chinese-English (Zh-En) simultaneous
translation. We use sacreBLEU (Post, 2018) to
evaluate the translation performance and the acous-
tic average lagging (AL) (Ma et al., 2019, 2020b)
as the latency metric. The AL measures the system
lagging behind an “ideal policy”, which produces
translation at the same speed as the audio received.

4.1 Data Settings

We evaluate our method on MuST-C (Di Gangi
et al., 2019a) En-De dataset and BSTC (Zhang
et al., 2021a) Zh-En dataset. To compare with the
previous methods, we carried out experiments un-
der two settings: the Limited-training-corpora
setting that constrains the training data to a limited
set of corpora, and the Open-training-corpora
setting uses more data. For En-De, we set the
training data of Limited-training-corpora setting
as the training set of MuST-C, a dataset consist-
ing of 408 hours of speech with transcription and
translation, while the experiments with the Open-
training-corpora setting use unlimited datasets of
up to 1,302 hours of speech. See appendix A.1 for
detail.

4.2 Model Settings

We compare our method with previous strong ST
approaches. Methods listed with “*” are carried
out under the Open-training-corpora setting, while
others use the Limited-training-corpora setting.

• Wait-k (Chen et al., 2021) integrates the wait-k
(Ma et al., 2019) policy into end-to-end speech
translation with an additional ASR module to
detect the number of source words within the
streaming speech.

Arch Speech Translator Speech Segmentor
Feature

Extractor
Context
Encoder

ST
Decoder

Context
Encoder

Fusion
Encoder

Base CNN-2 T-12 T-6 T-6 T-6
Big CNN-7 T-24 T-12 T-6 T-6

Table 1: The two architectures of our method. “n” in
“T-n” and “CNN-n” represents the number of stacked
Transformer and stacked CNN layers, respectively.

• SimulST (Ma et al., 2020b) takes the fixed-
length policy that translates out one token ev-
ery Ts ms. We set Ts to 280 following their
best experimental settings.

• StreamMemory (Ma et al., 2021) proposes an
end-to-end speech translation model with aug-
mented memory, which stores previous states
of streaming speech to reduce the computation
cost. They use the same fixed-length policy as
in SimulST.

• RealTranS (Zeng et al., 2021) proposes a fixed
policy (Wait-k-Stride-N) for an end-to-end ST
that triggers translation based on the number
of words within the streaming speech, which
is detected based on a CTC module built on
top of the speech translation encoder.

• Wait-K-Stride-S-Write-N* (Nguyen et al.,
2021) proposes a fixed-length policy for end-
to-end ST that first wait for K frames, then al-
ternatively decoding N target words and read-
ing S frames.

• ON-TRAC* (Elbayad et al., 2020): A cascade
system that achieved the first-place of the
IWSLT2020 En-De simultaneous translation
shared task (Federico et al., 2020). It takes a
fixed policy (wait-k) to link the ASR output
and the MT module.

• MU-ST: Our proposed method that triggers
the speech translator with an MU-based adap-
tive policy. TheMST model is trained from
scratch.

• MU-ST(+pretrain)*: To compare with meth-
ods of the Open-training-corpora setting, we
take pre-training techniques in training the
speech translatorMST .

We train MU-ST and MU-ST(+pretrain)* with
different model architectures. The MST model
of MU-ST is first pre-trained with an ASR task
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Figure 4: The Translation quality (BLEU) vs. latency
(AL) evaluated on MuST-C En-De. The results marked
with * are of the Open-training-corpora setting, while
others only use the MuST-C as the training corpus. The
results of all the comparison methods are excerpted
from the corresponding papers7.

to enhance the acoustic representations, as per-
formed in SimulST (Ma et al., 2020b), StreamMem-
ory (Ma et al., 2021) and RealTranS (Zeng et al.,
2021). For MU-ST(+pretrain)*, we follow the
recently proposed speech translation pre-training
method (Li et al., 2020b) to initialize the encoder
with wav2vec2.04 (Baevski et al., 2020) and ini-
tialize the decoder with mBART505 (Tang et al.,
2020), then fine-tune with speech translation cor-
pora. As listed in Table 1, MU-ST takes the Base
model and MU-ST(+pretrain)* takes the Big ver-
sion6. We set the number of truncated words k=2
in tail-truncation and the length of speech clips
Ts = 250ms as default.

4https://dl.fbaipublicfiles.com/fairseq/

wav2vec/wav2vec_vox_960h_pl.pt
5https://dl.fbaipublicfiles.com/fairseq/

models/mbart50/mbart50.ft.1n.tar.gz
6The architecture of MU-ST(+pretrain)* is determined

by its inherited pre-training models. MU-ST adopts smaller
models because of the low-resource training data。

7Following previous studies, we evaluate the computation-
aware AL and computation-unaware AL on MuST-C dev set
and test set, respectively.

4.3 En-De Experiment
Figure 4 shows the results on MuST-C dev
set and tst-COMMON set. We calculate the
computation-aware latency on the MuST-C dev set
and computation-unaware latency on the MuST-C
tst-COMMON set, to be consistent with previous
work. The difference between them is whether the
model inference time is taken into account.

MU-ST achieves higher translation quality un-
der the same latency on both datasets. δ de-
notes the probability threshold of MU detector, i.e.,
δ = [0.3, 0.4, ..., 0.9] corresponds to the results
of taking p(l = 1|s, yp) > δ as the criterion of
determining s to be an MU. Small δ produces fine-
grained speech segments and small delay, but if
some ambiguous speech segments are incorrectly
recognized as MUs, it will result in poor translation
quality.

On the dev set, we compare MU-ST with Wait-
k (Chen et al., 2021), SimulST (Ma et al., 2020b)
and StreamMemory (Ma et al., 2021). SimulST and
StreamMemory takes fixed-length speech policy
(Figure 1 (a)) while Wait-k performs wait-k based
on the number of words detected from an ASR
module (Figure 1 (b)). We also plot the result of a
Cascaded system based on textual Wait-K (Chen
et al., 2021) . We observed that:

• Our adaptive policy outperforms the Wait-k
methods, and the Wait-k approaches are supe-
rior to the fixed-length methods.

• We report the result of translating the whole
speech without segmentation in the “full-
speech translation”. MU-ST approaches the
BLEU of full-speech translation as early as
δ = 0.6, indicating that our method can
achieve comparable BLEU with full-speech
translation with a very small latency (about
2100ms), while other methods still have a
large gap with the full-speech translation un-
der corresponding delay.

On the tst-COMMON set, we compare MU-ST
with three fixed-policy methods. ON-TRAC* and
RealTranS follow the wait-k policy, while Wait-
K-Stride-S-Write-N* takes the fixed-length policy.
We observed that:

• Our proposed MU-ST trained with MuST-C
achieves higher BLEU at all latency regimes
than other approaches. In particular, it even
superior to the cascade method ON-TRAC*,
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which utilized large-scale ASR and MT cor-
pora for training.

• MU-ST(+pretrain)* outperforms MU-ST
in BLEU by taking advantage of pre-
trained models and more training data
for MST . The full-speech translation
of MU-ST(+pretrain)* has 3.32 BLEU
points improvement (22.58→25.90) over
MU-ST. Meanwhile, the latency of MU-
ST(+pretrain)* is longer than MU-ST under
the same δ. This may be because the pre-
trained large speech translation model of MU-
ST(+pretrain)* enables the high translation di-
versity of its speech translation modelMST ,
which is not conducive in constructing fine-
grained meaningful units. Strong translation
diversity will reduce the probability of prefix
matching between partial translation y′i and
full-speech translation ỹ in MU construction,
thus bringing in longer MUs and higher la-
tency.

4.4 Ablation Studies
We conduct experiments concerning various as-
pects of our MU-based policy in this section.
All ablation results are trained on the Limited-
training-corpora setting and evaluated on MuST-C
tst-COMMON set.

4.4.1 Do we need tail-truncation?
When constructing the data for MU detection, we
proposed a tail-truncation strategy, which removes
the last k words from the translation of each speech
segment to avoid translation errors caused by am-
biguous speech segments. Now we verify its signif-
icance. We compare models with different numbers
of truncated words k in tail-truncation, with results
shown in Figure 5. It is observed that without tail-
truncation (k = 0), the translation quality is worse
and the latency is longer, compared with k = 2. This

corroborates our motivation specified in Section
3.2 that tail-truncation enables the model to dis-
cover fine-grained meaningful units. Moreover, it
also facilitates producing context-aware translation
by taking longer context in translation. Therefore,
tail-truncation strategy plays an important role in
extracting meaningful units.

Increasing k from 2 to 4 and 6 generally brings
higher latency, along with a tiny improvement in
translation quality. According to the I-MOS rank-
ing mechanism (Zhang et al., 2021b) for ST sys-
tems, k = 2 and k = 6 ranks tied, both better than
k = 4. k = 2 is superior at low-latency regime and
k = 6 performs better at high-latency regime. This
is because according to our MU extraction algo-
rithm, we can always guarantee the consistency
between the MU translation and the full-speech
translation, regardless of the value of k. Larger
k makes it easier to match partial translation and
full-speech translation, thus producing more fine-
grained MUs. But at the same time, truncating
more translated words can avoid displaying prob-
lematic translations at the tail. So the translation
quality of large k will not degrade. On the contrary,
using a larger k improves the translation accuracy
because it receives more source speech when per-
forming translation.

4.4.2 Multi-modal vs. Single-modal MU
Detection

To further study the effect of the translation his-
tory for MU detection, we remove the previously
generated translation yp from the multi-modal MU
detection model. Without yp, the segmentation
model detects MUs only based on the input speech
clip s≤t, and only optimizes the top 6-layer Trans-
former.

We build golden segmentation on tst-COMMON
based on the meaningful speech units construc-
tion algorithm (Section 3.2), then evaluate different
models on MU segmentation, translation quality,
and latency. The results are shown in Table 2. It
is observed that for both limited and open training
corpora settings, the multi-modal method which
combines speech features and translation history
outperforms the single-modal method on MU seg-
mentation in terms of F1 score (absolute improve-
ments of 1.6-2 percentage points). However, there
are only slight improvements in translation qual-
ity and a slight delay in latency. This is because
incorrect segmentation does not necessarily lead
to the decline of BLEU, which also depends on
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Model setting F1 (%) BLEU AL (ms)

MU-ST
Single-Modal 72.6 20.92 1642.2
Multi-Modal 74.6 21.07 1684.8

MU-ST
(+pretrain)*

Single-Modal 72.5 22.73 1925.7
Multi-Modal 74.1 22.78 1952.5

Table 2: The performance of single-modal and multi-
modal MU detection models evaluated on MuST-C tst-
COMMON at δ = 0.5.

the robustness of the speech translation model. For
some small errors brought by wrong segmentation,
a robust speech translation model may ignore them
and generate correct translation when translating
subsequent MUs. In such cases, the overall BLEU
will not be largely affected.

4.5 Experiments on Zh-En ST

We also evaluate our method on Zh-En ST us-
ing BSTC (Zhang et al., 2021a) dataset. BSTC
is the largest Zh-En public speech translation cor-
pus, but contains only 66 hours of speech, corre-
sponding to 37k sentences. To alleviate the data
scarcity, we first construct pseudo speech trans-
lation data by translating the transcript of ASR
corpora (AISHELL-1 (Bu et al., 2017), AISHELL-
3 (Shi et al., 2020), and aidatatang_200zh8) with
a Zh-En machine translation model trained on a
translation corpus, CCMT2019 (Yang et al., 2019).
Then the pseudo speech translation data, together
with the BSTC, are assigned as the training corpus
for the Zh-En end-to-end speech translation model.
The combined training set contains a total of 529
hours of speech, corresponding to 478k sentence
pairs of transcript and translation.

We implement three methods for comparison:

• Cascade: we use an adaptive policy (Zhang
et al., 2020) to connect an ASR model and an
MT model. The ASR model is trained on 529
hours of speech, and the MT model based on
Transformer big is pre-trained on CCMT2019
and fine-tuned on BSTC. The adaptive policy
based on textual MU (Zhang et al., 2020) is
trained on BSTC.

• Cascade*: Similar to Cascade, the only differ-
ence is that it adopts a public real-time ASR
API9 that uses more than 9400 hours of ASR
training data (Amodei et al., 2016).

8a free Chinese Mandarin speech corpus by Beijing
DataTang Technology Co., Ltd (www.datatang.com)

9https://ai.baidu.com/tech/speech/realtime_asr
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Figure 6: The performance on the Zh-En BSTC testset.

• MU-ST: Our proposed adaptive speech seg-
mentation policy for end-to-end ST. The
acoustic encoders and target decoders of our
speech translation model are initialized by the
ASR and MT model of Cascade method, re-
spectively. Then we fine-tune with speech
translation data following Li et al. (2020b).

The results in Figure 6 show that: 1) Cascade*
has a significant advantage over the other two meth-
ods. This is because the word error rate of the ASR
model is 10.32% and 21.58% for Cascade* and
Cascade, respectively, leading to 5.9 BLEU points
of gap between their full-speech translation results
(27.2 vs. 33.1)10. 2) Cascade and our end-to-end
method MU-ST are optimized with identical train-
ing data, but MU-ST outperforms Cascade. We
attribute this improvement to two reasons. First,
the end-to-end method avoids ASR error propa-
gation, with the full-speech translation of MU-ST
surpassing Cascade by 0.7 BLEU points (27.9 vs.
27.2). Second and more important, MU-ST de-
tects MUs directly from speech, thus avoiding loss
of information. The average gap between Cas-
cade and MU-ST at five ST results is 2.9 BLEU
points, much larger than that of full-speech transla-
tion (0.7). This represents that segmentation from
the source speech is superior to segmentation from
noisy ASR results. Accordingly, we expect our
MU-ST to have greater potential based on large-
scale training data.

5 Conclusion

We present an adaptive speech segmentation policy
for end-to-end simultaneous translation, which trig-
gers translation with a meaningful speech unit de-

10Note that, our proposed MU-ST surpassed the cascade
method ON-TRAC* in En-De experiments, but it failed to
surpass Cascade* in Zh-En because the ASR training data of
ON-TRAC* in En-De is only three times that of MU-ST (in
hours), while the training data of Cascade* is thousands of
times that of MU-ST in Zh-En experiments.
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tector. Experiments across two language pairs show
that our method outperforms state-of-the-art meth-
ods with constrained training corpus, suggesting
the effectiveness of our adaptive policy. Ablation
studies reveal key factors that lead to its success, in-
cluding tail-truncation, multi-modal segmentation,
and speech-text pre-training.
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A Appendix

A.1 Experimental Corpora
We list the corpora used by different methods of En-De in Table 3.

Type Corpus #Sents / #Hours Limited-
Training-
Corpora

Open-Training-Corpora

MU-ST(+pretrain) ON-TRAC
Wait-K-Stride-S

-Write-N
Train

ST
MuST-C 229k(408h) √ √ √ √

Covost2 290k(430h) √

Europarl-ST 32k(77h) √ √ √

ASR
How2 365h √ √

TED-LIUM3 452h √

MT
CommonCrawl + Europarl
+ News Commentary

1543k + 1730k
+ 320k

√

Dev & Test
Dev MuST-C dev 1423(2.5h) √ √ √ √

Test MuST-C tst-COMMON 2641(4.0h) √ √ √ √

Table 3: The statistics of the corpora used in the simultaneous translation experiments. We list four data settings,
one belongs to the Limited-training-corpora setting, and the other three belong to the Open-training-corpora setting.

The statistics of the training data used in Zh-En experiments is listed in Table 4.

Type Corpus #Hours #Sent Pairs
AISHELL-1 178 141k
AISHELL-3 85 63kASR
aidatatang 200 237k

ST BSTC 66 37k
MT CCMT2019 / 9.1M

Table 4: The audio duration and the number of sentences of the corpora used in Zh-En ST experiments. The
corpora with gray background are used as the final speech translation datasets, in which transcripts of the ASR
corpora are translated by an NMT model to construct pseudo speech translation.

A.2 Numeric Results for the figures

δ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Full-Speech
AL 1049 1336 1674 2099 2819 4144 5377 5673
BLEU 16.54 19.14 20.92 21.79 22.07 22.00 22.14 22.04

Table 5: Numeric Results of MU-ST for Figure 4(a).

A.3 Case Study
We showcase an example in Zh-En from the test sets in Figure 7.
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δ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Full-Speech
MU-ST
AL 888 1211 1685 2516 3452 4310 4896 5682
BLEU 15.98 19.33 21.07 21.82 22.08 22.16 22.2 22.58
MU-ST(+pretrain)*
AL 1023 1424 1953 2642 3621 4453 5089 5754
BLEU 17.94 20.85 22.78 24.3 24.82 24.99 25.05 25.9

Table 6: Numeric Results of MU-ST and MU-ST(+pretrain)* for Figure 4(b).

δ 0.5 0.6 0.7 0.8 0.9 Full-Speech
Cascade
AL 1228 1370 1539 1698 1836 2426
BLEU 22.84 23.69 24.54 24.68 25.1 27.17
Cascade*
AL 1171 1308 1464 1631 1780 2173
BLEU 28.30 28.97 29.84 30.06 30.60 33.05
MU-ST*
AL 1125 1296 1484 1642 1793 2352
BLEU 25.76 27.15 27.42 27.43 27.56 27.93

Table 7: Numeric Results for Figure 6.

呃其中一门呢 是我在纽 约 留学的时候上的一 门 画画的课。

One is the painting class I attended during my study at New York.

Source Speech

Source Transcript

Reference

Cascade

ASR & Segmentation

Translation

Cascade*

ASR & Segmentation

Translation

MU-ST

Speech Clips

Source Transcript

MU Segmentation

Translation

One of them is

呃其中一门呢是我在纽约流学的时候上的一门画的刻。

呃其中一门呢是我在纽约留学的时候上的一门画画的课。

One (of them)
of them (is me)

呃其中一门呢 是我在纽 约 留学的时候上的一 门 画画的课。

Keep 3 words for tail revising

the sculpture of a painting I made

when I was studying in New York.

a drawing class I took when I 

was studying in New York.

One of them is

is a painting class I took while 
studying in New York.

Figure 7: A Chinese-English example in the BSTC test set. In the ASR result of Cascade, two characters are in-
correctly recognized: “留学”(“study abroad”)→“流学” (“rheological”) and “画画的课” (“painting class”)→“画
画的刻” (“sculpture of painting”), which makes the translation distort the meaning of the source speech, see the
underlined translation. On the contrary, our proposed MU-ST avoids the error propagated from ASR by end-to-end
training and generates a correct translation. Moreover, both the cascade methods keep revising some tail words
for better accuracy, but causing translation delay, denoted by the 3-words lagging. MU-ST remove this extra delay
through end-to-end speech translation.
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