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Abstract

Pre-trained models for programming lan-
guages have recently demonstrated great suc-
cess on code intelligence. To support both
code-related understanding and generation
tasks, recent works attempt to pre-train uni-
fied encoder-decoder models. However, such
encoder-decoder framework is sub-optimal for
auto-regressive tasks, especially code comple-
tion that requires a decoder-only manner for
efficient inference. In this paper, we present
UniXcoder, a unified cross-modal pre-trained
model for programming language. The model
utilizes mask attention matrices with prefix
adapters to control the behavior of the model
and leverages cross-modal contents like AST
and code comment to enhance code represen-
tation. To encode AST that is represented as
a tree in parallel, we propose a one-to-one
mapping method to transform AST in a se-
quence structure that retains all structural in-
formation from the tree. Furthermore, we
propose to utilize multi-modal contents to
learn representation of code fragment with
contrastive learning, and then align represen-
tations among programming languages using
a cross-modal generation task. We evaluate
UniXcoder on five code-related tasks over nine
datasets. To further evaluate the performance
of code fragment representation, we also con-
struct a dataset for a new task, called zero-shot
code-to-code search. Results show that our
model achieves state-of-the-art performance
on most tasks and analysis reveals that com-
ment and AST can both enhance UniXcoder.

1 Introduction

Pre-trained models such as GPT (Radford et al.)
and BERT (Devlin et al., 2018) have substantially
advanced the state of the art across numerous nat-
ural language processing (NLP) tasks. These pre-
trained models are pre-trained on large amounts

∗ Work done while this author was an intern at Microsoft
Research. Contact: Daya Guo (guody5@mail2.sysu.edu.cn).

of text data with self-supervised objectives, and
can be fine-tuned to adapt to downstream tasks.
Inspired by the success of pre-trained models in
NLP, pre-trained models for programming lan-
guages (PL) (Kanade et al., 2019; Feng et al.,
2020; Svyatkovskiy et al., 2020) have been pro-
posed to promote the development of code intelli-
gence. Svyatkovskiy et al. (2020) proposes GPT-C
that employs a left-to-right Transformer (Vaswani
et al., 2017) to support generation tasks such as
code completion, but the unidirectional framework
is sub-optimal for understanding tasks. In con-
trast, other works (Kanade et al., 2019; Feng et al.,
2020) pre-train a bidirectional Transformer encoder
on source code, which significantly improves the
performance of code-related understanding tasks.
However, its bidirectionality nature requires an ad-
ditional decoder when applied to generation tasks,
where this decoder initializes from scratch and can-
not benefit from the pre-training.

In this work, we present UniXcoder, a unified
cross-modal pre-trained model for programming
languages to support both code-related understand-
ing and generation tasks. UniXcoder is based on
a multi-layer Transformer and follows Dong et al.
(2019) to utilize mask attention matrices with prefix
adapters to control the access to context for each
token. Compared with current unified encoder-
decoder models (Ahmad et al., 2021; Wang et al.,
2021) on code intelligence, UniXcoder can be bet-
ter applied to auto-regressive tasks such as code
completion that requires a decoder-only manner
to perform efficient inference in practice. Instead
of taking code as the only input, we also consider
multi-modal contents like code comment and ab-
stract syntax tree (AST) to enhance code repre-
sentation. Generally, user-written code comments
provide crucial semantic information about source
code like “Sort a given list” and AST contains rich
syntax information like types of statements and
nested relationship among them, which helps the
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model better understand source code. To encode
AST that is represented as a tree in parallel, we pro-
pose a one-to-one mapping method to transform
AST in a sequence structure that retains all infor-
mation of the tree and then the sequence can be
used as the input to enhance code representation.

We pre-train UniXcoder using three types of
language modeling tasks: masked language model-
ing (Devlin et al., 2018), unidirectional language
modeling (Radford et al.) and denoising objective
(Raffel et al., 2019), which can enable the model to
support various types of downstream tasks. Further-
more, we introduce two pre-training tasks to learn
a embedding that can represent semantics of a code
fragment. One is multi-modal contrastive learning
that leverages AST to enhance semantics of code
fragment embeddings, and the other is cross-modal
generation that utilizes code comment to align em-
beddings among programming languages.

We evaluate UniXcoder on five tasks over nine
public datasets, including two understanding tasks:
clone detection and code search, two generation
tasks: code summarization and code generation,
and an auto-regressive task: code completion. To
further test code fragment embeddings, we propose
a new task, called zero-shot code-to-code search,
and construct a new dataset from CodeNet corpus
(Puri et al., 2021) for this task. Experimental results
show that our model achieves state-of-the-art per-
formance on most tasks. Further analysis reveals
that AST and code comment can both enhance
UniXcoder to better capture code semantics.

In summary, the contributions of this paper are:
(1) We propose a unified cross-modal pre-trained
model that leverages multi-modal contents, i.e.
code comment and AST, to support code-related un-
derstanding, generation tasks and auto-regressive
tasks. (2) We propose a one-to-one mapping func-
tion that converts AST into a sequence that retains
all information of AST and can be encoded with
source code and comment in parallel. (3) We fur-
ther propose to utilize code comment to learn code
fragment representation and construct a new dataset
for zero-shot code-code search to evaluate the qual-
ity of code fragment representation. (4) Experimen-
tal results show that UniXcoder provides significant
improvement on most downstream tasks.1

1All the codes and data are available at https://
github.com/microsoft/CodeBERT.

2 Related Works

With the great success of pre-training in natural lan-
guage (NL) processing (Devlin et al., 2018; Lewis
et al., 2019; Raffel et al., 2019; Brown et al., 2020),
pre-trained models for programming languages
have been proposed to promote the development
of code intelligence. These pre-trained models can
be generally divided into three categories: encoder-
only, decoder-only, and encoder-decoder models.

Encode-only models (Kanade et al., 2019; Bu-
ratti et al., 2020; Feng et al., 2020; Guo et al., 2020;
Wang et al., 2022) pre-train a bidirectional Trans-
former in which each token can attend to each other.
Kanade et al. (2019) pre-train CuBERT on a cor-
pus of Python source codes by masked language
modeling and next sentence prediction objectives.
CodeBERT(Feng et al., 2020) is pre-trained on NL-
PL pairs in six programming languages with a new
pre-training task, namely replace token detection.
GraphCodeBERT (Guo et al., 2020) leverages data
flow to enhance code representation, while SYN-
COBERT (Wang et al., 2022) incorporates abstract
syntax tree by AST edge prediction and contrastive
learning. However, encoder-only models require an
additional decoder for generation tasks, where this
decoder initializes from scratch and cannot benefit
from the pre-training.

As for decoder-only pre-trained models, Svy-
atkovskiy et al. (2020) and Lu et al. (2021) re-
spectively propose GPT-C and CodeGPT, which
are both pre-trained using unidirectional language
modeling that only allows tokens to attend the pre-
vious tokens and itself to predict the next token.
Decoder-only models are good at auto-regressive
tasks like code completion, but the unidirectional
framework is sub-optimal for understanding tasks.

Some recent works explore encoder-decoder
models to support both understanding and genera-
tion tasks. PLBART (Ahmad et al., 2021) is based
on the BART (Lewis et al., 2019) architecture and
pre-trained on NL and PL corpus using denoising
objectives. CodeT5 (Wang et al., 2021) adapts the
T5 (Raffel et al., 2019) model that considers the
crucial token type information from identifiers and
allow for multi-task learning on downstream tasks.
TreeBERT (Jiang et al., 2021) follows the encoder-
decoder transformer framework but utilizes the tree
structural information by modeling AST paths.

Different from current unified models, UniX-
coder is based on a multi-layer Transformer and uti-
lizes mask attention matrices with prefix adapters
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# Return the sample arithmetic mean of data
def mean(data):

n = len(data)
return sum(data) / n

Python code with a comment

AST Parser

module

function_definition
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call
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Figure 1: A Python code with its comment and AST.

to control the behavior of the model for supporting
both understanding and generation tasks. Com-
pared with the encoder-decoder architecture, UniX-
coder can be better applied to auto-regressive tasks
like code completion that is widely used in IDEs,
since the task requires a decoder-only manner to
perform efficient inference in practice. Liu et al.
(2020) also pre-train a similar model CugLM with
multi-task learning, but they only focus on code
completion rather than various tasks. Besides, we
incorporate syntax information from AST by a one-
to-one mapping function that converts an AST into
a sequence to enhance code representation. Differ-
ent from previous pre-trained models that utilize
AST, the mapping function retains all structural
information from AST and does not require addi-
tional pre-training tasks (such as edge prediction)
to implicitly learn the AST structure.

3 UniXcoder

In this section, we describe UniXcoder, a unified
cross-modal pre-trained model that leverages multi-
modal data (i.e. code comment and AST) to pre-
train code representation. The model is based on
Transformer and utilizes mask attention matrices
(Dong et al., 2019) with prefix adapters to control
the behavior of the model. In the following, we
first introduce how to unify multi-modal data as
the input of UniXcoder (§3.1), and then the model
architecture (§3.2) and pre-training tasks (§3.3).

3.1 Input Representation

We give an example of a python code with its com-
ment and AST in Figure 1. From the figure, we

can see that the comment “Return the sample arith-
metic mean of data” highly describes the function
of the source code, which provides crucial semantic
information about the source code. Besides, AST
provides rich syntax information, for example, the
subtree “parameters→ (data)” indicates the type
(i.e., parameters) of the term (data) in the
function definition. Both of them can be used as ad-
ditional knowledge to enhance code representation
in pre-trained models. However, AST is usually
expressed as a tree and cannot be used directly as
input to Transformer. In order to encode AST in
parallel with code comments, we propose a one-to-
one mapping function F , described in Algorithm
1, to transform an AST into a sequence that retains
all structural information.

Algorithm 1 AST Mapping Function F
Input: The root node root of AST
Output: A flattened token sequence

1: function F(root)
2: seq = an empty list
3: name = the name of root
4: if root is a leaf then
5: seq.append(name)
6: else
7: seq.append(name :: left)
8: for child in children of root do
9: seq.extend(F(child))

10: end for
11: seq.append(name :: right)
12: end if
13: end function

Specially, given a root node root of AST, the
algorithm recursively applies the same function
F to its children and then add its name with two
special suffixes (i.e. left and right, respectively)
on both sides (line 6-11 of Algorithm 1). If the root
node is a leaf, we directly produce its name (line 4-
5). Taking “parameters→ (data)” as an example,
the mapping function F transforms the subtree to

“<parameters,left> ( data ) <parameters,right>”.
There can be various ways to transform a tree

to a sequence of tokens, e.g. pre-order traversal.
However, a particular transformation should be
a one-to-one mapping function. Otherwise, the
mapping may confuse a tree with another struc-
ture. Our mapping function F satisfies this re-
quirement (see Appendix A for a proof). Fi-
nally, given a source code C, we take its comment
W = {w0, w1, ..., wm−1} and the flattened AST
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token sequence F(T (C)) = {c0, c1, ..., ck−1} as
input, where T (C) is the root of the AST of the
code. For input format, we concatenate them with a
prefix as an input sequence, as shown at the bottom
of Figure 2, where the prefix represents the work
mode of the model and will be discussed next.

3.2 Model Architecture

Figure 2 shows the model architecture of UniX-
coder. The model applies N transformer layers over
code comment and flattened AST with a prefix to
produce hidden states HN = {hN0 , hN1 , ..., hNn−1},
where the prefix p ∈ {[Enc], [Dec], [E2D]} indi-
cates the behavior of the model, e.g. [E2D] means
that UniXcoder works as a encoder-decoder model.
Each transformer layer contains an architecturally
identical transformer that uses a multi-headed self-
attention operation (Vaswani et al., 2017) followed
by a feed forward layer over the output of the previ-
ous layer. For the l-th transformer layer, the output
of the multi-headed self-attention is computed via:

Q = H l−1WQ,K = H l−1WK , V = H l−1W V

(1)

head = softmax(
QKT

√
dk

+M)V (2)

where previous layer’s output H l−1 ∈ Rn×dh is
linearly mapped to a triplet of queries, keys and
values respectively. dk is the dimension of a head,
and M ∈ Rn×n is a mask matrix to control the
context a token can attend to when computing its
contextual representation, as shown in the middle
of Figure 2. If the i-th token is allowed to attend to
the j-th token, then Mij is set to 0 otherwise −∞.

For encoder-only mode, we add a special token
[Enc] as the prefix in front of the input and set
all elements of the mask matrix as 0 to allow all
tokens attend to each other. For decoder-only mode,
a prefix [Dec] is used and the upper triangular part
of the mask is set to−∞ to indicate that each token
can only attend to itself and previous tokens. For
encoder-decoder mode, tokens in the source input
are allowed to attend to each other, while tokens in
the target input only attend to itself and previous
tokens in both source and target inputs. We use the
[E2D] prefix to indicate that UniXcoder works as
an encoder-decoder model. During the pre-training
phase, model parameters are shared in different
modes and optimized with several objectives to
support various types of downstream tasks.

3.3 Pre-training Tasks
We describe the pre-training tasks used in UniX-
coder in this section. As shown on the right side of
Figure 2, we first pre-train UniXcoder using three
tasks, including masked language modeling (De-
vlin et al., 2018), unidirectional language modeling
(Radford et al.) and denoising objective (Raffel
et al., 2019). These tasks are designed for differ-
ent modes, enabling UniXcoder to support various
types of code-related downstream tasks. We then
propose to utilize multi-modal data to learn code
fragment embeddings through contrastive learning
with cross-modal generation, as shown in Figure 3.

Masked Language Modeling For encoder-only
mode, we follow Devlin et al. (2018) to apply
masked language modeling (MLM) pre-training
task. Specially, we sample 15% of the tokens Sm
from the input sequence, and then replace 80%
(10%) of them with a [MASK] (random) token
and leave another 10% of them unchanged. The
task is to predict original tokens of masked tokens
based on their bidirectional contextual tokens, as
illustrated in Figure 2 (a). In particular, the model
can leverage semantic information from comment
and syntax information from AST to infer masked
code tokens, which encourages the model to learn
code representations from different knowledge re-
sources. The objective is calculated as Equation 3,
where Xmask is the masked input sequence.

lossMLM = −
∑
xi∈Sm

logp(xi|Xmask) (3)

Unidirectional Language Modeling We use
unidirectional language modeling (ULM) pre-
training task to pre-train decoder-only mode for
supporting auto-regressive tasks like code comple-
tion, as shown in Figure 2 (b). The task predicts the
next token xi one by one conditioned on previous
tokens and itself {x0, x1, .., xi−1}, which can be
done using a triangular matrix for attention mask.

lossULM = −
n−1∑
i=0

logp(xi|xt<i) (4)

Denoising Objective DeNoiSing (DNS) pre-
training objective has been shown to be quite effec-
tive for encoder-decoder models like BART (Lewis
et al., 2019) and T5 (Raffel et al., 2019) in NLP. The
task randomly masks spans with arbitrary lengths
and then generates these masked spans in encoder-
decoder mode. To better support generation tasks
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Figure 2: Model architecture of UniXcoder. The model takes comment and flattened AST as the input (more
specific input examples can be found in Figure 3). Model parameters are shared in different modes. We use
different self-attention masks to control the behavior of the model and use various tasks to pre-train the model,
including masked language modeling, unidirectional language modeling, and denoising objective.

like code summarization, we utilize similar denois-
ing objective as T5 for encoder-decoder mode, as
illustrated in Figure 2 (c). Specially, we first split
the input sequence intomax(bn×rl c, 1) chunks and
then randomly mask a span of from 1 to 2l-1 tokens
for each chunk, where n is the length of the input,
r is corruption rate and l is the average length of
masked spans. We set corruption rate as 15% and
the average length as 5, respectively. The concate-
nation {y0, y1, ..., yn−1} of all masked spans with
special tokens [MASKk] in front of the k-th span
will be used as the output:

lossDNS = −
n−1∑
i=0

logp(yi|Xmask, yt<i) (5)

Code Fragment Representation Learning In
addition to the above three pre-training tasks de-
signed for different modes, we propose to utilize
multi-modal data to learn semantic embedding h̃i
of a code fragment Ci. As shown in Figure 3, we
first use UniXcoder to encode a mapped AST se-
quence and then apply a mean pooling layer over
the hidden states of the source input to obtain se-
mantic embedding h̃i. In order to learn the seman-
tic embedding, we propose two pre-training tasks.
One is multi-modal contrastive learning (MCL),
and another is cross-modal generation (CMG).

𝑩𝑶𝑺 𝑹𝒆𝒕𝒖𝒓𝒏𝒎𝒂𝒙𝒊𝒎𝒖𝒎 …

𝑹𝒆𝒕𝒖𝒓𝒏𝒎𝒂𝒙𝒊𝒎𝒖𝒎 … [𝑬𝑶𝑺]

𝒅𝒆𝒇𝒎𝒆𝒂𝒏 𝒅𝒂𝒕𝒂 : 𝒏 …

UniXcoder
𝑩𝑶𝑺 𝑹𝒆𝒕𝒖𝒓𝒏 𝒕𝒉𝒆 𝒔𝒂𝒎𝒑𝒍𝒆…

𝑹𝒆𝒕𝒖𝒓𝒏 𝒕𝒉𝒆 𝒔𝒂𝒎𝒑𝒍𝒆… [𝑬𝑶𝑺]Mean Pooling 

Parser & Mapping  𝒇

Cross-modal Generation

!ℎ6

𝒅𝒆𝒇𝒎𝒂𝒙 𝒂, 𝒃 : 𝒊𝒇 𝒂 …

Mean Pooling 

Parser & Mapping  𝒇

!ℎ7
Different hidden dropout

masks in two forward passes
…

… UniXcoder

Cross-modal Generation

Figure 3: Code fragment representation learning.

For multi-modal contrastive learning, we follow
Gao et al. (2021) to forward the same input using
different hidden dropout mask as a positive exam-
ple h̃+i and use other representations in the same
batch as negative examples. The loss is calculated
as Equation 6, where b is batch size, τ is a tem-
perature hyperparameter, and cos(·, ·) is the cosine
similarity between two vectors.

lossMCL = −
b−1∑
i=0

log
ecos(h̃i,h̃

+
i )/τ∑b−1

j=0 e
cos(h̃i,h̃

+
j )/τ

(6)

For cross-modal generation, we ask the model
to generate its comment W = {w0, w1, ..., wm−1}.
The comment describes the function of the code,
which can help the model not only understand the
code semantics but align representations among
different programming languages by a unified nat-
ural language description as a fulcrum. Since the
generation of the comment is conditioned on the
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code, it will force the model to fuse semantic in-
formation from the comment into the hidden states
of the code. The loss is calculated as Equation 7,
where X is the flattened AST token sequence.

lossCMG = −
m−1∑
i=0

logp(wi|X,wt<i) (7)

In order to learn the semantic embedding of nat-
ural language, we randomly exchange the source
input and the target input with a probability of 50%.

Considering that explicitly adding AST in down-
stream tasks will introduce extra costs like parsing
time and increasing input length (70% longer in-
put length after tokenization), we implicitly learn
knowledge from AST by pre-training and only keep
leaves of AST (i.e. source code) in the fine-tuning
phase. This gap can be alleviated by randomly drop
all non-terminal symbols of AST with a probabil-
ity of 50% in the pre-training phase. More details
about pre-training dataset and settings can be found
in the Appendix B.

4 Experiments

We evaluate UniXcoder on five tasks over nine
public datasets, including two understanding tasks
(§4.2), two generation tasks (§4.3) and an auto-
regressive task (§4.4). To further evaluate the per-
formance of code fragment embeddings, we also
propose a new task called zero-shot code-to-code
search (§4.5). More details about datasets and fine-
tuning can be found in the Appendix C.

4.1 Baselines
We compare UniXcoder with state-of-the-art pre-
trained models, including encoder-only, decoder-
only and encoder-decoder models.

For encoder-only models, we consider Roberta
(Liu et al., 2019) pre-trained on text corpus with
MLM, CodeBERT (Feng et al., 2020) pre-trained
on NL-PL pairs using both MLM and replaced to-
ken detection, GraphCodeBERT (Guo et al., 2020)
that leverages data flow to enhance code represen-
tation, and SYNCOBERT that incorporates AST
by edge prediction and contrastive learning.

For decoder-only models, we consider GPT-2
(Radford et al., 2019) and CodeGPT (Lu et al.,
2021), where the former one is pre-trained on text
corpus and the latter one is pre-trained on Code-
SearchNet dataset. Both use ULM as the objective.

For encoder-decoder models, we mainly com-
pare the current unified models PLBART (Ahmad

et al., 2021) and CodeT5 (Wang et al., 2021).
PLBART is based on BART and pre-trained on
470M Python and 210M Java functions, and 47M
NL posts from StackOverflow using denoising ob-
jective. CodeT5, adapted from T5, considers the
crucial token type information from identifiers and
allows multi-task learning on downstream tasks.

4.2 Understanding Tasks
Clone Detection The task is to measure the simi-
larity between two code fragments. We conduct ex-
periments on POJ-104 (Mou et al., 2016) and Big-
CloneBench (Svajlenko et al., 2014) datasets. The
first dataset is to predict whether two codes have the
same semantics and uses F1-score as the evaluation
metric, while the second aims to retrieve semanti-
cally similar codes given a code as the query with
the Mean Average Precision (MAP) as the metric.

Code Search The task aims to find the most rel-
evant code from a collection of candidates given a
natural language query. We conduct experiments
on three datasets, namely CSN (Guo et al., 2020),
AdvTest (Lu et al., 2021) and CosQA (Huang et al.,
2021). CSN dataset is constructed from Code-
SearchNet dataset of six programming languages,
and low-quality queries are filtered by handcrafted
rules. AdvTest normalizes python function and
variable names to better test the understanding and
generalization capabilities of models. The code
base of CosQA is also from CodeSearchNet corpus
but queries come from the search logs of Microsoft
Bing search engine. We use Mean Reciprocal Rank
(MRR) evaluation metric for the task.

Results The results are shown in Table 1. Com-
pared with encoder-only pre-trained models (i.e.
the first group) and encoder-decoder models (i.e.
the second group), UniXcoder outperforms them
and achieves state-of-the-art performance on two
tasks on all five datasets. By comparing with the
results of ablation studies in the last six rows, we
can see that the improvement mainly comes from
contrastive learning and the use of multi-modality.

4.3 Generation Tasks
Code Summarization The task aims to generate
an NL summary of a code snippet. We use the
dataset provided by the CodeXGLUE team (Lu
et al., 2021) for this task. We use the smoothed
BLEU-4 (Lin and Och, 2004) as the evaluation
metric and report overall score of six PLs, including
Ruby, JavaScript, Go, Python, Java, and PHP.
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Model
Clone Detection Code Search

POJ-104 BigCloneBench CosQA AdvTest CSN
MAP@R Recall Precision F1-score MRR

RoBERTa 76.67 95.1 87.8 91.3 60.3 18.3 61.7
CodeBERT 82.67 94.7 93.4 94.1 65.7 27.2 69.3
GraphCodeBERT 85.16 94.8 95.2 95.0 68.4 35.2 71.3
SYNCOBERT 88.24 - - - - 38.3 74.0
PLBART 86.27 94.8 92.5 93.6 65.0 34.7 68.5
CodeT5-base 88.65 94.8 94.7 95.0 67.8 39.3 71.5
UniXcoder 90.52 92.9 97.6 95.2 70.1 41.3 74.4
-w/o contras 87.83 94.9 94.9 94.9 69.2 40.8 73.6
-w/o cross-gen 90.51 94.8 95.6 95.2 69.4 40.1 74.0
-w/o comment 87.05 93.6 96.2 94.9 67.9 40.7 72.6
-w/o AST 88.74 92.9 97.2 95.0 68.7 40.3 74.2
-using BFS 89.44 93.4 96.7 95.0 69.3 40.1 74.1
-using DFS 89.74 94.7 94.6 94.7 69.0 40.2 74.2

Table 1: Results on understanding tasks. contras is contrastive learning, cross-gen indicates cross-modal genera-
tion, and BFS (DFS) means that our mapping function is replaced by breath-first (deep-first) search algorithm.

Code Generation The task is to generate a code
snippet based on an NL description. we use CON-
CODE (Iyer et al., 2018) dataset, where the input
consists of an NL description and code environ-
ments. For this task, we use exact match (EM) and
BLEU-4 as evaluation metrics.

Model Summarization Generation
BLEU-4 EM BLEU-4

RoBERTa 16.57 - -
CodeBERT 17.83 - -
GPT-2 - 17.35 25.37
CodeGPT - 20.10 32.79
PLBART 18.32 18.75 36.69
CodeT5-small 19.14 21.55 38.13
CodeT5-base 19.55 22.30 40.73
UniXcoder 19.30 22.60 38.23
-w/o contras 19.20 22.10 37.69
-w/o cross-gen 19.27 22.20 35.93
-w/o comment 18.97 21.45 37.15
-w/o AST 19.33 22.60 38.52
-using BFS 19.24 21.75 38.21
-using DFS 19.25 22.10 38.06

Table 2: Results on two generation tasks, including
code summarization and code generation.

Results From Table 2, UniXcoder achieves com-
parable performance on generation tasks compared
with CodeT5-base and brings a 0.3% improvement
in code generation accuracy. However, UniXcoder
has slightly worse BLEU-4 scores on both code
summarization and generation tasks. The main
reasons may come from two aspects. One is the
amount of NL-PL pairs in the pre-training data. As
shown in the ablation study (see w/o comment) in
the table, NL-PL pairs bring significant improve-
ment on two tasks. Wang et al. (2021) collect
50% more NL-PL pairs from Github to pre-train
CodeT5. Since the collected data is not public,

we cannot use it to pre-train UniXcoder for fair
comparison. Anothor reason is the model size.
CodeT5-base uses a 12-layer encoder and a 12-
layer decoder, which is twice larger than other base-
lines and UniXcoder. Therefore, we also list the
results of CodeT5-small using a 6-layer encoder
and a 6-layer decoder. We can see that UniXcoder
outperforms CodeT5-small.

4.4 Code Completion
We use PY150 (Raychev et al., 2016) and
Github Java Corpus (Allamanis and Sutton,
2013) datasets in CodeXGLUE (Lu et al., 2021) for
line-level code completion tasks. The task entails
the completion of a whole-line of code, and is eval-
uated using exact match accuracy and Levenshtein
edit similarity (Svyatkovskiy et al., 2020).

Model PY150 JavaCorpus
EM Edit Sim EM Edit Sim

Transformer 38.51 69.01 17.00 50.23
GPT-2 41.73 70.60 27.50 60.36
CodeGPT 42.37 71.59 30.60 63.45
PLBART 38.01 68.46 26.97 61.59
CodeT5-base 36.97 67.12 24.80 58.31
UniXcoder 43.12 72.00 32.90 65.78
-w/o contras 43.02 71.94 32.77 65.71
-w/o cross-gen 42.66 71.83 32.43 65.63
-w/o comment 42.18 71.70 32.20 65.44
-w/o AST 42.56 71.87 32.63 65.66
-using BFS 42.83 71.85 32.40 65.55
-using DFS 42.61 71.97 32.87 65.75

Table 3: Results of code completion task.

In practice, the task requires a decoder-only man-
ner to perform efficient inference. Therefore, we
first compare our UniXcoder with decoder-only
models (the first group) in Table 3. As we can see,
UniXcoder achieves comparable performance on
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Model Ruby Python Java OverallRuby Python Java Ruby Python Java Ruby Python Java
CodeBERT 13.55 3.18 0.71 3.12 14.39 0.96 0.55 0.42 7.62 4.94
GraphCodeBERT 17.01 9.29 6.38 5.01 19.34 6.92 1.77 3.50 13.31 9.17
PLBART 18.60 10.76 1.90 8.27 19.55 1.98 1.47 1.27 10.41 8.25
CodeT5-base 18.22 10.02 1.81 8.74 17.83 1.58 1.13 0.81 10.18 7.81
UniXcoder 29.05 26.36 15.16 23.96 30.15 15.07 13.61 14.53 16.12 20.45
-w/o contras 24.03 17.35 7.12 15.80 22.52 7.31 7.55 7.98 13.92 13.73
-w/o cross-gen 28.73 24.16 12.92 21.52 26.66 12.60 11.14 10.82 13.75 18.03
-w/o comment 22.24 15.90 7.50 15.09 19.88 6.54 7.84 7.12 13.20 12.81
-w/o AST 27.54 23.37 10.17 21.75 27.75 9.94 9.79 9.21 14.06 17.06
-using BFS 26.67 23.69 13.56 21.31 27.28 13.63 11.90 12.55 14.92 18.39
-using DFS 27.13 22.65 11.62 20.21 25.92 11.85 9.59 10.19 13.30 16.94

Table 4: MAP score (%) of zero-shot setting on code-to-code search task.

both datasets and brings absolute 2.3% gain of accu-
racy on java corpus, which demonstrates the effec-
tiveness of our model for code completion. Besides,
we also compare with current unified models (the
second group). Since they are based the encoder-
decoder framework, we fine-tune their decoders
by feeding a placeholder into the encoder. Results
show that UniXcoder outperforms PLBART and
CodeT5, which demonstrates our model framework
is better applied to code completion tasks.

4.5 Zero-shot Code-to-Code Search
To further evaluate the performance of code frag-
ment embeddings, we also propose a new task
called zero-shot code-to-code search. Given a
source code as the query, the task aims to retrieve
codes with the same semantics from a collection of
candidates in zero-shot setting. The task can help
users translate from one PL to another by retrieving
source codes with the same semantics. We collect
11,744/15,594/23,530 functions from the CodeNet
corpus (Puri et al., 2021) in Ruby/Python/Java PL.
Each function solves one of 4,053 problems. We
take each function as a query and retrieve all func-
tions that solve the same problem from each PL.
We use average MAP score as the evaluation met-
ric. More details about the dataset and an example
can be found in Appendix C.6.

We re-implement the publicly released pre-
trained models on this task using the mean vec-
tor or CLS vector of last hidden states and report
the results in Table 4. The first row is the query
PL and the second row is the target PL. From the
table, we can see that UniXcoder achieves state-of-
the-art performance and about 11 points improve-
ment on the overall score compared with Graph-
CodeBERT. Ablation studies further show that both
multi-modal data and code fragment representation
pre-training tasks can enhance UniXcoder.

4.6 Model Analysis

The Effect of Representation Pre-training We
conduct ablation study to analyze the effect of code
fragment representation pre-training tasks by re-
moving contrastive learning task (w/o constras)
and cross-modal generation task (w/o cross-gen).
As we can see in Table 1 and 4, two pre-training
tasks significantly improve understanding tasks.
Taking zero-shot code-code search task as an ex-
ample, after removing contrastive learning, the per-
formance drops from 20.45% to 13.73%. Besides,
the two pre-training tasks also bring a small im-
provement on generation tasks, as shown in Table
2 and 3. Overall, the ablation study demonstrates
the effectiveness of the two pre-training tasks.

The Effect of Multi-modal Data We also study
the effect of multi-modal data. By removing com-
ment (w/o comment), the results from Tables in-
dicate that code comment plays an important role
in both understanding and generation tasks. For
AST (w/o AST), we observe that injecting AST can
boost the performance on all code understanding
tasks. However, AST does not bring improvements
on generation tasks, which may require a better way
to incorporate AST for generation tasks. Overall,
AST and comment can both improve UniXcoder.

Comparison of Traversal Algorithms We com-
pare our mapping function with other mapping
functions used to map a tree into a sequence,
namely BFS and DFS algorithms. As we can see,
after replacing our mapping function by BFS or
DFS algorithms, the performance of UniXcoder
drops on both understanding and generation tasks,
which demonstrates the effectiveness of our map-
ping function. In particular, using BFS or DFS al-
gorithms even hurt the performance of UniXcoder
on some tasks by comparing w/o BFS (DFS) with
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w/o AST. The main reason may be that BFS and
DFS algorithms are not one-to-one mapping func-
tions and can confuse a tree with another structure.

Case Study We also conduct a case study to intu-
itively demonstrate the effectiveness of UniXcoder,
as shown in Figure 4. We give an example for
code search task on CosQA dataset and output pre-
dictions from different models. The input query
from the search logs of Microsoft Bing search en-
gine is “python dict rank by value”. We know
that the intent of the user is to sort a dictionary by
its value in Python language. Although the pre-
diction from PLBART has higher lexical overlap
than UniXcoder like “rank” and “value”, the func-
tion is incorrect since the input of the ground truth
should be a dictionary. We can see that UniXcoder
retrieves a correct function whose input is a dictio-
nary. Besides, although the “value” in the query is
expressed as the statement “key=lambda t: t[1]” in
the function definition, UniXcoder can understand
the code semantics and successfully retrieves the
ground truth, which demonstrates the effectiveness
of UniXcoder.

CodeBERT:
def rank(self):

r = np.empty(self.size, np.int)
r[self.sorter] = np.arange(self.size)
return r

GraphCodeBERT:
def ranks(self, key, value):

return [normalize_rank(el) for el in force_list(value.get('a'))]

PLBART:
def zrank(self, name, value):

with self.pipe as pipe:
value = self.valueparse.encode(value)
return pipe.zrank(self.redis_key(name), value)

CodeT5:
def sort_key(x):

name, (r, u) = x
return - len(u) + u.count('}') * 100

UniXcoder:
def revrank_dict(dict, key=lambda t: t[1], as_tuple=False):

sorted_list = sorted(dict.items(), key=key, reverse=True)
return OrderedDict(sorted_list) if not as_tuple else tuple(sorted_list)

Query:
python dict rank by value

Figure 4: An examples for code search task on CosQA
dataset and predictions from different models. Key
clues are marked in yellow.

5 Conclusion

To support both code-related understanding and
generation tasks, we present UniXcoder, a unified
pre-trained model that incorporates semantic and
syntax information from code comment and AST.
We propose a one-to-one mapping method to trans-
form AST to a sequence structure and two new
pre-training tasks to learn code fragment represen-
tation. To further investigate the performance of

code representation, we propose a new downstream
task of zero-shot code-to-code search and create a
dataset for this task. Experiments show that UniX-
coder significantly outperforms previous works on
most tasks. Further ablation studies also show that
both AST and code comment can enhance UniX-
coder and reveal the effectiveness of our proposed
mapping function and pre-training tasks.
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A Proof for Mapping Function

In this section, we show that the function F de-
scribed in Algorithm 1 is a one-to-one mapping
function. using a proof by induction.

Lemma 1: Given a tree T and the mapped se-
quence F(T ) = {x1, x2, ..., xm}, the first element
x0 is the root of T with a left suffix and the last
element xm is the root of T with a right suffix.

Lemma 2: An internal node only occurs twice in
the mapped sequence F(T ). One is with left suffix,
and the other is with right suffix. Therefore, the
sequence has the same number of elements with
left suffix and right suffix.

Lemma 3: Since a node with a left suffix occurs
before the same node with a right suffix (see line
7 and 11 of the Algorithm), an element xi with a
right suffix must match another element xj with a
left suffix (i.e. coming from the same node in the
tree) in the left side, i.e. j < i.

Proof: In order to prove F is a one-to-one func-
tion, given two trees T1 and T2, we need to prove
that F(T1) 6= F(T2) if T1 6= T2. For easier proof,
we prove its equivalent contrapositive statement,
i.e. T1 = T2 if F(T1) = F(T2).

Base case: When the depth h of T1 is 1, T1 only
has a node r and F(T1) = {r}. Since F(T2) =
F(T1), T2 contains one node, otherwise the length
of F(T2) will be more than 2. Since F(T2) = {r},
the root of T2 is also r. Therefore, T1 = T2 and F
is a one-to-one function for h = 1.

Inductive hypothesis: When h = 2, 3, .., n, sup-
pose F is a one-to-one function.

Inductive step: Now, we prove that the hypothe-
sis is true for h = n+ 1 ≥ 2.

We let F(T1) = {x1, x2, ..., xm}, where xj is a
leaf or a node with a left (or right) suffix. Since
F(T1) = F(T2), the first elements of two mapped
sequences are same as each other. According to
Lemma 1, T1 and T2 have the same root.

Let the leftmost subtree of T1 and T2 as Ts1
and Ts2 , respectively. We prove Ts1 = Ts2
now. According to the Algorithm, we know that
F(Ts1) and F(Ts2) start with x2 and end with
one element. Suppose F(Ts1) = {x2, .., xi} and
F(Ts2) = {x2, .., xj}. According to Lemma 1 and
2, S = {x3, .., xi} has one more element with a
right suffix. Therefore, x0 must match one element
xk (3 ≤ k ≤ i) in S, otherwise there will be an
element with a right suffix that cannot match any
element. If i 6= j (suppose j > i), x0 will match
xj according to Lemma 1. However, the root node
occurs three times x0, xk and xj , which will con-
tradict Lemma 2. Therefore, we get that i = j and
F(Ts1) = F(Ts2). According to the hypothesis,
we get that Ts1 = Ts2 , since the depth of F(Ts1) is
less than n+ 1. In the same way, it can be proved
that other subtrees of T1 and T2 are also the same.
Thus, we get that T1 = T2.

Conclusion: By the principle of induction, it fol-
lows that the hypothesis is true for all h ≥ 2 and
our mapping function is one-to-one.

B Pre-training Setting

UniXcoder uses 12 layers of Transformer with 768
dimensional hidden states and 12 attention heads.
We follow Liu et al. (2019) to train a byte-pair
encoding vocabulary (Sennrich et al., 2015) with
50K subword units for programming languages
and add 1,416 additional special tokens into the
vocabulary to represent non-terminal symbols in
AST. The pre-training multi-modal data we use in-
cludes 2.3M functions paired with comments from
CodeSearchNet dataset (Husain et al., 2019) for six
programming languages (i.e. ruby, java, python,
php, go and javascript). We leverage tree-sitter2 as
the parser to extract AST from PL.

We pre-train the model on 4 DGX-2 machines,
each having 16 NVIDIA Tesla V100 with 32GB
memory. During pre-training, we set both the max
length of input sequence and batch size as 1024,
and use the Adam optimizer to update model pa-
rameters with 2e-4 learning rate. As proven in
Feng et al. (2020), unimodal data like text is also
useful for code-related downstream tasks. There-
fore, we first pre-train our UniXcoder with MLM,
ULM and denoising objective on C4 dataset (Raffel
et al., 2019) and 4.1M unimodal code from Code-
SearchNet for 500k and 200k steps, respectively.

2https://github.com/tree-sitter/
tree-sitter
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Model Ruby Javascript Go Python Java Php Overall
RoBERTa 58.7 51.7 85.0 58.7 59.9 56.0 61.7
CodeBERT 67.9 62.0 88.2 67.2 67.6 62.8 69.3
GraphCodeBERT 70.3 64.4 89.7 69.2 69.1 64.9 71.3
SYNCOBERT 72.2 67.7 91.3 72.4 72.3 67.8 74.0
PLBART 67.5 61.6 88.7 66.3 66.3 61.1 68.5
CodeT5-base 71.9 65.5 88.8 69.8 68.6 64.5 71.5
UniXcoder 74.0 68.4 91.5 72.0 72.6 67.6 74.4
-w/o contras 73.4 67.0 91.3 71.3 71.7 66.7 73.6
-w/o cross-gen 73.0 67.8 91.3 71.9 72.4 67.3 74.0
-w/o comment 72.0 65.7 91.1 70.4 70.6 65.5 72.6
-w/o AST 73.8 68.0 91.4 72.3 72.3 67.4 74.2
-using BFS 73.4 68.2 91.3 72.2 72.2 67.3 74.1
-using DFS 73.5 68.3 91.2 72.3 72.1 67.6 74.2

Table 5: Results of code search task over six programming languages.

We further pre-train on the multi-modal data with
all pre-training objectives for 100k steps. The total
time for pre-training UniXcoder is about 8 days.
At each iteration, we alternate each objective to
pre-train the model and follow Guo et al. (2020)
to sample each batch from the same programming
language according to a distribution {qi}i=1...N as
Equation 8, where ni is number of examples for
i-th programming language and α=0.7. Sampling
with this distribution could alleviates the bias to-
wards high-resource languages.

qi =
pαi∑j=1
N pαj

, pi =
ni∑k=1
N nk

(8)

C Fine-tuning Setting

C.1 Clone Detection
Clone detection aims to measure the similarity be-
tween two code fragments. We conduct experi-
ments on POJ-104 (Mou et al., 2016) and Big-
CloneBench (Svajlenko et al., 2014) datasets.

For POJ-104 dataset, it consists of 104 prob-
lems and includes 500 C/C++ programs for each
problem. The datasets are splited into 64/16/24
problems for training, validation, and testing, and
the task aims to retrieve other programs that solve
the same problem given a program. The probabil-
ity of true clone is calculated by cosine similarity
between two mean vectors of last hidden states of
UniXcoder. We set the learning rate as 2e-5, the
batch size as 8, and the max sequence length as
400. We use the Adam optimizer to fine-tune the
model for 2 epochs.

For BigCloneBench dataset, we use the dataset
provided by Lu et al. (2021), which includes
901,724/416,328/416,328 examples from 10 dif-
ferent functionalities for training/validation/testing.
Following previous works, we also treat the task as

a binary classification to fine-tune UniXcoder. The
true clone probability of two inputs is calculated
by cosine similarity between the mean vectors of
last hidden states. In the fine-turning step, we set
the learning rate as 5e-5, the batch size as 16, and
the max sequence length as 512. We update model
parameters using the Adam optimizer and perform
early stopping on the development set.

C.2 Code Search

Code search aims to search the most relevant code
from a collection of candidates given a natural lan-
guage query. We conduct experiments on three
datasets, namely CSN (Guo et al., 2020), AdvTest
(Lu et al., 2021) and CosQA (Huang et al., 2021).

Language Training Dev Testing Candidates
Go 167,288 7,325 8,122 28,120
Java 164,923 5,183 10,955 40,347
JavaScript 58,025 3,885 3,291 13,981
PHP 241,241 12,982 14,014 52,660
Python 251,820 13,914 14,918 43,827
Ruby 24,927 1,400 1,261 4,360

Table 6: Data statistics about CSN dataset provided by
Guo et al. (2020). Training/Dev/Testing means the
number of query for training/validation/testing dataset.

For CSN dataset, it is constructed from Code-
SearchNet dataset for six languages but filter
lowquality queries by handcrafted rules. We list
data statistics about the dataset in Table 6. We
set the learning rate as 2e-5, the batch size as 64,
and the max sequence length of PL and NL as 256
and 128, respectively. We use the Adam optimizer
to fine-tune the model for 10 epochs and perform
early stopping on the development set. In Table
5, we also give more detailed results of different
models for each programming language.

For AdvTest dataset, it comes form Python lan-
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Model Ruby Javascript Go Python Java Php Overall
RoBERTa 11.70 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 17.83
GraphCodeBERT 12.39 14.81 18.41 18.06 19.00 25.59 18.04
PLBART 14.11 15.56 18.91 19.30 18.45 23.58 18.32
CodeT5-base 15.24 16.16 19.56 20.01 20.31 26.03 19.55
UniXcoder 14.87 15.85 19.07 19.13 20.31 26.54 19.30
-w/o contras 14.72 15.41 19.16 19.01 20.30 26.60 19.20
-w/o cross-gen 14.90 15.96 18.60 19.06 20.50 26.62 19.27
-w/o comment 14.25 15.50 18.80 18.83 20.25 26.17 18.97
-w/o AST 15.09 15.97 19.04 19.16 20.07 26.67 19.33
-using BFS 14.74 15.69 18.97 19.03 20.58 26.45 19.24
-using DFS 14.81 15.88 18.98 19.15 20.26 26.40 19.25

Table 7: Results of code summarization task over six programming languages.

guage of CSN dataset but Lu et al. (2021) normal-
izes python function and variable names to better
test the understanding and generalization abilities
of models. We use the same hyper-parameters as
CSN dataset but fine-tune the model for 2 epochs.

For CosQA dataset, Huang et al. (2021) use
20,604 search logs of the Microsoft Bing search
engine as queries and each log is annotated by at
least 3 human annotators. We use the same hyper-
parameters as CSN dataset but fine-tune the model.

For the three datasets, we all use cosine similar-
ity between two mean vectors of last hidden states
as relevant scores and take other vectors in the same
batch as negative examples.

C.3 Code Summarization
Code summarization aims to generate an NL sum-
mary of a code snippet. We use the dataset provided
by CodeXGLUE team (Lu et al., 2021) for this task.
The dataset includes six programming languages,
including Ruby, JavaScript, Go, Python, Java, and
PHP. We list data statistics about the dataset in Ta-
ble 8. We set the learning rate as 5e-5, the batch
size as 48, and the max sequence length of source
and target as 256 and 128, respectively. We use
the Adam optimizer to fine-tune the model for 10
epochs and perform early stopping on the develop-
ment set. For inference, we set beam size as 10.
In Table 7, we also give more detailed results of
different models for each programming language.

C.4 Code Generation
Code generation aims to generate a code snippet
based on an NL description. We use CONCODE
(Iyer et al., 2018) dataset, which is collected from
about 33k Java projects on GitHub. It contains
100k/2k/2k examples for training/validation/testing.
Each example consists of an NL description, code
environments and code snippets. The environment

Language Training Dev Testing
Go 167,288 7,325 8,122
Java 164,923 5,183 10,955
JavaScript 58,025 3,885 3,291
PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,261

Table 8: Data statistics about the dataset for the code
summarization task.

is provided by the rest of the class, including mem-
ber variables and member functions in the class.
We set the learning rate as 5e-5, the batch size as
32, and the max sequence length of source and tar-
get as 350 and 150, respectively. We use the Adam
optimizer to fine-tune the model for 30 epochs and
perform early stopping on the development set. For
inference, we set beam size as 3.

C.5 Code Completion

In this paper, we mainly focus on line-level code
completion. We use PY150 (Raychev et al., 2016)
and Github Java Corpus (Allamanis and Sutton,
2013) provided by CodeXGLUE (Lu et al., 2021).

PY150 is a Python dataset (Raychev et al., 2016)
containing 150,000 Python source files collected
from Github. Lu et al. (2021) create 10,000 exam-
ples from different files in the test set of PY150 for
testing and select lines to be predicted at random.
The average number of tokens in input and output
are 489.11 and 6.56, respectively.

Github Java Corpus is collected by Allamanis
and Sutton (2013) over 14 thousand Java projects
from Github. Lu et al. (2021) create 3,000 exam-
ples for testing from different files in the test set
of the corpus. The average numbers of tokens are
350.62 and 10.49 in input and output, respectively.

For two datasets, we both follow Lu et al. (2021)
to use the same CodeSearchNet dataset to fine-tune
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Problem Statement:
We have N cards. A number 𝑎! is written on the 𝑖-th card.
Alice and Bob will play a game using these cards. In this game, Alice and Bob Alternately take one card. Alice goes first.
The game ends when all the cards are taken by the two players, and the score of each player is the sum of the number written on the cards he/she has taken. 
When both players take the optimal strategy to maximize their scores, find Alice’s score minus Bob’s score.

Input:
𝑁
𝑎" 𝑎# … 𝑎$

Output:
Print Alice’s score minus Bob’s score when both players take the optimal strategy to maximize their scores.

A Ruby code that solves the problem:
n = gets.to_i
as = gets.strip.split.map(&:to_i).sort.reverse
alice = 0
bob = 0

until as.empty? do
alice += as.shift
break if as.empty?
bob += as.shift

end

puts(alice-bob)

A Python code that solves the problem:
N = int(input())
a = list(map(int,input().split()))

a.sort(reverse=True)

ans = 0

for i in range(0,N):
ans = ans + a[i]*(-1)**i

print(ans)

A Java code that solves the problem:
import java.util.*;

class Main {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] array = new int[n];
for(int i = 0 ; i < n ; i ++){

array[i] = sc.nextInt();
}
Arrays.sort(array);
int a = 0 ;
int b = 0 ;

for(int i = 1 ; i <= n ; i ++){
if(i % 2 != 0){

a += array[n-i];
}else{

b += array[n-i];
}

}
System.out.print(a-b);

}
}

Figure 5: An example for zero-shot code-to-code search. Three codes for Ruby, Python and Java all solve the same
problem mentioned in the Figure. Therefore, they have same semantics in different programming languages.

UniXcoder for 10 epochs. We set the learning rate
for PY150 as 2e-4 and for Java Corpus as 2e-5.
The batch size is 32 and the max sequence length
is 1024. For inference, we set beam size as 5.

C.6 Zero-shot Code-to-Code Search
To evaluate the performance of code fragment em-
beddings, we propose a new task, called zero-shot
code-to-code search. Given a source code as the
query, the task aims to retrieve codes with the same
semantics from a collection of candidates in zero-
shot setting. We give an example in Figure 5.

We collect 11,744/15,594/23,530 functions
from CodeNet corpus (Puri et al., 2021) for
Ruby/Python/Java PL. Each function solves one
of 4,053 problems. The task is to take each func-
tion as the query and retrieve functions that solves
the same problem from each PL. In zero-shot test-
ing, we set the max sequence length as 512 and use
cosine similarity between two mean vectors of last
hidden states as relevant scores. We then sort the
candidates by the scores to calculate MAP score.
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