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Abstract

While neural text-to-speech systems perform
remarkably well in high-resource scenarios,
they cannot be applied to the majority of the
over 6,000 spoken languages in the world due
to a lack of appropriate training data. In this
work, we use embeddings derived from articu-
latory vectors rather than embeddings derived
from phoneme identities to learn phoneme rep-
resentations that hold across languages. In con-
junction with language agnostic meta learning,
this enables us to fine-tune a high-quality text-
to-speech model on just 30 minutes of data in a
previously unseen language spoken by a previ-
ously unseen speaker.

1 Introduction

The advance of deep learning (Vaswani et al., 2017;
Goodfellow et al., 2014) has enabled great im-
provements in the field of Text-to-Speech (TTS).
(Towards-)end-to-end models, such as Tacotron
2 (Wang et al., 2017; Shen et al., 2018), Trans-
formerTTS (Li et al., 2019b), FastSpeech 2 (Ren
et al., 2019, 2020), FastPitch (Łańcucki, 2021)
and many more famous instances (e.g. Arık et al.
(2017) and Prenger et al. (2019)) allow for speech
synthesis with unprecedented quality and controlla-
bility. The models mentioned here rely on vocoders,
such as WaveNet (van den Oord et al., 2016),
MelGAN (Kumar et al., 2019), Parallel Wave-
GAN (Yamamoto et al., 2020) or HiFi-GAN (Kong
et al., 2020) to turn the parametric representations
that they produce into waveforms. Recently pro-
posed models even include some with the ability
to go directly to the waveform from a grapheme or
phoneme input sequence, such as EATS (Donahue
et al., 2020) or VITS (Kim et al., 2021).

While these methods all perform remarkably
well if given enough data, cross-lingual use of
data remains a key challenge in TTS. Most mod-
ern methods are limited to languages and domains
that are rich in resources, which over 6,000 lan-

guages are not. Attempts at reducing the required
resources in a target language by making use of
transfer learning from multilingual data have been
made by Azizah et al. (2020); Xu et al. (2020);
Chen et al. (2019). The mismatch of input spaces
however requires complex architectural changes,
which limits their ability to be used in conjunction
with other modern TTS architectures. Attempts
at fixing the issue of having to transfer knowledge
from a source to a target by just jointly training on a
mixed set of more and less resource rich languages
have been made by He et al. (2021); de Korte et al.
(2020); Yang and He (2020), which requires com-
plex training procedures. In this work, we will also
attempt to transfer knowledge from a set of high
resource languages to a low resource language. We
fix previous shortcomings by 1) using a linguisti-
cally motivated representation of the inputs to such
a system (articulatory and phonological features of
phonemes) that enables cross-lingual knowledge
sharing and 2) applying the model agnostic meta
learning (MAML) framework (Finn et al., 2017) to
the field of low-resource TTS for the first time.

Using articulatory features as inputs for neu-
ral TTS has been attempted recently by Staib
et al. (2020) and Wells et al. (2021), following
the classical approach of Jakobson et al. (1961).
Both achieved good results when applying this
idea to the codeswitching problem, since unseen
phonemes in the input space no longer map to non-
sensical positions, as it would be the case for the
standard embedding-lookup. It has to be noted how-
ever, that this only works across languages with
similar types of phonemes. Also Gutkin (2017)
have applied phonological features to low-resource
TTS with fair success. They did however rely
on supplementary features, such as dependency
parsers and morphological analyzers. Furthermore
all of their data and models are proprietary and can
therefore not be used to compare results to. In this
work, we extend the use of articulatory inputs with
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the MAML framework to enable very simple yet
well working low-resource TTS that can be applied
to almost all modern TTS architectures.

We encounter severe instabilities when using
MAML on TTS, which make the standard formula-
tion of MAML infeasible to use. Thus we also pro-
pose a modification to MAML, which reduces the
procedure’s complexity. This allows us to create
a set of parameters of a model that can be used to
fine-tune to a well working single-language single-
speaker TTS model with as little as 30 minutes of
paired training data available and even enables zero-
shot adaptation to unseen languages. We evaluate
the success of our approach with both automatic
measures and human evaluation.

Our contributions are as follows: 1) We show
that it is beneficial to train a TTS model on articu-
latory features rather than on phoneme-identities,
even in the standard single-language high-resource
case; 2) We introduce a training procedure that
is closely related to MAML which allows train-
ing a set of parameters for a TTS model that can
be fine-tuned in a low resource scenario; 3) We
provide insights on how much data and training
time are required to fine-tune a model across differ-
ent languages and speakers simultaneously using
said meta-parameters; 4) We show that the meta-
parameters can generalize to unseen phonemes and
rapidly improve their ability to properly pronounce
them when fine-tuning. 1

2 Background and Related Work

2.1 Input Representations

Character Embeddings The simplest approach
to representing text as input to a TTS is using in-
dexes of graphemes to look up embeddings. This is
however prone to mistakes. Taylor and Richmond
(2020) bring up the example of coathanger. If the
TTS is not aware of the morpheme boundary be-
tween the coat and the hang, it will be inclined
to produce something like [k2T@InÃ@] rather than
the correct [koUthæN@]. Such a representation of
the input will be highly language dependent, since
special pronunciation rules rarely hold for more
than a single language.

The textual input can be augmented by adding
information, such as morpheme boundaries, intona-

1All of our code, as well as the checkpoints for a low-
resource fine-tuning capable Tacotron 2 and FastSpeech 2
model are publicly available at https://github.com/
DigitalPhonetics/IMS-Toucan.

tion phrase boundaries derived from e.g. syntactic
parsing as is done in many TTS frontends (Schröder
and Trouvain, 2003; Clark et al., 2007; Ebden and
Sproat, 2015), or even the semantic identity of the
word a character belongs to, using e.g. BERT em-
beddings (Hayashi et al., 2019).

Phoneme Embeddings Rather than looking up
embeddings for graphemes, it is often beneficial
to use embeddings of phonemes. Phonemizers
(Bisani and Ney, 2008; Taylor, 2005; Rao et al.,
2015) produce a sequence of phonetic units, which
correlate with the segments in the audio much more
than raw text. One such standard of phonetic repre-
sentation which we make use of is the International
Phonetic Alphabet (IPA). Using this set of phonetic
units alleviates the problems of TTS fine-tuning
and transfer-learning to low-resource domains, be-
cause the phonetic units should be mostly language
independent. Deri and Knight (2016) provide a data
driven approach for the grapheme to phoneme con-
version task, which performs well on over 500 lan-
guages and can be adapted fairly easily to any new
low-resource language. There remains however
one major challenge: The use of different phoneme
sets for each language, leading to completely un-
seen units in inference or fine-tuning data.

Latent Representations Li et al. (2019a) claim
that multilinguality in speech recognition and TTS
can be achieved by changing the input to a la-
tent representation that is trained across languages.
While their results seem very promising, their tech-
nique needs training data in all languages it should
be applied to, which rules out zero-shot settings.

Articulatory Features We fix the shortcoming
of not being able to handle unseen phonemes by
specifying phonemes in terms of articulatory fea-
tures such as position (e.g. frontness of the tongue)
and category (e.g. voicedness). We show that sys-
tems trained on this input can produce a phoneme
given nothing but an articulatory description and
thus generalize to unseen phonemes. This makes
the transfer of knowledge across languages much
simpler. A similar approach for the purpose of han-
dling codeswitching has been done in Staib et al.
(2020). Our work builds on top of theirs by extend-
ing the idea to transfer learning an entire TTS in
a new language with minimal data, making use of
meta learning on top of articulatory features.
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2.2 Model Agnostic Meta Learning (MAML)
The goal of MAML (Finn et al., 2017) is to find a
set of parameters, that work well as initialization
point for multiple tasks, including unseen ones.
The procedure consists of an outer loop and an
inner loop. The outer loop starts with a set of
parameters, which we will call the Meta Model.
The inner loop trains task specific copies of the
Meta Model for a low amount of steps. Once the
inner loop is complete, the loss for each of the
models is calculated, summed, and backpropagated
to the original Meta Model by unrolling the inner
loop. This includes the very costly calculation of
second order derivatives. The Meta Model is then
updated and the inner loop starts again.

This procedure moves the initialization point
closer to the optimal configuration for each of the
trained tasks, which generalizes to even unseen
tasks. Multiple variants of MAML have been sug-
gested that try to fix the high computational cost
of the second order derivatives. The simplest one
is called first-order MAML and simply applies the
gradient of the task specific model at the end of
the inner loop directly to the Meta Model. Other
variants are described in Antoniou et al. (2019);
Rajeswaran et al. (2019).

3 Approach

3.1 System Description
For the implementation of our method, we use the
open source IMS Toucan speech synthesis toolkit,
first introduced in (Lux et al., 2021), which is in
turn based on the ESPnet end-to-end speech pro-
cessing toolkit (Watanabe et al., 2018; Hayashi
et al., 2020, 2021). Neekhara et al. (2021) show,
that it is beneficial to fine-tune a single-speaker
model to a new speaker rather than to train a multi-
speaker model. Inspired by this, we decided to also
use a model that is not conditioned on speakers
or on languages rather than a conditioned multi-
speaker multi-lingual model and fine-tune it on the
data from a new speaker in a new language. In pre-
liminary experimentation we got similar results to
them within one language, but found their method
to not work across languages. In comparison to the
fine-tuning of a simple single speaker model, we
found training and fine-tuning a model conditioned
on language embeddings and speaker embeddings
much more sensitive to the choice of hyperparam-
eters. Figure 1 shows an overview of our system,
underlining how it is not specific to a certain archi-

Figure 1: Overview of the TTS pipeline we use. The
top row shows the modality in which the data is at this
point in the pipeline. The lower row shows the methods
that handle the transitions. Each of the blocks in the
lower row can be exchanged easily with other methods
that have the same interfaces.

tecture, but could instead be used in conjunction
with almost all modern TTS methods.

Tacotron 2 For our implementation of Tacotron
2 (Shen et al., 2018), we make use of the forward
attention with transition agent introduced in Zhang
et al. (2018), which uses a CTC-like forward vari-
able (Graves et al., 2006) to promote the quick
learning of monotonic alignment between text and
speech. To further help with this, we make use of
the guided attention loss introduced in Tachibana
et al. (2018).

FastSpeech 2 To train the parallel FastSpeech 2
model (Ren et al., 2020), annotations of durations
for each phoneme are needed. These also have
to be generated for the low-resource fine-tuning
data. To that end, we generate alignments using
the encoder-decoder attention map of a Tacotron
2 model. Following Kim et al. (2020); Shih et al.
(2021); Badlani et al. (2021), we apply the Viterbi
algorithm to find the most probable monotonic path
through the attention map, which significantly im-
proves the quality of the alignments.

This is especially important, because we train
our FastSpeech 2 model with pitch and energy la-
bels that are averaged over the duration of each
individual phoneme to allow for great controllabil-
ity during inference, as is introduced by Łańcucki
(2021). Incorrect alignments would lead to follow-
up errors such as an unnaturally flat prosody.

Furthermore, we make use of the conformer
block (Gulati et al., 2020) as the encoder and
decoder, rather than the standard transformer
(Vaswani et al., 2017).

3.2 Articulatory Vectors

PanPhon The PanPhon resource (Mortensen
et al., 2016) can be used to get linguistic specifica-
tions of phonemes. It comes with an open-source
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tool2 which we use to convert phonemes into nu-
meric vectors. Each vector encodes one feature
per dimension and takes the value of either -1, 0 or
1, putting the features on a scale wherever mean-
ingful. This featureset also includes phonological
features which go beyond simple phonetics, such
as whether a phoneme is syllabic.

Papercup Additionally we make use of the
purely articulatory description system of phonemes
introduced in Staib et al. (2020), which we will
call Papercup features in the following. For the
encoding we use one-hot vectors, similar to their
implementation. Some of the features, like open-
ness or frontness, should be on a scale rather than
one-hot encoded. However since the articulatory
vector is fed into a fully connected layer, we leave
the reconstruction of this dependency between fea-
tures for the network to learn.

3.3 Language Agnostic Meta Learning
We find that the standard implementation of
MAML does not work well for the TTS task. The
inner loop needs hundreds of updates in order to
make a significant change to the performance of
the task specific model. This is probably due to
the TTS task being a one-to-many mapping task,
where the loss function of measuring the distance
to a spectrogram is not an accurate objective for
the TTS. For every text, there are infinitely many
spectrograms, which could be considered gold data.
Those spectrograms could differ in e.g. the speaker
who reads the text and how they read the text. Since
there are no conditioning signals, the TTS has to
update its parameters towards a certain speaker’s
characteristics in general. However because in our
case each task is a different language and a differ-
ent speaker, the training becomes highly unstable.
So ideally we would either need to run MAML’s
inner loop until convergence, which is generally in-
feasible, or stabilize the procedure by not allowing
the model to adapt further to one task than to the
others.

To fix this issue, we calculate the Meta Model’s
loss on one batch per language. We then sum up the
losses, backpropagate and update the Meta Model
directly using Adam (Kingma and Ba, 2015). This
stabilizes the learning procedure, but still allows
the model to update its parameters towards a more
universal configuration. Since we have to make
this simplification to MAML in order to deal with

2https://github.com/dmort27/panphon

the different languages as tasks, we call this pro-
cedure language agnostic meta learning (LAML).
Ultimately, the model should not care about the
language it is fine-tuned in, since it should be close
to a universal representation of an acoustic model.
To give an exact notion of our modifications: We
simplified equation 1 to equation 2, where opt is
a gradient descent update, Bi is a batch sampled
from task i, L is an objective function, Θ is the set
of parameters from the Meta Model and θi is the set
of parameters specific to task i. To the best of our
knowledge, we are the first to successfully apply
MAML to TTS with languages being the tasks.

for t steps do:

Θt = opt

(
Θt−1,∇

∑
i

L (θi,d, Bi)

)
where θi,d=0 = Θt−1 and for d steps do:

θi,d = opt (θi,d−1,∇L (θi,d−1, Bi))

(1)

for t steps do:

Θt = opt

(
Θt−1,∇

∑
i

L (Θt−1, Bi)

)
(2)

4 Experiments

In this section we will go over the experiments we
conducted. First we will evaluate the articulatory
features on their own in a single language setting
using automatic measures. Then we will evaluate
the combination of LAML and articulatory features
in a cross-lingual setting using both automatic mea-
sures and human evaluation.

In our experiments we make use of the follow-
ing datasets: The English Nancy Krebs dataset
(16h) from the Blizzard challenge 2011 (Wilhelms-
Tricarico et al., 2011; King and Karaiskos, 2011);
The German dataset of the speaker Karlsson (29h)
from the HUI-Audio-Corpus-German (Puchtler
et al., 2021); The Greek (4h), Spanish (24h),
Finnish (11h), Russian (21h), Hungarian (10h),
Dutch (14h) and French (19h) subsets of the CSS10
dataset (Park and Mulc, 2019).

4.1 Mono-Lingual Experiments
4.1.1 Embedding Function Design
To explore our first hypothesis, we investigate the
capabilities of the articulatory phoneme represen-
tations to be used in a single-speaker and single-
language TTS system. To compare different ways
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of embedding the features, we train only the embed-
ding function. As gold data we use the embeddings
from a well trained lookup-table based Tacotron 2
model. In table 1 we show the average distances
of all articulatory vectors as projected by the em-
bedding function to their identity based embedding
counterpart. The distance d between two embed-
ding vectors A and B is defined in equation 3.

d =

(∑
i

|Ai −Bi|

)
−

∑
iAi ·Bi√∑

iA
2
i ·
√∑

iB
2
i

(3)
This distance function is also used as the objec-
tive function. The embedding functions are each
trained for 3000 epochs using Adam (Kingma and
Ba, 2015) with a batchsize of 32. The first column
shows the results of the articulatory features being
fed into a linear layer that projects them into a 512
dimensional space. The second column shows the
results of the articulatory features being fed into
a linear layer that projects them into a 100 dimen-
sional space, applies the tanh activation function
and then further projects them into a 512 dimen-
sional space. As can be seen from the results, it is
beneficial to both concatenate the PanPhon features
with the Papercup features despite their overlap and
to add a nonlinearity into the embedding function
to match the embeddingspace of a well trained
Tacotron 2 model. Hence we use this setup in all
following experiments.

d Linear Non-Linear
PanPhon 0.47 0.1
Papercup 0.44 0.05
Combined 0.4 0.001

Table 1: Average distance of all embedded articulatory
vectors to their position in an embedding space learned
in a lookup-table based model.

4.1.2 Convergence Time
To investigate the impact that the articulatory fea-
tures have on their own, we train a Tacotron 2 with
and without them on the Nancy dataset and com-
pare their training time and final quality. While
the model trained on embedding tables shows a
clear diagonal alignment of text and spectrogram
frames on an unseen test sentence after 2,000 steps,
the one trained on articulatory features does so al-
ready at 500 steps. This is visualized in figure 2.
The decoder of the Tacotron 2 model can only start

to learn to decode after the alignment of inputs
to outputs is learned. So learning the alignment
earlier gives the articulatory model a clear benefit.
After training for 80,000 steps however, our own
subjective assessment finds no difference in qual-
ity between the two. The earlier convergence of
the alignment however shows a possible advantage
of using the articulatory features on low-resource
tasks, as quicker training progress means that train-
ing can be stopped earlier, before overfitting on
little data becomes too problematic.

(a) Proposed Tacotron 2 with articulatory features at
500 steps with a batchsize of 32.

(b) Baseline Tacotron 2 with embedding-lookup at 2000
steps with a batchsize of 32.

Figure 2: The first instance of diagonal encoder-decoder
attention on an unseen test sentence.

4.2 Cross-Lingual Experiments
In order to investigate the effectiveness of our pro-
posed LAML procedure, we train a Tacotron 2
model and a FastSpeech 2 model on the full Karls-
son dataset as a strong baseline. We also train
another Tacotron 2 model and another FastSpeech
2 model on speech in 8 languages with one speaker
per language (Nancy dataset and CSS10 dataset)
and fine-tune those models on a randomly chosen
30 minute subset from the Karlsson dataset. To our
surprise, we did not only match, but even outper-
form the model trained on 29 hours with the model
fine-tuned on just 30 minutes in multiple metrics.

As a second baseline we tried to train another
meta-checkpoint using the embedding lookup-table
approach to also further investigate the effective-
ness of the articulatory features. We did however
not manage to get such a model to converge to a
usable state. This already shows the superiority of
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the articulatory feature representations for such a
multilingual use-case.

Furthermore we tried to fine-tune the well
trained English single speaker models from the
first experiment on the 30 minutes of German to
have another baseline that can be used to measure
the impact of the LAML procedure. This setup
however also did not yield any usable results. Dur-
ing the fine-tuning process, the model was capable
of speaking German with a strong English accent,
yet it did not properly learn to speak in the voice of
the target speaker. By the time the model learned
to speak in the new speaker’s voice, it had overfit-
ted the 30 minutes of training data and collapsed,
producing no more intelligible speech. We con-
clude that the method proposed in this paper not
only improves on the ability to use cross-lingual
data easily, but actually enables it in the first place.
Both the articulatory features, as well as the LAML
pretraining seem necessary to achieve cross-lingual
fine-tuning on low-resource data.

The texts we use for the following experiments
are disjunct from any training data used. Human
speech as gold standard is not used, since we are
interested in the difference in performance between
the systems, not their absolute performance. The
close to state-of-the-art performance of the base-
lines is considered as given, considering their ideal
training conditions and use of proven methods. Fur-
thermore, we chose to use German as our bench-
mark language over an actual low-resource lan-
guage, since it is much easier to acquire reliable
ratings on intelligibility and naturalness for Ger-
man, than it would be for an actual low-resource
language.

4.2.1 Intelligibility
To compare intelligibility between our baseline
models and our low-resource models, we use the
word error rate (WER) of an automatic speech
recognition system (ASR) as a proxy. We syn-
thesize 100 sentences of German radio news texts
taken from the DIRNDL corpus (Eckart et al.,
2012) with each of our baselines and corresponding
low-resource systems. Table 2 shows WERs that
the German IMS-Speech ASR (Denisov and Vu,
2019) achieves on the synthesized data. For both
Tacotron 2 and the FastSpeech 2 based system, the
WER of the low-resource model is slightly lower
than that of the baseline, thus the low-resource
models performed slightly better.

Looking into the cases where the low-resource

WER Baseline Low-Resource
Tacotron 2 13.1% 12.7%
FastSpeech 2 9.9% 9.7%

Table 2: WER of the synthesis systems on 100 radio
news texts measured using the IMS-Speech ASR.

system outperformed the baseline, we find code-
switched segments, where the texts contain names
of Russian cities. Since the pretraining data of
the low-resource model includes Russian speech, it
seems to have not forgotten entirely about what it
has seen in the pretraining phase, which in our
interpretation confirms the effectiveness of the
LAML against the catastrophic-forgetting problem
(French, 1999) of regular pretraining.

4.2.2 Naturalness
In order to assess the naturalness of the fine-tuned
models, we conduct a preference study with 34
native speakers of German. Each participant is
shown 12 phonetically balanced samples produced
by the Tacotron 2 and FastSpeech 2 models. For
every sentence, there is one sample produced by
the baseline and one by the low-resource model.
The participants are then asked to indicate their
subjective overall preference between the two sam-
ples. The results for Tacotron 2 are shown in figure
3 (a). The low-resource system was the preferred
system in more than half of the cases, with an equal
rating taking up more than another third, showing
a clear preference for the low-resource model over
the baseline. The results for FastSpeech 2, as seen
in figure 3 (b), are a lot more balanced. While
the baseline is preferred more often than the low-
resource variant, it is not the case in the majority
of the ratings. In 56% of the cases, the model fine-
tuned on 30 minutes of data was perceived to be as
good or better than the model trained on 29 hours.

Computational Resources All models were
trained on a single NVIDIA A6000 GPU. Training
the Tacotron Baseline took 2 days. Training time of
the FastSpeech Baseline was 1 day. Training time
of the meta-checkpoint was 4 days, finetuning to a
new model from the meta-checkpoint however only
takes 2 hours. The HiFi-GAN vocoder used to gen-
erate all samples took 4 days to train and was not
fine-tuned on the unseen data. We did not perform
hyperparameter searches and used the suggested
default settings for all methods, which worked suf-
ficiently well, but could surely be improved.
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(a) Preference ratings for 102
Tacotron 2 samples.

(b) Preference ratings for 102 Fast-
Speech 2 samples.

Figure 3: Results of the preference study comparing a
low-resource model to a high-resource baseline.

5 Further Analysis and Future Work

What is the ideal amount of training steps for
fine-tuning? To investigate the amount of update
steps needed to fully adapt to the new speaker with
the added difficulty of learning a new language,
we show the cosine similarity of a speaker embed-
ding of the fine-tuned model to that of the ground
truth throughout the fine-tuning process in figure
4. The speaker embedding is built according to the
ECAPA-TDNN architecture (Desplanques et al.,
2020) and provided open source by SpeechBrain
(Ravanelli et al., 2021). It is trained on VoxCeleb
1 and 2 (Nagrani et al., 2017, 2019; Chung et al.,
2018) which to the best of our knowledge does not
overlap with any of the other training and evalua-
tion data we used. We tried to decrease adaptation
time further by incorporating said speaker embed-
ding similarity as an additional objective function,
similar to Nachmani et al. (2018), we did however
see only marginal improvements in the amount of
steps needed at the expense of greatly increased
training time.

Can this setup handle zero-shot phonemes?
We show the model’s zero shot capabilities in figure

0 2000 4000 6000 8000
Update Steps

0.988

0.990

0.992

0.994

0.996

0.998

1.000

Tacotron2
FastSpeech2

Figure 4: Cosine similarity of speaker embeddings to
target speaker over time.

5. We removed Dutch and Finnish from the train-
ing data of the meta-checkpoint and trained another
version of it, to be able to see how it handles all of
the now completely unseen phonemes specific to
German. While their correct position in plot (a) can
be considered given, since it shows the articulatory
featurespace, their meaningful positions in plot (b)
and (c) show that the meta-checkpoint does not just
collapse the vector of the unseen phoneme to the
one it is most similar to, but actually generalizes.
While their pronunciation when produced does not
match the correct pronunciation perfectly, it can
be understood in the context of a longer sequence.
This is congruent with the results of Staib et al.
(2020). During the adaptation phase, the pronunci-
ation of the unseen phonemes rapidly matches the
correct pronunciation after less than 100 steps.

Does this setup learn the difference between lan-
guage and speaker? When analyzing the fine-
tuned meta-checkpoint, we observed that it seems
to link the language of the input to the voice of the
speaker. For example when synthesizing an unseen
Hungarian text using Tacotron 2, the voice of the
synthesis resembles that of the Hungarian female
speaker, even though the model has been fine-tuned
on the male German speaker and there are no ad-
ditional conditioning signals. We hypothesize that
the LAML procedure induces certain subsets of pa-
rameters in the model to be speaker dependent and
the encoder of the model priming those parameters
purely based on the phoneme sequence. This leads
us to believe, that the fine-tuning of all parameters
in the model may neither be necessary, nor even
the best way of adapting to new data. This also
fits the observations of the speaker embedding over
time, since the Tacotron model adapts to the new
speaker very rapidly. Further investigations into
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(a) 66 dimensional Featurespace (24
PanPhon and 42 Papercup features)
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(b) 512 dimensional embeddingspace
learned during Tacotron 2 training
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(c) 384 dimensional embeddingspace
learned during FastSpeech 2 training

Figure 5: t-SNE visualizations of phoneme representations, illustrating zero-shot capabilities. Special characters are
grey, consonants are blue, vowels are green, unseen consonants are red and unseen vowels are orange.

the interactions between parameter groups could
allow cutting down the amount of parameters that
need to be trained significantly, further reducing
the need for training data.

How can we bring down FastSpeech 2’s data
need further? A similar observation regarding
language and speaker can be made with FastSpeech
2, however as could be seen from the experiment on
naturalness and the training time, the FastSpeech
2 model can benefit more from additional data and
training time. This may come down to its nearly
twice as high parameter count. So a more effec-
tive fine-tuning strategy, that considers some pa-
rameters as constants, could benefit the fine-tuning
capabilities of the FastSpeech 2 model greatly.

Does this work across language families? One
limitation to our findings is that we investigated
only the transfer of languages that share similar
phoneme inventories. It is possible that fine-tuning
to a language that uses e.g. the lexical tone rather
than pitch accents or word accents would require
pretraining in more closely related high-resource
languages, such as Chinese. However, as Vu and
Schultz (2013) find in their analysis of multilin-
gual ASR, the fast adaptation of an acoustic model
trained on multiple languages to unseen languages
works well, even across different language families.
We thus believe that the technique and analysis
presented in this paper also holds across language
families and types.

6 Conclusion

In this paper, we show an approach for training a
model in a language for which only 30 minutes

of data are available by making use of articulatory
features and language agnostic meta learning. The
main takeaways from our work are as follows:

Articulatory Features for TTS Using articula-
tory features as the input representation to a TTS
system enables the use of multilingual data with-
out the need for increased architectural complex-
ity, such as language specific projection spaces.
It is furthermore beneficial to use even in single-
language scenarios, since the knowledge sharing
between phonemes makes the TTS system con-
verge much earlier to an usable state during train-
ing.

MAML on TTS Applying MAML to TTS does
not work well. If we however remove the inner
loop, we are able to pretrain a low-resource capable
checkpoint for TTS. This modification not only
makes it work, it also simplifies the formulation.

Zero-shot capabilities The use of articulatory
features enables zero-shot inference on unseen
phonemes. This is further enhanced by the LAML
training procedure. The implications of this are
particularly interesting for codeswitching, as Staib
et al. (2020); Wells et al. (2021) have pointed out
previously. Using these two techniques in con-
junction could be used to reduce the problem of
codeswitching to a problem of token-wise language
identification.
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