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Abstract

We propose a framework for training non-
autoregressive sequence-to-sequence models
for editing tasks, where the original input se-
quence is iteratively edited to produce the out-
put. We show that the imitation learning al-
gorithms designed to train such models for
machine translation introduces mismatches be-
tween training and inference that lead to un-
dertraining and poor generalization in editing
scenarios. We address this issue with two com-
plementary strategies: 1) a roll-in policy that
exposes the model to intermediate training se-
quences that it is more likely to encounter dur-
ing inference, 2) a curriculum that presents
easy-to-learn edit operations first, gradually in-
creasing the difficulty of training samples as
the model becomes competent. We show the
efficacy of these strategies on two challenging
English editing tasks: controllable text simpli-
fication and abstractive summarization. Our
approach significantly improves output quality
on both tasks and controls output complexity
better on the simplification task.

1 Introduction

Neural sequence-to-sequence (seq2seq) models pri-
marily developed and tested for machine translation
(MT) Bahdanau et al. (2015); Vaswani et al. (2017);
Gu et al. (2018) are increasingly used for other se-
quence transduction tasks. This paper focuses on
editing tasks, such as post-editing of MT output
(Simard et al., 2007), style transfer (Jin et al., 2020),
or text simplification (Chandrasekar and Srinivas,
1997; Xu et al., 2015), where systems directly edit
the input sequence, instead of generating the output
from scratch as in MT. As illustrated in Table 1,
in these tasks, there might be substantial overlap
in content between inputs and outputs, and also
diverse rewrites, ranging from local substitutions
to more complex restructuring.

While dedicated architectures have been de-
signed for these editing tasks, based on e.g., a

Original: The Mauritshuis museum is staging
an exhibition focusing on the 17th century self-
portraits, highlighting the similarities and the
differences between modern-day snapshots and
historic works of art.

Simplified: The Mauritshuis museum is now
set to open an exhibit on the 17th century self-
portraits. It shows the similarities and differ-
ences between modern photos and artworks.

Table 1: Text simplification is an editing task, where
the output sequence overlaps with the input, while in-
corporating multiple rewrite types to restructure and
simplify content.

multistep, tag-then-edit approach (Alva-Manchego
et al., 2017; Malmi et al., 2019; Dong et al., 2019;
Mallinson et al., 2020), they can also be addressed
with non-autoregressive (NAR) seq2seq models
which generate their output by iteratively editing
intermediate sequences (Lee et al., 2018; Gu et al.,
2019; Awasthi et al., 2019; Stern et al., 2019; Chan
et al., 2020). NAR models hold the promise of pro-
viding a more generic solution, where the model
does not need to be tailored to a given editing task.

This work is centered on the hypothesis that
training NAR models for editing tasks using the
same strategy as for MT leads to a mismatch be-
tween train and test settings that limits their gener-
alization ability and output quality. Specifically, the
learning algorithms designed for MT are aligned
with inference strategies that generate output from
an empty initial sequence. By contrast, in sequence
editing tasks, the inference step is initialized in-
stead with the original input sequence. In addition,
since editing samples might range from limited lex-
ical substitutions to more thorough rewrites, train-
ing samples cover a wide range of edit distances.
During training, the loss can thus be dominated by
the more distant samples leading to undertrained
models and poor generalization. By contrast, the
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distance between input and output samples in MT
is more uniform, since it always involves at least
lexical translation of the input tokens.

To address these issues, we introduce a new train-
ing framework, EDITING CURRICULUM, which
dynamically exposes the model to more relevant
edit actions during training and exploits the full
spectrum of available training samples more ef-
fectively. First, we design a new roll-in strategy,
EDITING roll-in, that exposes the model to interme-
diate sequences that it is more likely to encounter
during inference. Second, we introduce a train-
ing CURRICULUM to expose the model to training
samples in order of increasing edit distance, thus
gradually increasing the complexity of oracle edit
operations that the model learns to imitate.

We show that our approach improves the quality
of outputs on two challenging English text edit-
ing tasks: controllable text simplification (TS) and
abstractive summarization. It also improves the
degree of TS control by generating simplified out-
puts that match the target reading grade level better
than the baselines. We conduct an extensive analy-
sis which supports our hypothesis, and show that
the sequences generated by our training policy im-
prove exploration during training and are easier to
learn from, leading to better generalization across
samples with varying edit distances. Training with
curriculum further improves output quality.

2 Background

Model NAR edit-based models (Chan et al.,
2020; Gu et al., 2019; Stern et al., 2019; Xu and
Carpuat, 2021) cast sequence editing as an iter-
ative sequence refinement problem modeled by
a Markov Decision Process

(
Y,A, E ,R,y0

)
. A

state y = (y1, y2, ..., yL) ∈ Y is a sequence of
tokens where each yi represents a token from the
vocabulary V , L is the sequence length and y0 ∈ Y
is the initial sequence to be refined, using actions
drawn from the setA. The rewardR is based on the
distance D between the generated output and the
reference sequence y∗ ∈ Y: R(y) = −D(y, y∗).
At each decoding iteration, the model takes an input
y, chooses an action a ∈ A to refine the sequence
using a policy π, resulting in state E(y, a).

Models differ based on the nature of edit actions
used and support different operations such as inser-
tion, deletion, reposition and substitution. We se-
lect the operations from the EDITOR model based
on its competitive performance on constrained de-

coding tasks that require editing non-empty initial
sequences (Xu and Carpuat, 2021). It is a Trans-
former model that uses two types of actions or edits
on sequences, y:

1. The reposition operation, modeled by πrps,
predicts the new position of each token in
the input sequence. For each input position,
the reposition policy predicts a value r that
corresponds to the index of the input token
to be placed at the position and 0 if the input
token is to be deleted.

2. The insertion operation has two components:
placeholder prediction, πplh that predicts the
number of placeholders to be inserted and to-
ken prediction, πins that generates the actual
output tokens for each placeholder.

At each decoding iteration, the model applies an
action a that consists of a reposition and an inser-
tion operation. This refinement process is repeated
until two consecutive decoding iterations return the
same output (Gu et al., 2019), or a preset maxi-
mum number of them is reached (Lee et al., 2018;
Ghazvininejad et al., 2019).

Figure 1: One refinement iteration for the input se-
quence: "a b c d e" using the operations generated by
the Levenshtein Edit Distance Algorithm.

Training NAR models are typically trained via
imitation learning that uses a roll-in policy and a
roll-out policy. The roll-in policy is used to gen-
erate the sequences that the model learns to refine
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OPERATIONS Roll-In ROLL-IN POLICIES

Gu et al. (2019) Insertion, Deletion Mixed y′ = {E(y∗, d̃), d̃ ∼ πrnd }
yins = {y′ if u < α else E(ys, d∗), d∗ ∼ π∗del}

ydel = {ys if u < β else E(E(yins, p∗), t̃), p∗ ∼ π∗plh, t̃ ∼ πins}
Stern et al. (2019) Insertion Expert yins = {E(y∗, d̃), d̃ ∼ πrnd }
Ghazvininejad et al. (2019) Substitution Expert ysub = {E(y∗, m̃), m̃ ∼ πmask }
Saharia et al. (2020) Substitution (Offline) Learned ysub = {E(y, m̃), m̃ ∼ πmask }
Qian et al. (2020) Substitution Expert ysub = {E(y, m̃), m̃ ∼ πmask }

Xu and Carpuat (2021) Insertion, Reposition Learned y′ = {E(E(y∗, d̃), p̃), d̃ ∼ πrnd, p̃ ∼ πper}
(including deletions) yins = {y′ if u < α else E(y, r), r ∼ πrps}

yrps = {y′ if u < β else E(E(y, p∗), t̃), p∗ ∼ π∗plh, t̃ ∼ πins}

Table 2: Training Policies and Edit Operations performed by different NAR models: ys: original input sequence,
y∗: output sequence, y: model generated variant of reference sequence, πrnd/ πmasks drops/masks random words
from y∗ according to a distribution (e.g. uniform, bernoulli, etc.), πp generates a permutation, u :∼ Uniform[0, 1],
πins, πplh, πdel, πrps are insertion, placeholder prediction, deletion and reposition policies.

from. A roll-out policy is then used to estimate
the cost-to-go from the generated roll-in sequences
to the desired output sequences. The cost-to-go is
calculated by comparing the model actions to ora-
cle demonstrations. We summarize the policies of
various NAR models proposed for MT in Table 2.

For EDITOR, the roll-in sequences for the repo-
sition (or insertion) module are stochastic mixtures
(parameterized by α or β) of the output of the inser-
tion (or reposition) module or a noised version of
the output sequence. The oracle is the Levenshtein
edit distance (Gu et al., 2019). The noisy sequence
is generated by applying random word dropping
(Gu et al., 2019) and random word shuffle (Lample
et al., 2018) with a probability of 0.5 and maximum
shuffle distance of 3. Figure 1 shows an example
instantiation of the edit actions generated by the
Levenshtein Edit Distance to transform the original
input sequence (“a b c d e”) to the output sequence
(“c a t”). In this example, the oracle action is to
delete the tokens [“b”, “d”, “e”], reposition “a” and
“c” and insert “t” at the appropriate position. The
reposition and the insertion modules are trained in
a supervised fashion to predict these oracle opera-
tions during training.

3 Our Approach: EDITING
CURRICULUM

To tailor training to editing tasks, we propose to
modify the roll-in policy to better match the inter-
mediate sequences encountered at inference, and
introduce a curriculum to increase the difficulty of
oracle actions learned throughout training.

EDITING Roll-in Sequences generated using the
roll-in policy control the search space explored dur-
ing training. Those sequences should therefore be

representative of the intermediate sequences gen-
erated at inference time (Ross and Bagnell, 2010).
While typically, the roll-in policy is a stochastic
mixture of the model and the expert demonstra-
tions as described above, the noise incurred early
on due to the large difference between the expert
demonstration and the learner’s policy actions may
hurt overall performance (Brantley et al., 2019; He
et al., 2012; Leblond et al., 2018). As we will see
(§5), this is what happens on editing tasks when
training the model to imitate experts using learned
roll-in sequences. At the same time, rolling in with
expert demonstrations raises its own issues, as it
can limit the exploration of the search space.

Figure 2: Example roll-in sequences for the reposition
and the insertion modules: The same initial input se-
quence (ys) can enable the model to learn to generate
the reference output (y∗) using different edit operations
from its noised version.

Motivated by these observations, we propose
a new policy, EDITING, that allows exploration
by injecting noise to the input sequence to gener-
ate new intermediate sequences for training. This
lets the model learn to fix errors without deviating
from learning the task at hand. Figure 2 shows an
example of intermediate sequences generated by
our proposed roll-in policy. Different intermedi-
ate sequences encourage the model to learn differ-
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Algorithm 1: Our proposed framework: EDITING CURRICULUM

Input: Dataset, D = {y, y∗}Mi=1, difficulty scoring function, d, and competence function, c.
1 Compute the difficulty, d(si), for each si = {yi, y∗i } ∈ D.
2 Compute the cumulative density function (CDF) of the difficulty scores. This results in one

difficulty CDF score per sample, d̃(si) ∈ [0, 1]
3 Initialize πrps and πins.
4 for training step t = 1...T do
5 Compute the competence value, c(t).
6 Create training dataset from by selecting all samples, Bt using si ∈ D, such that d̃(si) ≤ c(t).
7 for i in 1..|Bt| do
8 Generate roll-in sequences:
9 yrps = noise(ys)

10 yins = E(yrps, r∗), r∗ ∼ π∗rps
11 Train πrps and πins on yrps and yins minimizing cost-to-go to y∗.

12 Return best πrps and πins evaluated on validation set.

ent reposition and insertion edit operations starting
from the same input sequence, hence enabling ex-
ploration. We modify the roll-in policies to be
aligned with the editing inference process, where
the reposition operation is followed by insertion on
the original input sequence:

• The roll-in sequence for training the reposi-
tion module, πrps, is generated by applying
noise to the original source sequence ys, i.e.
yrps = noise(ys) = {E(E(ys, d̃), p̃), d̃ ∼
πrnd, p̃ ∼ πper}. Unlike EDITOR, the ran-
dom word dropping (d̃ ∼ πrnd) and the word
shuffling (p̃ ∼ πper) are applied to the original
input sequence instead of the output sequence.
This aligns the training with the inference sce-
nario where the model edits an original input
sequence instead of generating an output from
scratch.

• The roll-in sequence for training the insertion
module, πins is an intermediate sequence gen-
erated by applying the expert reposition policy
to yrps, i.e. yins = {E(yrps, r∗), r∗ ∼ π∗rps}.
The expert reposition policy corresponds to
the deletion and reposition actions derived by
using the levenshtein edit distance algorithm
between the noisy input sequence, noise(ys)
and the target sequence, y∗.

Curriculum controlled roll-out To prevent un-
dertraining when samples with large edit distances
overwhelm the loss, we use a curriculum to expose
the model to easy-to-learn actions first, then grad-
ually increase the difficulty of the edit-operations

performed as the learner becomes more competent.
Prior work on curriculum learning (CL) does not
agree on standard measures of sample difficulty for
seq2seq tasks (Kumar et al., 2019; Yao et al., 2021;
Zhang et al., 2018; Zhou et al., 2020) or apply CL
for the different problem of shifting the training of
a Transformer model from AR to NAR regimes
(Guo et al., 2020; Liu et al.). By contrast, in our
settings, the Levenshtein distance provides a mea-
sure of difficulty that directly aligns with the model
design and the training oracle.

Resulting Algorithm Given a training dataset
D = {ys, y∗}Mi=1 consisting ofM samples, the dif-
ficulty score d(si) for each sample si = {ysi , y∗i } ∈
D is measured by the Levenshtein Distance be-
tween the input and the output sequence. The cu-
mulative density function (CDF) of the difficulty
scores results in one difficulty CDF score per sam-
ple, d̃(si). At each training step t, we estimate
the progress made by the learner by computing the
competence of the model c(t) ∈ (0, 1] as follows:

csqrt (t) = min

1,

√
t
1− c20
λt

+ c20


where, λt defines the length of the curriculum1;
c0 = 0.1 as in Platanios et al. (2019).

Based on this competence value c(t), the model
is then trained on all the samples whose difficulty
as measured by the Levenshtein distance between
the input and the output sequence is lower than that

1We set the curriculum length to 5K for our experiments.
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competence value, i.e. d̃(si) ≤ c(t). The resulting
algorithm is also shown in Algorithm 1.

4 Experimental Settings

We evaluate our approach on Controllable Simpli-
fication and Abstractive Summarization, two chal-
lenging sequence editing tasks that are motivated
by real world information access needs. They are
challenging because they require learning to per-
form a wide range of rewrites (from local substitu-
tion to sentence restructuring).

4.1 Controllable Simplification

Task Definition Given a complex text and a tar-
get grade level, the goal is to generate a simplified
output that is appropriate for the desired grade level.
The type of operations performed across different
grade levels span sentence splitting, paraphrasing,
deletion, content elaboration and substitution.

Data We use English Newsela samples as ex-
tracted by Agrawal and Carpuat (2019) with
470k/2k/19k for training, development and test sets
respectively. Grade side-constraints are defined
using a distinct special token for each grade level
(from 2 to 12) and are introduced as side constraints
for both the input and the output grade levels Scar-
ton and Specia (2018).

Evaluation Metrics We automatically evaluate
truecased detokenized system outputs using: SARI
(Xu et al., 2016), which measures the lexical sim-
plicity based on the n-grams kept, added, and
deleted by the system relative to the input and the
output sequence. It computes the F1 score for the
n-grams that are added (add-F1). The model’s
deletion capability is measured by the F1 score for
n-grams that are kept (keep-F1) and precision for
the n-grams that are deleted (del-P) 2; Pearson’s
correlation coefficient (PCC) between the com-
plexity of the system and reference outputs as mea-
sured by Automatic Readability Index (ARI) (Sen-
ter and Smith, 1967) and ARI-Accuracy (Heilman
et al., 2008) representing the percentage of sen-
tences where the system output grade level is within
1 grade of the reference text according to the ARI.

4.2 Abstractive Summarization

Task Given a short paragraph (one or two sen-
tences on average), the goal is to generate a con-

2https://github.com/cocoxu/
simplification

cise summary that captures the salient ideas of the
source text. It contains heavy deletions with mod-
erate amounts of substitutions and frequent shifts
caused by re-orderings.

Data We use the dataset from Toutanova et al.
(2016), which contains 6K short input texts, with
upto 5 summaries each. We use the same split as
provided by the authors with 4937/448/786 unique
input texts in the training, development and test sets
respectively. The human experts were allowed to
insert new words and reorder parts of the sentence
when generating the summary, which makes this
dataset particularly suited for abstractive summa-
rization models.

Evaluation Metrics We automatically evalu-
ate truecased detokenized system outputs using:
Rouge-L3(Lin, 2004). Even though it is not a sum-
marization metric, we also report SARI to track
the nature and type of edit operations performed.
Given multiple references for each input text, we
define the corpus level score as the arithmetic mean
of automated metrics at the instance level, which is
further averaged across the multiple references.

4.3 Model configurations

Data Preprocessing We pre-process all data us-
ing Moses tools for normalization, and truecasing.
We apply subword segmentation with a joint input-
output byte pair encoding model with 32, 000 op-
erations. We use ARI to compute the input grade
level at the inference time.

Architecture We adopt the base Transformer ar-
chitecture (Vaswani et al., 2017) with dmodel =
512, dhidden = 2048, nheads = 8, nlayers = 6, and
pdropout = 0.1 for all our models. We add dropout
to embeddings (0.1) and label smoothing (0.1).
The base EDITOR model is trained using Adam
with initial learning rate of 0.0005 and a batch
size of 16, 000 tokens. The model is further fine-
tuned on the editing task with a learning rate of
0.0001. We train all our models on two GeForce
GTX 1080Ti GPUs. The average training time for
a single seed of AR model is ∼8-9 hrs and for the
EDITOR model is ∼20-22 hrs. Fine-tuning EDI-
TOR takes additional 5-6 hrs. Training stops after
8 checkpoints without improvement of validation
perplexity. All models are implemented using the
Fairseq toolkit.

3https://github.com/pltrdy/rouge

7554

https://github.com/cocoxu/simplification
https://github.com/cocoxu/simplification
https://github.com/pltrdy/rouge


Models We compare our proposed approaches
against the following models trained from scratch
in controlled conditions: 1) AR is a auto-regressive
(AR) transformer model (Scarton and Specia,
2018). 2) We train EDITOR with the dual-path
roll-in policy as in Xu and Carpuat (2021), ref-
ered to as From Reference. We fine-tune EDI-
TOR with the following policy variants: 3) From
Input replaces the reference with the input for
generating the initial sequence as in Agrawal et al.
(2021). 4) Editing is our proposed roll-in policy.
5) Editing Curriculum, EDITCL, refers to
our approach as described in §3. During infer-
ence, we start from the input sequence (ys), which
is refined iteratively by applying a sequence of
actions, as described in §2 until 1) the output se-
quences from two consecutive iterations are the
same, or 2) the maximum number of decoding steps
(N = 10) is reached. The edit distance between
two sequences is measured by the Levenshtein edit
distance (Levenshtein et al., 1966).

5 Findings

Controllable Simplification As can be seen in
Table 3, our overall training framework, EDITCL
improves over the prior training strategy for ED-
ITOR— From Reference — significantly for
all metrics (SARI: +3.8, PCC: +0.091, ARI-Acc:
+10.1%), and over the AR baseline. Ablations show
that this is a combined effect of multiple factors.
Dual-path roll-in, From Input improves over
From Reference as expected (SARI: +1.9,
PCC: +0.077, ARI-Acc: +8.0%), as the roll-in
sequences encountered during training are simi-
lar to those encountered during inference. Using
expert roll-in (EDITING) performs better than us-
ing learned roll-in (dual-path roll-in) across the
board, with gains of up to 3 SARI points over From
Reference. Training with CL (EDITCL) im-
proves over the best roll-in strategy4, improving
the precision of deletions (+1.6) and leading to
a significant improvement in SARI score (+0.7)
over EDITING with no significant change in grade-
specific metrics.

We also report training and inference statistics.
For training, we report the number of training up-
dates to convergence, i.e. when the model achieves
the best validation perplexity on the development

4As the order of the training samples as governed by
our curriculum strategy will be same for From Input,
EDITING, we only report results over the best roll-in strategy.

dataset. For inference, we report the average num-
ber of actions taken by the model to generate the
refined output counts. Each iteration encompasses
a reposition operation followed by an insertion ap-
plied to the all the tokens in the input sequence in
parallel. CL reduces the average number of actions
needed to generate outputs compared to EDITING,
while taking only ∼ 2K more updates during train-
ing than From Input. These results show that
our roll-in policy, EDITING and the curriculum
play a complementary role in improving training
for editing.

Abstractive Summarization On the Abstractive
Summarization task (Table 4), EDITCL achieves
the best performance across the board compared
to alternative training strategies for EDITOR with
gain of upto ∼ 4 SARI, and ∼ 3 ROUGE points.
Our proposed approach improves the precision of
the deletion operation (DEL-P, +7). It also pre-
serves the tokens from the source sequence that are
present in the reference suggested by the improve-
ment in KEEP-F1(+3.9) over the EDITOR (From
Reference) model.

For completeness, we also compare our ap-
proach with systems trained in prior work: (1)
ILP (Clarke and Lapata, 2008), an integer lin-
ear programing approach for deletion-based com-
pression, (2) T3 (Cohn and Lapata, 2008), a tree
transducer-based model for abstractive compres-
sion, (3) SEQ2SEQ (Filippova et al., 2015), a neu-
ral network model for deletion-based compression,
(4) NAMAS (Rush et al., 2015), a neural model
for abstractive compression and summarization
and (5) FELIX (Mallinson et al., 2020), a non-
autoregressive approach to text editing. We use
the outputs provided by Toutanova et al. (2016)
for [1-4] and Mallinson et al. (2020) for [5]. We
endeavored to make the comparison as fair as possi-
ble5, but it is not possible to have a fully controlled
comparison. In particular, FELIX is trained on
uncased data and generates uncased outputs, while
we train and evaluate our models with truecasing.

When evaluated using our pipeline, our training
strategy applied to generic NAR models achieve
scores that are on par with, or better than, those of
dedicated summarization models (Table 5). How-
ever, this evaluation penalizes FELIX as it is
trained to address the simpler problem of sum-

5We detokenized and manually checked the outputs from
Mallinson et al. (2020) and corrected for de-tokenization er-
rors such as “1. 23” to “1.23” and “wanda ’s” to “wanda’s”.
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Model SARI ARI-based Training
Updates

Inference
action/sample

keep-F1 add-F1 del-P combined PCC % ARI-Acc

AR 66.2 ±0.3 4.4 ±0.3 43.4 ±1.4 38.0 ±0.5 0.716 ±0.004 34.5 ±0.4 - -

dual-path roll-in
FROM REFERENCE 66.1 ±0.2 2.2 ±0.2 45.5 ±1.2 37.9 ±0.4 0.656 ±0.003 29.7 ±0.2 50K 1.175
FROM INPUT 66.5 ±0.1 3.6 ±0.2 49.3 ±0.5 39.8 ±0.2 0.733 ±0.003 37.7 ±0.4 10K 2.669

EDITING 66.1 ±0.2 5.2 ±0.1 51.7 ±0.2 41.0 ±0.1 0.745 ±0.005 39.7 ±0.2 6K 2.161
EDITCL 66.8 ±0.2 4.9 ±0.2 53.3 ±0.4 41.7 ±0.3 0.747 ±0.004 39.8 ±0.3 12K 1.802

Table 3: Results on the Newsela-Grade test dataset for Controllable Simplification: our proposed framework,
EDITCL, achieves the best performance on SARI and ARI-based metrics across the board.

Model SARI Rouge-L

keep-F1 add-F1 del-P combined P R F1

AR 20.0 1.7 58.5 26.8 35.6 30.1 32.1

dual-path roll-in
FROM REFERENCE 49.5 3.7 58.8 37.3 54.2 70.1 60.8
FROM INPUT 45.5 3.6 61.4 36.8 52.8 63.4 57.2

EDITING 54.7 4.1 62.9 40.6 55.9 74.6 63.6
EDITCL 54.4 4.4 65.5 41.4 56.1 74.0 63.8

Table 4: Results on the Summarization dataset: EDITCL improves ROUGE-F1 and SARI over EDITOR.

marization on uncased text. On lower-cased out-
puts, our best model falls behind FELIX by 1.7
ROUGE points. However, FELIX has about twice
as many parameters as our model and benefits from
BERT pre-training (Devlin et al., 2019). As a re-
sult, this comparison confirms the promise of our
approach overall.

Model Rouge-L

P R F1

ILP (Clarke and Lapata, 2008) 60.6 63.2 60.6
T3 (Cohn and Lapata, 2008) 48.3 20.0 26.8
NAMAS (Rush et al., 2015) 48.8 55.2 51.5
SEQ2SEQ (Filippova et al., 2015) 57.6 51.5 53.1
FELIX (Mallinson et al., 2020) 53.7 58.1 55.5
EDITCL 56.1 74.0 63.8

FELIX (LC) 65.3 71.5 67.8
EDITCL (LC) 57.7 77.2 66.1

Table 5: Comparison to prior work on Summarization
dataset: Our approach outperforms all the baselines in
ROUGE-L (F1). LC:lower-cased.

6 Analysis

We conduct further experiments to better under-
stand the factors that help our training strategies
improve editing quality.

6.1 Impact of EDITING roll-in

First, we seek to measure whether our approach
has the intended effect of bridging the gap between
training and test for editing tasks. Figure 3 shows
the distribution of oracle insertion and deletions
observed when (a) training with EDITOR ś de-
fault roll-in policy; (b) refining an original input
sequence and (c) exposed to the model with our
EDITING roll-in policy for Controllable TS. The
plots show that with the default learning policy of
the Editor model, the model doesn’t learn to per-
form complex deletion operation at inference time.
By contrast, our proposed roll-in exposes the model
to the distribution that has higher overlap with the
inference distribution as as well as additional in-
termediate sequences that encourages exploration
during training.

6.2 Impact of Curriculum Controlled roll-out

Training Dynamics To verify that curriculum
learning helps our model better exploit its train-
ing data, we train EDITOR on x% ∈ [0, 100] of
the data, and compare using random samples with
samples ranked by increasing edit distance. Fig-
ure 4 shows the number of updates to convergence
on the development dataset for controllable sim-
plification with/without CL. Training converges
early (70 iterations only) on 13% of the easiest
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(a) EDITOR ś roll-in (Training)

(b) Inference Distribution

(c) EDITING roll-in (Training)

Figure 3: Distribution of Oracle Edit Operations (In-
sertions/Deletions) observed on Controllable TS. Our
proposed roll-in policyś distribution of edit operations
is closer to the inference distribution, while enabling
exploration during training.

samples with oracle edit distance between the in-
put and the output sequence <= 2. This supports
the hypothesis that despite adding noise, our ap-
proach yields easier examples to train on. The
order in which samples are presented matters, as
adding batches with larger edit distance (> 63%
data) without maintaining the order of the samples
converges early. By contrast, the curriculum pacing
function adds samples in order of increasing diffi-
culty, allowing the model sufficient training time
to learn from new samples while improving overall
performance across metrics.

We also report the learning curves when train-
ing EDITOR on the Newsela dataset in Figure 5.
Training with curriculum reduces the overall loss
consistently on the development dataset, leading to
better generalization.

Ranking Criteria We compare the edit-distance
(EDITCL) with other curriculum criteria in Ta-
ble 6 where the order of examples is a) ran-
dom, b) controlled by the length ratio between
source and target sequence (Length Ratio), c)

Criteria SARI PCC % ARI-Acc Corr.

Random 40.7 0.749 38.6 -
Length Ratio 41.0 0.762 39.0 0.26
Grade Difference 40.7 0.730 38.3 0.19

EDITCL 42.0 0.758 39.6 1.00
- EDITING roll-in 40.1 0.734 37.8 -
- CL 41.2 0.742 39.3 -

Table 6: On Newsela-grade dev dataset: Using Edit dis-
tance as the difficulty criteria improves over both task-
specific (Grade Difference) and task-agnostic (Length
ratio) criteria. Our proposed EDITING roll-in and
curriculum-controlled roll-out provides complemen-
tary advantages to the model training.

governed by the difference between the source
and target grade levels (Grade Difference). Our
proposed criterion outperforms both task-specific
(Grade Difference) and task-agnostic crite-
ria (Length Ratio) on the Newsela Grade de-
velopment set across all the metrics. Length
Ratio achieves better correlation with Edit dis-
tance than Grade Difference which is also
reflected by its performance (SARI: +0.3, PCC:
0.032, ARI: 0.7) on the Controllable Simplification
task. This might reflect the fact that higher grade
differences do not necessarily require more edits
to be performed, for instance when the sentence to
be simplified is already relatively simple. These
mismatches do not occur when the edit distance
itself is used as the sample difficulty criterion.

Complementarity of roll-in and roll-out design
We report the performance of the From Input
model, when trained with curriculum only without
the EDITING policy, i.e. EDITCL- EDITING in
the same Table 6. Both EDITING roll-in and cur-
riculum controlled roll-out provides complemen-
tary advantages to the model training as removing
either results in the drop in performance across
all the metrics for controllable TS. However, we
observe larger drop in the scores when we do not
apply the EDITING policy which shows that our
proposed roll-in policy is necessary to reap the ben-
efits of curriculum learning.

7 Related Work

NAR models They have been used to enable par-
allel generation of output tokens for Machine trans-
lation. (Stern et al., 2019; Chan et al., 2020; Xu
and Carpuat, 2021). Mallinson et al. (2020) design
a custom multi-step non-autoregressive edit-based
model for sequence editing where each source to-
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Figure 4: The sample order during training matters as training without curriculum on the same amount of data
(>= 40%) converges early (plot on the left) and to lower performance across all metrics (plot on the right) relative
to training with curriculum using the same data.

Figure 5: Training with curriculum reduces the loss
on the development dataset leading to better general-
ization on Controllable TS.

ken is first tagged to represent the type of edit oper-
ation to be performed and then a secondary model
is used to in-fill new tokens. The tagging and edit-
ing models are trained independently. By contrast,
we propose approaches to adapt NAR models de-
signed for MT for these tasks and train an end-to-
end model to generate an edited sequence.

Curriculum Learning for Sequence Refinement
While curriculum learning has been applied to
many tasks such as MT (Haffari, 2009; Platanios
et al., 2019; Kumar et al., 2019), sentiment analysis
(Sido and Konopík, 2019), natural language under-
standing (Xu et al., 2020), reading comprehension
(Tay et al., 2019), their application to sequence re-
finement tasks has not been explored yet. Various
strategies have been proposed to control the sam-
ple difficulty like n-gram frequency (Haffari, 2009;
Platanios et al., 2019), token rarity, and sentence
length (Liu et al., 2020). Chang et al. (2021) use
Levenshtein edit distance as a sample difficulty cri-
teria to order the samples for the task of data-to-text
generation where the training model uses an AR
seq2seq model. Instead, we focus on edit distance
as a sample difficulty criteria that is directly tied to
the training oracle and model design.

Roll-in policies There has been a plethora of
work in the Imitation learning landscape on algo-
rithms that strike a balance between learned and
expert roll-in policies (Ross et al., 2011; Venkatra-
man et al., 2015; Chang et al., 2015). However,
large differences in expert and learner’s policy ac-
tion can hurt performance (Brantley et al., 2019;
He et al., 2012; Leblond et al., 2018). In our work,
we propose to roll-in with noised states instead,
so that the model can be exposed to mimic expert
demonstrations from states that the model is more
likely to encounter during inference.

8 Conclusion

This paper introduced two complementary strate-
gies to address undertraining and poor generaliza-
tion when adapting NAR models to editing tasks:
1) a new roll-in policy that generates intermediate
sequences that the model is likely to encounter dur-
ing inference and 2) a curriculum to control the
difficulty of the roll-out policy which estimates the
cost-to-go from the roll-in sequences to the desired
output sequences, throughout training. Together,
these strategies improve output quality consistently
on controllable simplification and abstractive sum-
marization. These results open space for further
research to evaluate the potential of this approach
for other editing tasks (e.g., post editing, style trans-
fer), and to further tailor imitation learning policies
and curriculum design to these tasks.
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A Results on Development set

Model SARI ARI-based Inference
action/sample

keep-F1 add-F1 del-P combined PCC ARI-Acc

AR 0.653 0.043 0.456 0.384 0.711 0.349 -

dual-path roll-in
FROM REFERENCE 0.648 0.021 0.454 0.374 0.645 0.285 1.188
FROM INPUT 0.660 0.035 0.510 0.402 0.727 0.368 2.545

EDITING 0.657 0.049 0.530 0.412 0.742 0.393 2.071
EDITCL 0.662 0.043 0.556 0.420 0.758 0.397 1.771

Table 7: Results on the Newsela-Grade development dataset for Controllable Simplification: our proposed frame-
work, EDITCL, achieves the best performance on SARI and ARI-based metrics across the board.

B Impact of Noise

Figure 6 shows that adding noise to the training samples smoothes the distribution across training instances
by creating intermediate sequences that have relatively lower (or higher) overall edit distance with the
reference sequence compared to the original input sequence.

Figure 6: Adding noise to the source increases (higher) or decreases (lower) the edit distance uniformly across
samples for Controllable TS.
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C Oracle Edit Distribution for Summarization

(a) EDITOR ś roll-in (Training)

(b) Inference Distribution

(c) EDITING roll-in (Training)

Figure 7: Distribution of Oracle Edit Operations (Insertions/Deletions) observed on Abstractive Summarization.
Our proposed roll-in policyś distribution of edit operations is closer to the inference distribution, while enabling
exploration via generated intermediate sequences during training.
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