AdaLoGN: Adaptive Logic Graph Network for
Reasoning-Based Machine Reading Comprehension

Xiao Li and Gong Cheng and Ziheng Chen and Yawei Sun and Yuzhong Qu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
{xiaoli.nju, chenziheng,ywsun}@smail.nju.edu.cn
{gcheng, yzqul}@nju.edu.cn

Abstract

Recent machine reading comprehension
datasets such as ReClor and LogiQA require
performing logical reasoning over text. Con-
ventional neural models are insufficient for
logical reasoning, while symbolic reasoners
cannot directly apply to text. To meet the
challenge, we present a neural-symbolic
approach which, to predict an answer, passes
messages over a graph representing logical
relations between text units. It incorporates
an adaptive logic graph network (AdaLoGN)
which adaptively infers logical relations to
extend the graph and, essentially, realizes
mutual and iterative reinforcement between
neural and symbolic reasoning. We also
implement a novel subgraph-to-node message
passing mechanism to enhance context-option
interaction for answering multiple-choice
questions. Our approach shows promising
results on ReClor and LogiQA.

1 Introduction

Machine reading comprehension (MRC) has drawn
much research attention. Early MRC datasets are
not difficult for state-of-the-art neural methods. In-
deed, BERT (Devlin et al., 2019) has outperformed
humans on SQuAD (Rajpurkar et al., 2016). Re-
cent datasets become more challenging. For ex-
ample, ReClor (Yu et al., 2020) and LogiQA (Liu
et al., 2020) require understanding and reasoning
over logical relations described in text, where neu-
ral methods showed unsatisfactory performance.
For instance, consider the MRC task in Figure 1.
The context consists of a set of textual propositions
describing logical relations between elementary dis-
course units (EDUs) (Mann and Thompson, 1988).
For example, the first sentence describes an im-
plication between two EDUs: “the company gets
project A” implies that “product B can be put on
the market on schedule”. With the help of propo-
sitional calculus, humans can formalize proposi-
tions and then apply inference rules in proposi-

Context: /fthe company gets project A, product B can be
put on the market on schedule. Product B is put on
schedule if and only if the company’s fund can be normally
turned over. /f the company’s fund cannot be turned over
normally, the development of product C cannot be carried
out as scheduled. The fact is that the development of
product C is carried out as scheduled.

Question: This shows:

Options:

A. The company gets project A and product B is put on the
market on schedule.

B. The company does not get project A and product B is not
put on the market on schedule.

(04 Product B is put on the market on schedule and the
company’s fund is turned over normally.

D. Product B is not put on the market on schedule, and the
company’s fund turnover is extremely abnormal.

Figure 1: An example MRC task (adapted from a task
in LogiQA). Logical connectives are highlighted in ital-
ics. v'marks the correct answer.

tional logic to prove the proposition in option C.
However, how can machines solve such a task?

Existing Methods and Limitations To solve it,
conventional neural models are insufficient for pro-
viding the required reasoning capabilities, while
symbolic reasoners cannot directly apply to un-
structured text. One promising direction is to con-
sider a neural-symbolic solution, such as the recent
DAGN method (Huang et al., 2021a). It breaks
down the context and each option into a set of
EDUs and connects them with discourse relations
as a graph. Then it performs graph neural network
(GNN) based reasoning to predict an answer.
However, we identify two limitations in this
method. L1: Despite the graph representation, it is
predominantly a neural method over discourse rela-
tions. It is debatable whether the required symbolic
reasoning over logical relations (e.g., implication,
negation) can be properly approximated. L.2: The
graph is often loosely connected and composed of
long paths. Node-to-node message passing imple-
mented in existing GNN models (Kipf and Welling,
2017; Schlichtkrull et al., 2018; Velickovic et al.,
2018) is prone to provide insufficient interaction be-

7147

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7147 - 7161
May 22-27, 2022 (©)2022 Association for Computational Linguistics

unk unk &mp/
\/ unk un IZZJOHJ'

Y 7 \

impl
(a) Raw TLG.
1mgl, /\. ,’<~ De_g_
Ilmpl
P unk “ &mp
imp&/ K Zzon]
P
1mp1

(b) Extended TLG. Dashed nodes and edges represent adap-
tively inferred EDUs and logical relations, respectively. Dou-
ble edges represent subgraph-to-node message passing.

Figure 2: Two TLGs for exemplifying our approach.
For readability, we omit rev edges.

tween the context and the option, which is critical
to answering a multiple-choice question.

Our Approach. While we follow the general
framework of DAGN, i.e., graph construction and
then graph-based reasoning, we overcome its two
limitations with a novel neural-symbolic approach.

To address L1, Figure 3 sketches out our idea.
Specifically, we propose to construct a text logic
graph (TLG) representing EDUs and their logical
relations as opposed to discourse relations, so we
can explicitly perform symbolic reasoning to ex-
tend the TLG with inferred logical relations, as
illustrated in Figure 2. The inferred relations may
provide crucial connections to be used in the subse-
quent graph-based message passing, i.e., symbolic
reasoning reinforces neural reasoning.

Further, while trivially computing and admitting
the deductive closure may extend the TLG with ir-
relevant connections which would mislead message
passing, we leverage signals from neural reasoning
to adaptively admit relevant extensions, i.e., neural
reasoning reinforces symbolic reasoning.

Moreover, we iterate the above mutual reinforce-
ment by restarting inference in each iteration with
signals from the previous iteration to accommo-
date corrections to the reasoning process and allow
sufficient neural-symbolic interaction.

To address L2, we aggregate the information in
the context subgraph of TLG and employ a novel
subgraph-to-node message passing mechanism to
enhance the interaction from the holistic context

Symbolic Reasoning Neural Reasoning

Raw TLG [~ Adapfive Extended TLG_ Message Passing
Extensi < ¥ Representations

[Answer Prediction]

Figure 3: Our main idea: mutual and iterative reinforce-
ment between symbolic and neural reasoning.

subgraph to each node in the option subgraph, and
vice versa, as illustrated in Figure 2b.

We incorporate the above two ideas into our new
Adaptive Logic Graph Network (AdaLoGN). To
summarize, our technical contributions include
 anovel neural-symbolic approach where neural

and symbolic reasoning mutually and iteratively

reinforce each other, and
* anovel aggregation-based enhancement of mes-
sage passing in graph-based neural reasoning.

Outline. We elaborate our approach in Section 2,
present experiments in Section 3, discuss related
work in Section 4, and conclude in Section 5.

Our code is available on GitHub: https://
github.com/nju-websoft/AdaLoGN.

2 Approach

A MRC task (c, q,O) consists of a context ¢, a
question ¢, and a set of options O. Only one option
in O is the correct answer to ¢ given c. The goal of
the task is to find this option.

Figure 4 outlines our implementation. For each
option o € O, we generate the representations
of ¢,q,0 (i.e., ¢, 8y, 8o, respectively) by a pre-
trained language model (Section 2.1), and we con-
struct a raw TLG where nodes (i.e., u1, ..., uy|)
represent EDUs extracted from c, g, o and edges
represent their logical relations (Section 2.2). With
their initial representations (i.e., hg)l), e h&?&l)
obtained from the pre-trained language model, in
an iterative manner, we adaptively extend the TLG
(i.e., symbolic reasoning) and then pass messages
(i.e., neural reasoning) to update node representa-
tions (i.e., h(lH) hul‘t‘l)) for generating the
representation of the TLG (i.e., hgy) (Section 2.3).
Finally, we predict the correctness of o (i.e., score,)
based on the above representations (Section 2.4).

2.1 Text Encoding

We use RoBERTa (Liu et al., 2019), a pre-trained
language model, to encode three token sequences
CcC = Cl"'c‘c‘r q = qlq‘q|7 ando = 01...0|O|
which are concatenated by the classifier token <s>

7148

score,

—

Adaptive Extension

[Answer Prediction]
i i
[_P[Graph Pooling]
BB -] - BT
roTTTEEEEEEE A - Y
é I{[Message Passing lh'(‘l:rl) h'(‘l;l) h‘(‘l;I) \I
3 < 14 :
< 1 w;< Extended TLG I
<« 1 2 & \ wx L
o Iy / I
: e 4 I
[!
1
|
1
|
|
[}

N 3
| Raw TLG
V4

|

Ho\ e LN\

[,

h

¢ [eleTe]
2 RoBERTa)
‘5
= [[| Ju |

Figure 4: Overview of our approach.

and the separator token </s>:

[B<s>i8ers- - -3 B<ss>iBari - -5 8o - - -3 Bels>]
= ROBERTa(<s> ¢y --+ </s>q1 -+ 01+ <[s>).
()
The output vector representations are averaged to
form the representations of ¢, ¢, o:

|c| la| |o|
1 1 1
gc:H;gcia ngmzlng go:mi:lgoi'
1= 1= 1=

(2)
2.2 Text Logic Graph (TLG)

Besides directly encoding text, we extract logical
relations from text as a graph called TLG.

2.2.1 Definition of TLG

For a piece of text, its TLG is a directed graph
G = (V,E) where V is a set of nodes rep-
resenting EDUs of the text (Mann and Thomp-
son, 1988), and E C V x R x V is a set of
labeled directed edges representing logical rela-
tions between EDUs described in the text. We
consider six types of common logical relations
R ={conj,disj,impl,neq, rev,unk}:
* conjunction (con j), disjunction (dis Jj), impli-
cation (imp1l), and negation (neg) are standard
logical connectives in propositional logic;

Rhetorical Relation Logical Relation
LIST, CONTRAST conj
DISJUNCTION disj

RESULT impl

CAUSE, PURPOSE, CONDITION, | rev
BACKGROUND

Table 1: Mapping from rhetorical relations in Graphene
to logical relations in TLG.

* reversed implication (rev) is introduced to rep-
resent the inverse relation of impl;

* unk represents an unknown relation.

Since conj, disj, neqg, and unk are symmetric

relations, edges labeled with them are bidirectional.
Observe the difference between our TLG and

the discourse-based logic graph considered in

DAGN (Huang et al., 2021a): edges in the former

represent logical relations, while those in the latter

represent discourse relations. Therefore, we can

explicitly perform symbolic reasoning on TLG.

2.2.2 Construction of Raw TLG

We initialize a raw TLG from c and o. Follow-
ing Huang et al. (2021a), we ignore q as it is usually
uninformative in existing datasets. Specifically, we
use Graphene (Cetto et al., 2018) to extract EDUs
and their rhetorical relations (Mann and Thomp-
son, 1988) from c and o. Rhetorical relations are
converted to logical relations via the mapping in
Table 1. Note that each imp1 edge is always paired
with an inverse rev edge, and vice versa.

We also define a small number of syntactic rules
to identify EDUs that negate each other and connect
them with neg. The rules are based on part-of-
speech tags and dependencies. For example, one
such rule checks whether two EDUs differ from
each other only by an antonym of an adverb.

In addition, for each pair of EDUs that are ad-
jacent in the text (including the last EDU of c and
the first EDU of o) but have none of the above logi-
cal relations, we connect them with unk because
Graphene may fail to identify their relation.

2.3 Adaptive Logic Graph Network
(AdaLoGN)

Since TLG consists of logical relations, we explic-
itly perform symbolic reasoning by applying infer-
ence rules to extend the TLG with inferred logical
relations to benefit the subsequent neural reason-
ing. However, rather than computing the deductive
closure which may undesirably provide many rela-
tions that are irrelevant to answering the question

7149

(7N U N
N neg ,-~ \
ilmpl \ u; <€ _>'_'ui\' unk 'y
. 4 *
1impl A 1
Y | impl " U; 1
wimpll 1 impl v .
k, neg ,J\\ ’
Ug Uj € - >‘\ﬁuj,. uj V'’

(a) Hypotheti-
cal syllogism.

(c) Adjacency-

(b) Transposition. transmission.

Figure 5: Dashed nodes and edges are inferred by ap-
plying an inference rule. * represents any logical rela-
tion in {conj,disj, impl}. We omit rev edges.

and mislead neural reasoning, we perform adap-
tive extension by leveraging signals from neural
reasoning to identify and admit relevant extensions.
For neural reasoning, we perform message pass-
ing to update node representations, which finally
are pooled into the representation of the TLG to
be used in the subsequent answer prediction. We
iterate the above process by restarting inference on
the raw TLG in each iteration with signals from the
previous iteration to accommodate corrections to
the reasoning process and let symbolic and neural
reasoning sufficiently interact with each other. We
transform the above idea into a new model named
AdaL.oGN outlined in Figure 4 and detailed below.

2.3.1 Inference Rules

Let G = (V, E) be a raw TLG. For symbolic rea-
soning over the logical relations in (G, we apply two
inference rules about implication in propositional
logic. Other rules are left for future work.

* Hypothetical Syllogism:

((ui = ug) A (uj = ug)) B (wi = ug) . (3)

Specifically, if E contains two edges
(uj, impl,u;) and (uj,impl,uy), we can
add two edges (u;, impl,ux) and (ug, rev, u;)
to F, as illustrated in Figure 5a.

* Transposition:

(ui — uj) [(—|Uj — —|ui) . (4)
Specifically, if FE contains an edge
(uj, impl,u;), we can add two edges

(—uj, impl, ~u;) and (—u;, rev, —uyj) to F, as
illustrated in Figure 5b. Note that if u; (resp. u;)
is not incident from/to any neg edge, i.e., —u;
(resp. —u;) is not a node in V', we will add —u;
(resp. —u;) to V' whose text negates that of wu;
(resp. u;), and then add a bidirectional neg edge
between u; and —u; (resp. u; and —u;) to E.

Besides, recall that unk represents a potential
logical relation between EDUs that are adjacent in
text. Considering that an EDU often inherits logical
relations from its adjacent EDUs, we heuristically
define and apply the following inference rule.

* Adjacency-Transmission:

((wi xug) A (ui ~ug)) F (ugxug), (5)

where x € {A,V,—} and ~ represents adja-
cency in text. For example, if E contains two
edges (u;, conj, u;) and (u;, unk, uy), we can
add a bidirectional con j edge between wu and
u; to F, as illustrated in Figure Sc.
While this rule may generate false propositions, we
expect our adaptive reasoner to apply it properly.
For example, it is useful for handling the following
sentence: “... only 1 person in the group knew 3 of
the group (ug), 3 people knew 2 of the group (u;),
and 4 people know 1 of the group (u;).” Graphene
identifies (u;, conj,u;) and (u;,unk,uy) but
misses (u, conj,u;), which can be generated by
applying this rule.

2.3.2 Adaptive Extension of TLG

Our symbolic reasoning is adaptive. We rely on
signals from neural reasoning to decide which in-
ference steps are relevant to answering the ques-
tions and hence are admitted to extend the TLG.
Specifically, each candidate extension e applies an
inference rule over a set of nodes V, C V. We
average their vector representations (which will be
detailed later) to form the representation of e:

1
h, = h,, . (6)
>

Since € is for predicting the correctness of o, we
interact h, with the representation of o, i.e., g, in
Equation (2), to predict the relevance score of e:

rel. = sigmoid(linear(h, || g,)), (7)

where || represents vector concatenation. We admit
all possible € to extend G such that rel. > 7 where
T is a predefined threshold.

Moreover, our neural-symbolic reasoning is iter-
ative. In the (14 1)-th iteration, we restart symbolic
reasoning with the raw TLG and recompute Equa-
tion (6) with node representations hS}} from neural
reasoning in the [-th iteration (which will be de-
tailed in Section 2.3.3). The initial node representa-

tions h&?) are obtained from a pre-trained language

7150

model. Specifically, we flatten V' into a sequence
of nodes in the order they appear in the text. Recall
that V' is divided into V. = {u1,...,uy,} and
Vo = {uv,|4+1,- - -, uy|} representing the nodes
extracted from c and o, respectively. Each node u;
is a token sequence u; = u;, Ui, - We use
RoBERTa to encode V. and V,, which are concate-
nated by <s> and </s>, where nodes inside V,
and V,, are separated by a special token “|”:

heesshy, 5o shyshoeshyy, s has]
= RoBERTa(<s> gy -+« | -+ /s>y g1, - | o <fs>).
(8)

The output vector representations are averaged to
form the initial representation of each node u; € V:

il

h(= h,. . 9)
e |Uz,z K

2.3.3 Message Passing

To let the nodes in TLG interact with each other
and fuse their information, our neural reasoning
performs graph-based message passing (Gilmer
et al., 2017) to update node representations in each
iteration from hq(fl) to h(l“) Since TLG is a hetero-
geneous graph containing multiple types of edges,
we incorporate the node-to-node message passing
mechanism in R-GCN (Schlichtkrull et al., 2018)
as a basis. Further, observe that TLG is usually
loosely connected and prone to cause insufficient
interaction between V. and V,, via long paths in lim-
ited iterations, which cannot be alleviated by sim-
ply increasing the number of iterations because it
would raise other issues such as over-smoothing (Li
et al., 2018; Chen et al., 2020). To enhance such
interaction which is critical to predicting the cor-
rectness of o, we incorporate a novel subgraph-to-
node message passing mechanism to holistically
pass the information aggregated from a subgraph
(e.g., Vo) to anode (e.g., each u; € V).

Specifically, without loss of generality, for each
u; € V,, we compute the u;-attended aggregate
representation of V. by an attention-weighted sum
of node representations over V,:

o _
hvc,uz- = Z a; jh u 7where

ujeVe
o;j = softmax;([a;1;. .. ?%‘,WCW) ,
a;j = LeakyReLU(linear(hq(i_) I hq(ll])))

(10)

Let N' be the set of neighbors of u;. Let NI C N
be the subset under logical relation » € R. We up-
date the representation of u; by passing messages
to u; from its neighbors and from V:

h{H) =reru(>" Y ﬁ\‘,j W + w'n{)

ré€Ruj;EN}
l l
+ Blwgu)bgraphh(p),uz) ’ where
@jj = s0ftmax;ay(qe, ;)([. - - ai;. . .|7) forallu; € N,

a;j = LeakyReLU(linear(hT(fi) Il hgj))) ,

Bi = sigmoid(linear(hﬁ? I h@,w))’
(11)
Wg), W(()l), Wg(u)bgraph are matrices of learnable pa-
rameters, and idx(a; j) returns the index of a; ; in
the | N?|-dimensional vector [. .. ;a; ;.. .|T.

In an analogous way, for each u; € V., we com-
pute the u;-attended aggregate representation of V,
denoted by hg/) «, and update h(lH)

Observe two differences between Equation (11)
and its counterpart in the original R-GCN. First, we
incorporate subgraph-to-node message passing and
control it by a gating mechanism (i.e., 5;). Second,
we weight node-to-node message passing by an
attention mechanism (i.e., o ;).

2.3.4 Graph Pooling

After L iterations where L is a hyperparameter, for
each node u; € V, we fuse its representations over
all the iterations with a residual connection:

h = h{Y) + 1inear(h() || --- | h{¥)). (12)

Inspired by Huang et al. (2021a), we feed all hffis
into a bidirectional residual GRU layer (Cho et al.,
2014) to finalize node representations:

[hfnl hfnl

w0 Ry

] = Res-BiGRU([hyy; ... s hy).
(13)
We aggregate these node representations by com-

puting an o-attended weighted sum:

hy = Z hff], where
u; €V
(14)

a; = softmax;([a1;...;ay|]T),

a; = LeakyReLU(linear(g, || hfnl))

and g, is the representation of o in Equation (2).
We concatenate hy and the relevance scores to
form the representation of G:

hg = (hy || relgq || -+

1
releqy = W Z rel. ,

ece®

|| relgcry), where

(15)

7151

EW is the set of candidate extensions in the [-th
iteration, and rel. is in Equation (7). In this way,
we are able to train the network in Equation (7).

2.4 Answer Prediction

We fuse the representations of ¢, ¢, 0 and the TLG
to predict the correctness of o:

score, = linear(tanh(linear(g. || g4 || 8 || ha))),
(16)
where g., g4, 8, are in Equation (2).

2.5 Loss Function

Let 0g01a € O be the correct answer. We optimize
the cross-entropy loss with label smoothing:

1
L= —(1—7)score, —v= Z score,,
go |O| 0,€0

exp(score,,)
> 0,c0 Xp(scoreq,)

a7

1o
where score,,, = log

and v is a predefined smoothing factor.

3 Experiments

3.1 Datasets

We used two reasoning-based MRC datasets.

ReClor (Yu et al., 2020) consists of 6,138 four-
option multiple-choice questions collected from
standardized exams such as GMAT and LSAT.
The questions were divided into 4,638 for training,
500 for development, and 1,000 for testing. The
test set was further divided into 440 easy questions
(Test-E) where each question could be correctly
answered by some strong baseline method using
only the options and ignoring the context and the
question, and the rest 560 hard questions (Test-H).

LogiQA (Liu et al., 2020) consists of 8,768 four-
option multiple-choice questions collected from
the National Civil Servants Examination of China,
which were translated into English. The questions
were divided into 7,376 for training, 651 for devel-
opment, and 651 for testing.

3.2 Implementation Details

We experimented on NVIDIA V100 (32GB).

We tuned hyperparameters on the devel-
opment set of each dataset. Specifically, for
text encoding, we used RoBERTa-large with
hidden layer = 24 and hidden units = 1,024
implemented by Hugging Face (Wolf et al.,

2020). For message passing, our implementation
was based on DGL (Wang et al., 2019). For
both datasets, we used the Adam optimizer, and
set attention heads = 16, dropoutrate = 0.1,
epochs = 10, batchsize = 16 selected from

{8,16,24}, number of iterations L = 2 from
{2,3}, and maximum sequence length = 384.
For ReClor, we set warm-up proportion = 0.1
from {0.1,0.2}, learningrate = Te—6 from
{6e-6,7e-6,8¢—6,1e-5}, and seed = 123
from {123,1234,42,43}). For LogiQA,
we set warm-up proportion = 0.2 from
{0.1,0.2}, learningrate @ = 8e-6 from
{6e-6,7¢—6,8¢—6,1e-5}, and seed = 42

from {123,1234, 42, 43}.

For the relevance score threshold 7 below Equa-
tion (7), we set 7 = 0.6 from {0.4,0.5,0.6,0.7}
for both datasets. For the smoothing factor ~y in
Equation (17), we set v = (.25 for both datasets.

To fit in our GPU’s memory, we restricted a raw
TLG to contain at most 25 nodes and 50 edges
by, if needed, randomly merging nodes connected
by an unk edge and/or deleting non-bridge edges
while keeping the graph connected.

3.3 Baselines

We compared our approach, referred to as
AdaLoGN, with popular pre-trained language mod-
els and with other known methods in the literature.

Reasoning-based MRC, like other MRC tasks,
can be solved by using a pre-trained language
model with a classification layer. Yu et al. (2020) re-
ported the results of BERT1arce, ROBERTar argE,
and XLNet;arge on ReClor. Huang et al.
(2021a) reported the results of BERT1arcr and
RoBERTa; zzcr on LogiQA.

In the literature, we found the results of
DAGN (Huang et al.,, 2021a), Focal Rea-
soner (Ouyang et al., 2021), and LReasoner (Wang
et al., 2021a,b) on both datasets. For a fair compar-
ison with our approach, we presented their results
on RoBERTa; arcr, While LReasoner achieved bet-
ter results with ALBERT. Between the two vari-
ants of LReasoner, one without data augmentation
(w/o DA) and the other with data augmentation
(w/ DA), we presented both of their results but
mainly compared with the former because our ap-
proach and other baseline methods would also ben-
efit if data augmentation were incorporated.

7152

Table 2: Comparison with baselines on ReClor.

Method Dev Test
BERT: arce 34.10 31.03
ROBERTaLARgE 35.02 35.33
DAGN 36.87 39.32
Focal Reasoner 41.01 40.25
LReasoner (w/ DA) | 38.10 40.60
AdaLoGN 39.94 40.71
Human - 86.00

Table 3: Comparison with baselines on LogiQA.

3.4 Evaluation Metric

Following the literature, we reported accuracy,
i.e., the proportion of correctly answered questions.
For our approach we reported the max across 3 runs
on the development set of each dataset.

3.5 Comparison with Baselines

On ReClor, as shown in Table 2, AdaLoGN out-
performed all the baseline methods on the test set
by at least 1.30%, except for LReasoner (w/ DA)
which performed data augmentation so that the
comparison might be unfair. AdaLoGN and LRea-
soner (w/ DA) both exceeded 60%, being compara-
ble with human-level performance (63%).

On LogiQA, as shown in Table 3, AdaLoGN
outperformed all the baseline methods on the test
set, including LReasoner (w/ DA). Still, our re-
sult (40.71%) was not comparable with human-
level performance (86%).

In particular, on both ReClor and LogiQA,
AdalLoGN exceeded DAGN on the test set by
1.39%-1.90%, which demonstrated the effective-
ness of our approach in addressing the limitations
of DAGN mentioned in Section 1.

3.6 Ablation Study

We conducted an ablation study to evaluate the ef-
fectiveness of the two main technical contributions
in our approach: adaptive extension of TLG and
subgraph-to-node message passing.

Method Dev Test Test-E Test-H Method Dev Test Test-E Test-H
BERT . arck 53.80 49.80 72.00 32.30 AdaLoGN 6520 60.20 79.32 45.18

RoBERTararce 62.60 55.60 75.50 40.00 AdaLoGN-cxt 65.80 59.50 77.27 45.54
XLNetyarce 62.00 56.00 75.70 40.50 AdaLoGNzy11-ext | 65.00 58.80 78.19 43.57

DAGN 65.80 58.30 7591 44.46 AdaLoGN,,-4¢ 64.80 59.40 79.77 43.39
Focal Reasoner 66.80 5890 77.05 44.64 AdalLLoGNy;, 6520 57.60 77.95 41.61

LReasoner (w/o DA) | 65.20 58.30 78.60 42.30 AdaLoGN2n+ 65.00 58.60 78.64 42.86

LReasoner (w/ DA) 66.20 6240 81.40 47.50

AdaLoGN 6520 6020 79.32 45.18 Table 4: Ablation study on ReClor.

Human - 63.00 57.10 67.20

Method Dev Test
AdalLoGN 3994 40.71
AdaLoGNo-ext 37.94 39.02
AdaLoGN¢y11-exe | 39.63 39.02
AdaLoGN,-at 38.56 39.94
AdalLoGN,,, 38.40 39.02
AdaLoGN2,+ 3840 38.86

Table 5: Ablation study on LogiQA.

3.6.1 Effectiveness of Adaptive Extension

We compared the standard version of AdaLoGN
with two variants removing adaptive extension.

e AdaLoGN,,,_cx+ performs no extension.
* AdaLoGN¢,11-ext performs full extension by
computing and admitting the deductive closure.

On ReClor, as shown in Table 4, both variants
exhibited a fair decrease in accuracy on the test
set by 0.70%-1.40%. On LogiQA, as shown in
Table 5, the decreases were larger, 1.69% on the
test set, possibly because the questions in LogiQA
were harder so that the effectiveness of our adaptive
extension became more noticeable. Interestingly,
on both datasets, AdaLoGN¢,11-cxt Was not bet-
ter than AdaLoGN,,,-.x+ on the test set, indicating
that a naive injection of logical reasoning into neu-
ral reasoning might not have positive effects.

We analyzed the distributions of relevance scores
of candidate extensions, i.e., rel. in Equation (7).
As shown in Figure 6, they approximated a normal
distribution on both datasets. By setting the thresh-
old 7 = 0.6, we admitted 19.57% and 4.86% of the
extensions on ReClor and LogiQA, respectively.

We also compared with a variant of AdaLoGN
using a subset of inference rules.

¢ AdaLoGN, ..+
transmission rule.

ignores the adjacency-

By ignoring the adjacency-transmission rule,
AdalLoGN,,-,+ showed a decrease in accuracy on
the test sets by 0.77%—0.80%, suggesting the use-
fulness of this rule despite its heuristic nature.

7153

4%

]
B
A

R
ES
|

Percentage

]
ES
)

0% -
0.0 0.2 0.4 0.6 0.8 1.0

Percentage
N w

X X

f

2
ES
)

S
X

0.0 0.2 0.4 0.6 0.8 1.0
Relevance score

Figure 6: Distributions of relevance scores of candidate
extensions. Top: on the development set of Reclor; Bot-
tom: on the development set of LogiQA.

3.6.2 Effectiveness of Subgraph-to-Node
Message Passing

We compared the standard version of AdaLoGN

with two variants removing subgraph-to-node mes-

sage passing or implementing it in a different way.

* AdaLLoGN,,, only performs node-to-node mes-
sage passing in a standard way.

* AdalLoGN,,,; only performs node-to-node mes-
sage passing but, as an alternative to our holis-
tic subgraph-to-node message passing, it adds
a bidirectional unk edge between each node in
the context subgraph and each node in the option
subgraph to enhance context-option interaction.
On ReClor, as shown in Table 4, both variants

exhibited a large decrease in accuracy on the test set

by 1.60%-2.60%. On LogiQA, as shown in Table 5,

the decreases were also large, 1.69%—1.85% on the

test set. The results demonstrated the effectiveness
of our subgraph-to-node message passing.

Compared with AdaLoGN,,,,,, AdaLoGN,,,,+
achieved better results on ReClor but worse results
on LogiQA on the test set, indicating that a naive
enhancement of context-option interaction could
have negative effects.

3.7 Error Analysis

From the development set of each dataset, we ran-
domly sampled fifty questions to which our ap-
proach outputted an incorrect answer. We analyzed
the sources of these errors. Note that an error could

Source of Error ReClor | LogiQA
Construction of raw TLG 38% 36%
Adaptive extension of TLG 18% 22%
Expressivity of symbolic reasoning 20% 18%
Others (about neural reasoning) 46% 40%

Table 6: Error analysis of AdaLoGN.

have a mixture of multiple sources.

As shown in Table 6, we mainly relied on
Graphene to extract a raw TLG from text based
on syntactic analysis, which accounted for about
one third of the errors (36%—38%). Our adaptive
extension of TLG constituted about one fifth of
the errors (18%—-22%), e.g., some excessive exten-
sions produced irrelevant logical relations which
might mislead message passing. One fifth of the
errors (18%—20%) were due to the limited expres-
sivity of our symbolic reasoning, i.e., a subset of
propositional logic, while some questions required
quantifiers. Other errors might be related to neu-
ral reasoning such as message passing or answer
prediction (40%—46%).

3.8 Run Time

On both ReClor and LogiQA, our approach used
about 0.8 second for answering a question.

4 Related Work

4.1 Reasoning-Based MRC

While simple MRC tasks have been well studied,
complex MRC tasks requiring various reasoning
capabilities are receiving increasing research at-
tention. Among others, multi-hop MRC tasks in
HotpotQA (Yang et al., 2018) and WikiHop (Welbl
et al., 2018) require retrieving and reading multiple
supporting passages to answer a question. They
can be solved by constructing and reasoning over a
graph connecting passages that overlap or co-occur
with each other (Qiu et al., 2019; Tu et al., 2020), by
implicitly supervising a retriever via word weight-
ing (Huang et al., 2021b), or by iteratively applying
dense retrieval (Xiong et al., 2021). MRC tasks in
DROP (Dua et al., 2019) require discrete reasoning
such as addition, counting, and sorting. Neural net-
works have been extended to incorporate modules
that can perform such reasoning over numbers and
dates mentioned in a given context (Gupta et al.,
2020). For MRC tasks in CommonsenseQA (Tal-
mor et al., 2019) which are targeted at common-
sense knowledge and reasoning, recent methods
fuse external commonsense knowledge with pre-

7154

trained language models for reasoning (Yan et al.,
2021; Xu et al., 2021). There are also studies on
MRC tasks requiring spatial/geographical reason-
ing (Huang et al., 2019; Li et al., 2021) and tempo-
ral/causal reasoning (Sun et al., 2018).

Different from the above reasoning capabilities,
the MRC tasks considered in this paper require
logical reasoning, such as reasoning about suffi-
cient and necessary conditions, categorization, con-
junctions and disjunctions. Pre-trained language
models alone struggled and were far behind human-
level performance on such tasks in ReClor (Yu
et al., 2020) and LogiQA (Liu et al., 2020) due to
their weakness in logical reasoning.

Among existing methods for solving such tasks,
DAGN (Huang et al., 2021a) and Focal Rea-
soner (Ouyang et al., 2021) extract discourse or
coreference relations from text and represent as a
graph of text units. Then they employ GNN to pass
messages and update representations for predicting
an answer. Different from their neural nature, our
approach symbolically performs logical reasoning
as required by such tasks, by applying inference
rules over extracted logical relations to extend the
graph. This feature resembles LReasoner (Wang
et al., 2021a,b) which extends the context with in-
ferred logical relations to benefit the subsequent
neural reasoning. However, different from LRea-
soner which computes the deductive closure and
identifies relevant extensions by text overlapping
with the options in an unsupervised manner, our
approach predicts relevance based on signals from
neural reasoning in a supervised manner, and our
prediction evolves over iterations after sufficient
interaction between symbolic and neural reason-
ing. All these features helped our approach achieve
better performance in the experiments.

4.2 Neural-Symbolic Reasoning

Our approach represents a novel implementation
of neural-symbolic reasoning (Raedt et al., 2020),
and it differs from the following existing methods.

One paradigm of neural-symbolic reasoning is
logic-driven neural reasoning. For example, logical
constraints can be compiled into a neural network
by augmenting the loss function (Xu et al., 2018)
or the network structure (Li and Srikumar, 2019).
Logical connectives, quantifiers, and consistency
checking can also be approximated by neural net-
works (Dong et al., 2019; Ren et al., 2020; Gu
et al., 2019). While these methods incorporate log-

ical reasoning into neural reasoning via emulation,
our approach explicitly performs logical reason-
ing by applying inference rules over logical rela-
tions. Such exact inference is more accurate than
emulation-based approximation.

Another paradigm is neural-driven logical rea-
soning. For example, neural networks have been
employed to predict the truth of an atom in an-
swering first-order logic queries (Arakelyan et al.,
2021), and to implement predicates in probabilistic
logic programming (Manhaeve et al., 2021). These
methods and our approach cope with different prob-
lems, thus using different techniques. Specifically,
while these methods complement logical reasoning
with extra facts generated by neural reasoning, our
approach filters inferred logical relations based on
signals from neural reasoning.

Moreover, observe that the neural-symbolic in-
teraction in the above methods are unidirectional,
i.e., they leverage either symbolic or neural reason-
ing to reinforce the other. By contrast, we allow
bidirectional neural-symbolic interaction where
neural and symbolic reasoning mutually and itera-
tively reinforce each other for better performance.

5 Conclusion

To meet the challenge of reasoning-based MRC, we
presented a neural-symbolic approach where neural
and symbolic reasoning mutually and iteratively
reinforce each other via our new AdaLoGN model.
We also enhanced graph-based neural reasoning
with a novel subgraph-to-node message passing
mechanism. Since these ideas are quite general, we
believe they have great potential for a variety of
applications beyond MRC, e.g., link prediction.

Error analysis has revealed some shortcomings
of our approach. Currently we rely on syntactic
tools to extract a raw TLG from text. We will ex-
plore other extraction methods to achieve a higher
quality. We also plan to apply more inference rules
and incorporate quantifiers to improve the expres-
sivity of our symbolic reasoning.

Acknowledgements

This work was supported in part by the NSFC
(62072224) and in part by the Beijing Academy
of Artificial Intelligence (BAAI).

7155

References

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and
Michael Cochez. 2021. Complex query answering
with neural link predictors. In /CLR 2021.

Matthias Cetto, Christina Niklaus, André Freitas,
and Siegfried Handschuh. 2018. Graphene:
semantically-linked propositions in open informa-
tion extraction. In COLING 2018, pages 2300-
2311.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and
Xu Sun. 2020. Measuring and relieving the over-
smoothing problem for graph neural networks from
the topological view. In AAAI-IAAI-EAAI 2020,
pages 3438-3445.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In EMNLP 2014,
pages 1724-1734.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT 2019, pages 4171-4186.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang,
Lihong Li, and Denny Zhou. 2019. Neural logic ma-
chines. In ICLR 2019.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In NAACL-
HLT 2019, pages 2368-2378.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. 2017. Neural
message passing for quantum chemistry. In ICML
2017, pages 1263-1272.

Yu Gu, Jeff Z. Pan, Gong Cheng, Heiko Paulheim, and
Giorgos Stoilos. 2019. Local ABox consistency pre-
diction with transparent TBoxes using gated graph
neural networks. In NeSy 2019.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2020. Neural module networks for
reasoning over text. In ICLR 2020.

Yinya Huang, Meng Fang, Yu Cao, Liwei Wang, and
Xiaodan Liang. 2021a. DAGN: discourse-aware
graph network for logical reasoning. In NAACL-
HLT 2021, pages 5848-5855.

Zixian Huang, Yulin Shen, Xiao Li, Yuang Wei, Gong
Cheng, Lin Zhou, Xinyu Dai, and Yuzhong Qu.
2019. GeoSQA: A benchmark for scenario-based
question answering in the geography domain at high
school level. In EMNLP-IJCNLP 2019, pages 5865—
5870.

Zixian Huang, Ao Wu, Yulin Shen, Gong Cheng, and
Yuzhong Qu. 2021b. When retriever-reader meets
scenario-based multiple-choice questions. In Find-
ings of EMNLP 2021, pages 985-994.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR 2017.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018.
Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI-IAAI-EAAI
2018, pages 3538-3545.

Tao Li and Vivek Srikumar. 2019. Augmenting neural
networks with first-order logic. In ACL 2019, pages
292-302.

Xiao Li, Yawei Sun, and Gong Cheng. 2021. TSQA:
tabular scenario based question answering. In AAAI-
IAAI-EAAI 2021, pages 13297-13305.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. LogiQA: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In IJCAI 2020, pages 3622—
3628.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2021.
Neural probabilistic logic programming in Deep-
ProbLog. Artif. Intell., 298:103504.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text, 8(3):243-281.

and Hai Zhao.
CoRR,

Siru Ouyang, Zhuosheng Zhang,
2021. Fact-driven logical reasoning.
abs/2105.10334.

Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li,
Weinan Zhang, and Yong Yu. 2019. Dynamically
fused graph network for multi-hop reasoning. In
ACL 2019, pages 6140-6150.

Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve,
and Giuseppe Marra. 2020. From statistical rela-
tional to neuro-symbolic artificial intelligence. In
1JCAI 2020, pages 4943-4950.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In EMNLP 2016,
pages 2383-2392.

Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020.
Query2box: reasoning over knowledge graphs in
vector space using box embeddings. In /CLR 2020.

7156

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In ESWC 2018, pages 593—
607.

Yawei Sun, Gong Cheng, and Yuzhong Qu. 2018.
Reading comprehension with graph-based temporal-
casual reasoning. In COLING 2018, pages 806-817.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In NAACL-HLT 2019, pages 4149—
4158.

Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2020. Select, an-
swer and explain: Interpretable multi-hop reading
comprehension over multiple documents. In AAAI-
IAAI-EAAI 2020, pages 9073-9080.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lid, and Yoshua Bengio.
2018. Graph attention networks. In ICLR 2018.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan
Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis,
Jinyang Li, and Zheng Zhang. 2019. Deep Graph Li-
brary: a graph-centric, highly-performant package
for graph neural networks. CoRR, abs/1909.01315.

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming
Zhou, Zhongyu Wei, Zhumin Chen, and Nan
Duan. 2021a. From LSAT: The progress and
challenges of complex reasoning. arXiv preprint
arXiv:2108.00648.

Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu
Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and
Nan Duan. 2021b. Logic-driven context extension
and data augmentation for logical reasoning of text.
arXiv preprint arXiv:2105.03659.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. Trans.
Assoc. Comput. Linguistics, 6:287-302.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: state-of-the-art natural language pro-
cessing. In EMNLP 2020, pages 38-45.

Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei
Du, Patrick S. H. Lewis, William Yang Wang,
Yashar Mehdad, Scott Yih, Sebastian Riedel, Douwe
Kiela, and Barlas Oguz. 2021. Answering com-
plex open-domain questions with multi-hop dense
retrieval. In ICLR 2021.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Van den Broeck. 2018. A semantic loss func-
tion for deep learning with symbolic knowledge. In
ICML 2018, pages 5498-5507.

Yichong Xu, Chenguang Zhu, Ruochen Xu, Yang Liu,
Michael Zeng, and Xuedong Huang. 2021. Fus-
ing context into knowledge graph for commonsense
question answering. In Findings of ACL-IJCNLP
2021, pages 1201-1207.

Jun Yan, Mrigank Raman, Aaron Chan, Tianyu Zhang,
Ryan A. Rossi, Handong Zhao, Sungchul Kim,
Nedim Lipka, and Xiang Ren. 2021. Learning con-
textualized knowledge structures for commonsense
reasoning. In Findings of ACL-IJCNLP 2021, pages
4038-4051.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question
answering. In EMNLP 2018, pages 2369-2380.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi
Feng. 2020. ReClor: A reading comprehension
dataset requiring logical reasoning. In /CLR 2020.

7157

Responsible NLP Research Checklist

Members of the ACL are responsible for adhering to the ACL code of ethics. The ARR Responsible NLP
Research checklist is designed to encourage best practices for responsible research, addressing issues of
research ethics, societal impact and reproducibility.

Please read the Responsible NLP Research checklist guidelines for information on how to answer these
guestions. Note that not answering positively to a question is not grounds for rejection.

All supporting evidence can appear either in the main paper or the supplemental material. For each
guestion, if you answer Yes, provide the section number; if you answer No, provide a justification.

Please do not modify, reorder, delete or add questions, question options or other wording of this
document.

A For every submission

A1l Did you discuss the limitations of your work?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes

Section or justification Section 3.7

A2 Did you discuss any potential risks of your work?

If you answer Yes, provide the section number; if you answer No, provide a justification.
N/A

Section or justification Click or tap here to enter text.

A3 Do the abstract and introduction summarize the paper’s main claims?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes

Section or justification Abstract, Section 1

B Did you use or create scientific artifacts?

If you answer Yes, provide the section number; if you answer No, you can skip the rest of this section.
Yes

If yes:

B1 Did you cite the creators of artifacts you used?

If you answer Yes, provide the section number; if you answer No, provide a justification.

Yes

7158

Section or justification Sections 2.1, Section 2.2.2, Section 3.1, Section 3.2

B2 Did you discuss the license or terms for use and/or distribution of any artifacts?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes

Section or justification The license for our code is available on GitHub.

B3 Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

If you answer Yes, provide the section number; if you answer No, provide a justification.
N/A
Section or justification Click or tap here to enter text.

B4 Did you discuss the steps taken to check whether the data that was collected/used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

If you answer Yes, provide the section number; if you answer No, provide a justification.
N/A
Section or justification Click or tap here to enter text.

B5 Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes
Section or justification Section 3.1

B6 Did you report relevant statistics like the number of examples, details of train/test/dev splits, etc.
for the data that you used/created?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes

Section or justification Section 3.1

C Did you run computational experiments?
If you answer Yes, provide the section number; if you answer No, you can skip the rest of this section.

Yes

7159

If yes:

C1 Did you report the number of parameters in the models used, the total computational budget (e.g.,
GPU hours), and computing infrastructure used?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes
Section or justification Section 3.2, Section 3.8

C2 Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes
Section or justification Section 3.2

C3 Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes
Section or justification Section 3.2, Section 3.4, Section 3.5

C4 If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did you
report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE, etc.)?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Yes

Section or justification Section 3.2

D Did you use human annotators (e.g., crowdworkers) or research with human
subjects?

If you answer Yes, provide the section number; if you answer No, you can skip the rest of this section.
No
If yes:

D1 Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?

If you answer Yes, provide the section number; if you answer No, provide a justification.

Choose an item.

7160

Section or justification Click or tap here to enter text.

D2 Did you report information about how you recruited (e.g., crowdsourcing platform, students) and
paid participants, and discuss if such payment is adequate given the participants’ demographic (e.g.,
country of residence)?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Choose an item.
Section or justification Click or tap here to enter text.

D3 Did you discuss whether and how consent was obtained from people whose data you’re
using/curating (e.g., did your instructions explain how the data would be used)?

If you answer Yes, provide the section number; if you answer No, provide a justification.

Choose an item.

Section or justification Click or tap here to enter text.

D4 Was the data collection protocol approved (or determined exempt) by an ethics review board?
If you answer Yes, provide the section number; if you answer No, provide a justification.

Choose an item.

Section or justification Click or tap here to enter text.

D5 Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?

If you answer Yes, provide the section number; if you answer No, provide a justification.
Choose an item.

Section or justification Click or tap here to enter text.

7161

