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Abstract

Visual storytelling (VIST) is a typical vision
and language task that has seen extensive de-
velopment in the natural language generation
research domain. However, it remains unclear
whether conventional automatic evaluation met-
rics for text generation are applicable on VIST.
In this paper, we present the VHED (VIST
Human Evaluation Data) dataset, which first
re-purposes human evaluation results for au-
tomatic evaluation; hence we develop Vrank
(VIST ranker), a novel reference-free VIST
metric for story evaluation.1 We first show that
the results from commonly adopted automatic
metrics for text generation have little correla-
tion with those obtained from human evalua-
tion, which motivates us to directly utilize hu-
man evaluation results to learn the automatic
evaluation model. In the experiments, we evalu-
ate the generated texts to predict story ranks us-
ing our model as well as other reference-based
and reference-free metrics. Results show that
Vrank prediction is significantly more aligned
to human evaluation than other metrics with al-
most 30% higher accuracy when ranking story
pairs. Moreover, we demonstrate that only
Vrank shows human-like behavior in its strong
ability to find better stories when the quality
gap between two stories is high. Finally, we
show the superiority of Vrank by its general-
izability to pure textual stories, and conclude
that this reuse of human evaluation results puts
Vrank in a strong position for continued future
advances.

1 Introduction

In visual storytelling (VIST) (Huang et al., 2016), a
generation model tells a short story to describe the
given five images. Automatic generation of visual
stories is challenging because it has the complex-
ity of cross-modal understanding with the diversity

∗* denotes equal contribution
1Dataset VHED and metric Vrank can be found on GitHub:

https://github.com/AcademiaSinicaNLPLab/
VHED.git

the city was very busy. there were many different kinds of bikes.
some were very unique. they were all very fast. i had a great time.

i went to the park station. it was a train trip to the museum. the train
was very long. we had to go on our way out of the trains. this dog
is so happy to see us.

Reference: i decided my dog would like a train ride. off to the
train station we go. this is the train we will be taking our short trip
on. my friend is the conductor. he is getting ready to attach the
cars. here is the train all together. as you can see, my dog had a
fantastic time.

Model 1 (BLEU-1: 0.605, Human Rankers:         )

Model 2 (BLEU-1: 0.354, Human Rankers:                            )

Figure 1: Ranking of two stories generated by Model 1
and 2, by human rankers versus BLEU-1 score. BLEU-1
mispredicts due to unreasonable matches, correlating
poorly with human ranking judgment.

and sophistication of creative writing (Zhu et al.,
2020). Extensive efforts in model developments
have decreased the distance between machine-
generated and human-written stories, but research
on VIST evaluation remains stagnant.

Automatic metrics and human evaluation are
widely used to examine natural language gen-
eration. Traditional n-gram-based or reference-
based autometrics such as BLEU (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015), and ME-
TEOR (Banerjee and Lavie, 2005) are com-
mon for VIST evaluation. However, prelimi-
nary findings have shown that these metrics have
many drawbacks and hence are incompatible with
VIST (Wang et al., 2018b). In particular, they as-
sume that human-written stories are always better
than machine-generated stories, limiting the ad-
vance of models yet not conforming to our ob-
servation on human judgment. Rethinking this
postulation in evaluation, we believe the depen-
dence on references should be minimized and hu-
man evaluation results should be fully utilized in-
stead, because human judgements contain more
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meaningful signals. Recent hybrid and reference-
free metrics such as BLEURT (Sellam et al., 2020)
and UNION (Guan and Huang, 2020) have not yet
been implemented or studied in VIST. Neverthe-
less, BLEURT utilizes few human results in fine-
tuning, and UNION still regards human references
as gold labels, which results in poor correlation
to human judgment. On the other hand, human
evaluations are relatively reliable for performance
reports, and recent studies often include them to
provide more convincing experimental results (Hsu
et al., 2020, 2021a,b). However, human evaluations
are expensive, time-consuming, and difficult to re-
produce. Therefore, results should be recycled to
benefit future evaluations.

Accordingly, we re-collected the human evalu-
ation results from multiple published papers and
organized the data into story pairs (Wei and Jia,
2021) as the VHED (VIST Human Evaluation
Data) dataset. We then re-purposed VHED to cre-
ate a better metric Vrank for VIST to rank visual
stories. Vrank is a reference-free SIMCSE (Gao
et al., 2021) based metric trained on VHED to learn
to rank visual stories. We believe a storytelling met-
ric should be independent of the references because
stories are highly diverse by nature (Zhu et al.,
2020), and it is reasonable for them to be dissimi-
lar to the references (Guan and Huang, 2020) As
shown in Fig. 1, the story generated by Model 1 is
assigned a higher BLEU score because larger por-
tions of text overlap with the reference. However,
human rankers recognize description in isolation
and object detection error in Model 1, and instead
rank Model 2 better. We conduct experiments to
show that Vrank is superior to existing metrics,
many of which lack properties essential to evaluat-
ing stories in a human-like fashion.

Therefore, we utilize VHED to understand and
analyze human judgment in evaluating visual sto-
ries, and to provide additional metric assessments
to reveal the shortcomings of existing metrics. The
metric assessment experiments are conducted as
the story-pair ranking task in which two stories are
ranked based on their story quality. We observe
three characteristics and design corresponding as-
sessments to demonstrate Vrank’s merits. First,
larger rank differences in story quality are eas-
ier for people to differentiate. We measure the
performance of metrics in story pairs with large
gaps versus small gaps to determine whether all
metrics have this property. Our assessment indi-

cates this property is exclusively hold by Vrank.
Second, human-written stories are not always bet-
ter than machine-written stories. Indeed, 38% of
machine-generated stories are better than the ref-
erences, which suggests that the afore-mentioned
assumption may need to be revisited (Clark et al.,
2021). We examine the ability of metrics to rank
such human-machine pairs, which Vrank performs
relatively well. Finally, most generated stories still
contain many errors, which serve as signals for
human rankers (Modi and Parde, 2019). Hence
we evaluate the ability of metrics to detect errors
and show that Vrank is a better indicator of errors.
Also, we show that Vrank is able to generalize
to other datasets without bias to VHED. In con-
clusion, Vrank excels in the above assessments
and able to follow human behaviors in ranking.
Moreover, Vrank can rank machine and human sto-
ries decently and is better at detecting story errors.
Specifically, we make three major contributions:

• We re-collect and organize human evaluation
results from recent VIST papers to form a new
dataset: VHED.

• We propose a novel valid metric Vrank for
visual storytelling which appropriately evalu-
ates VIST model performance.

• We propose three assessments for metrics ac-
cording to human properties and a generaliza-
tion test to better illustrate the shortcomings
of existing VIST metrics.

2 Related Work

Visual Storytelling (VIST) Visual storytelling
was introduced by Huang et al. (2016) as the task
of generating a coherent story given five images.
They provided a dataset, Sequential Images Narra-
tive Dataset (SIND), containing images and refer-
ences in which references are human-written short
stories describing images. For every image prompt
(one sequence of photos), there are 2 to 5 refer-
ences. VIST requires deeper understanding of the
photo events to prevent descriptions in isolation
(i.e., image captions). Researchers have proposed
various methods for this task. Knowledge graphs
are often integrated in models to encourage diver-
sity of terms and plots in the stories (Hsu et al.,
2020, 2021a; Chen et al., 2021). Some studies use
reinforcement learning to reward models that gen-
erate stories that contain fewer errors and are more
topically-focused (Huang et al., 2019; Hu et al.,
2020a). However, existing evaluation methods are
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unable to capture the true quality of the generated
stories. Thus we examine automatic metrics to de-
vise a better way for machines to evaluate stories.

VIST-Human Evaluation Several VIST gener-
ation models use human evaluation to evaluate
model performance. Recent studies apply aspect-
based rating evaluation. Hu et al. (2020b) and
Wang et al. (2020b) ask workers to rate stories
based on pre-defined aspects.2 However, it is dif-
ficult to normalize these aspects as the definition
of aspect varies from paper to paper. Also, these
aspects are not mutually independent, making it
difficult to analyze results based on these ratings.
Therefore, we consider the ranking method as it
is commonly used (Hsu et al., 2020; Wang et al.,
2020b; Hsu et al., 2021a) among authors. Hsu et al.
(2020) asks human annotators to rank five stories
from different models based on overall quality. Hu
et al. (2020b) and Wang et al. (2020b) conduct pair-
wise human evaluations to rank stories according
to different story aspects, where the latter is judged
to be closer to human-level. These human evalu-
ation results are valuable resources for observing
human judgments in visual storytelling. Hence, in
our work we collect this information for analysis
and model training.

Automatic Metrics Automatic evaluation met-
rics are widely used in language generation tasks.
Most reference-based metrics (e.g., BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), and ROUGE (Lin, 2004)) evaluate the n-
gram similarity between a generated text and the
reference. However, referenced metrics correlate
poorly with human judgment (Wang et al., 2018b;
Hsu et al., 2019; Modi and Parde, 2019) in di-
alog generation and story generation tasks: the
generated text is given unreasonable scores due
to incongruity with the reference. To account for
this, several reference-free metrics (Sinha et al.,
2020; Guan and Huang, 2020) have been designed
to measure generated texts without any reference.
BERT-Score (Zhang et al., 2020), for instance,
uses contextual embedding to calculate the sim-
ilarity between candidates and references, and
BLEURT (Sellam et al., 2020) uses referenced
automatic metrics as supervision signals for pre-
training and is fine-tuned on a human judgment
evaluation dataset. UNION (Guan and Huang,

2Hu et al. define relevance, coherence, and expressive-
ness, and Wang et al. define focus, coherence, detail, share,
grounded, and human.
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Figure 2: Workflow for creation of VHED dataset

2020) uses pre-defined negative samples to train a
model in an attempt to provide a metric that spe-
cializes in story generation. In our analysis, current
metrics remain unable to mimic human judgment
to discern quality differences in story pairs.

3 VHED

3.1 Dataset Description

The VHED dataset is a collection of human eval-
uation results from three VIST studies: KG-
Story (Hsu et al., 2020), PR-VIST (Hsu et al.,
2021a), and Stretch-VST (Hsu et al., 2021b). All
papers followed Hsu et al. (2020)’s human evalua-
tion method using Amazon Mechanical Turk. For
each task, the workers were to rank the story by
overall quality, from the best story to the worst
story. Specifically, each task displayed N stories,
and each worker ranked each story from 1 to N .
Details about each paper are listed in Table 1.

The construction of VHED is shown in Figure 2.
Collected from the aforementioned papers, we ob-
tained 4,500 task results. Further, we grouped N
stories into story pairs, where the number of story
pairs per task is CN

2 . The resulting story pairs
(x1, x2) are either two machine-generated stories
from two different models or one reference and one
machine-generated story. For each story pair, there
are five attributes:

• Stories: A story pair consists of a better-ranked
story and worse-ranked story. The story pair
is either a reference with a machine-generated
story, or two machine-generated stories.

• Image Sequence IDs: A list of IDs for each of
the five images from the SIND dataset (Huang
et al., 2016).

• Average Rank: The average of the five work-
ers’ story rankings is divided by N for normal-
ization. N varies from paper to paper (Table 1).

• Ranking Gap: The ranking gap is calculated
as the average ranking of x1 minus the average
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Paper Human
Evaluation Sampling Tasks N

KGStory 2 500 1,000 5
PRVIST 6 250–500 1,000 3–4
Stretch-VST 7 250–500 2,500 2–4

Table 1: Statistics of human evaluation results of
KGStory (Hsu et al., 2020), PRVIST (Hsu et al., 2021a),
and Stretch-VST (Hsu et al., 2021b)

ranking of x2. The ranking gap distribution is
shown in the appendix (Table 6).

• Human Agreement: Human agreement is
when k workers agree that the better-ranked
stories are better than the worse-ranked stories.
Note that human agreement = 2 is equivalent to
human agreement = 3, because 1 person agree-
ing that story A is better than B is equivalent to
4 people agreeing that story B is better than A.
Therefore, we kept human agreements = 3,4,5
for simple notation.

For quality control, we remove story pairs with
zero ranking gap. This yields 13,875 story pairs
in total. The train-test-validation sets were split at
a ratio of 8:1:1 to 11,208, 1,351, and 1,316 story
pairs. The descriptions of VIST models’ generated
stories are included in the appendix.

3.2 Data Analysis and Findings
As we acquired data about human preferences in
story pairs, we conducted analyses to understand
the potential patterns for workers when assign-
ing story ranks, the quality gap between machine-
generated and human-written stories, and the errors
in the stories. The results of this observation are
crucial for assessing the performance of a metric.

Worker Ranking Analysis Story pairs are
grouped by the same human agreement. Ωk de-
notes a sub-dataset containing story pairs with hu-
man agreement = k. In Table 2, we calculate the
number of story pairs as well as the averaged rank-
ing gap of each sub-dataset. For story pairs, we
note that story pairs with k = 3 account for 53%
of the dataset, meaning that half of the tasks have
inconsistent annotations. Regardless, this paper
evaluates the story pairs with k ≥ 4 to filter out
inconsistent human annotations. We also note that
the ranking gap increases as human agreement
increases. The ranking gap indicates the quality
difference between a better-ranked and a worse-
ranked story. That is, the difference between a
ranked 1 story and a ranked 5 story should be larger

Subset Story pairs Ranking gap Machine better
Ω3 6,494 (53%) 0.123 918 (45%)
Ω4 3,677 (30%) 0.247 523 (35%)
Ω5 2,110 (17%) 0.416 110 (22%)

Table 2: The number and percentage of story pairs,
average ranking gap of each sub-dataset. Machine better
is the number and percentage of machine stories better
than references in story pairs containing only a reference
and a machine-generated story.

than that between a ranked 2 story and a ranked
3 story. From Table 2, we find that story-pairs
with lower agreement are closer in ranking. In
other words, a story pair with a marginal quality
difference easily leads to inconsistent worker an-
notations, because it is harder to rank two similar
stories. Essentially, we expect the metrics to ex-
hibit similar behavior: the larger the ranking gap,
the easier it is to rank.

Who Wins? Machine vs. Human Stories Next
we revisit the assertion that references are always
superior. We select story pairs with a reference and
a machine-generated story. We analyze the number
and percentage of references that are ranked better
than the generated stories on three human agree-
ments. From Table 2, we observe that when more
humans agree on the ranking results, the percentage
of the reference being better also increases. In addi-
tion, further analysis shows that, on average, 38%
of the machine-generated stories are in fact better
than the references, showing that references are not
always better than machine-generated stories.

Error Analysis To understand the difference be-
tween better- and worse-ranked stories, deeper anal-
ysis into the story content is necessary. We ran-
domly sampled 200 stories from VHED (67 human
and 134 machine generated) and manually labeled
the stories according to the following error aspects:

• Grammatical error (Gram): Erroneous usage
of past/current tense and mistakes in misplaced
modifiers.

• Repetition (Rep): Repetitive sentences or
phrases at sentence- and story-level.

• Description in isolation (Desc): Sentences that
lack consistency, resulting in isolated captions
instead of a fluent story.

• Absurdity (Abs): Ambiguous sentences or non-
sensical phrases that are incomprehensible to
humans.
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Type Gram Rep Desc Abs Event Obj
Percentage (%) 18.6 14.1 30.6 35.1 31.3 18.6

Table 3: Error percentage of the sampled stories.

• Event mismatch (Event): Stories that are off-
topic, which present events that are not relevant
to the image stream.

• Object mismatch (Obj): Irrelevant nouns that
do not appear in the images and are not seman-
tically related.

We first labeled stories based on all 11 error as-
pects defined in (Modi and Parde, 2019) and we se-
lect the most occurring errors, which are grammar,
repetition, description in isolation, and absurdity.
These four error aspects focus primarily on story
coherence and within-story consistency. However,
visual storytelling requires generated stories to fit
the given story images. Rohrbach et al. (2019)
show that humans are aware of the correctness of
image descriptions. Also, Wang et al. (2020a) show
that mismatched events in stories can lead to poor
story quality. Therefore, we added event and object
mismatch into our analysis. The error examples
and correlation between the error are illustrated in
the appendix (Table 9 and Figure 5).

From our observation, 79.8% of the sampled ma-
chine generated stories contained at least one of
the errors in the categories, meaning most VIST
models are unable to generate perfect stories. In
Table 3, the high percentage of object and event
mismatch errors also show that current VIST mod-
els do not capture visual groundings accurately.
This can lead to humans assigning higher scores
to human-written stories since they are most likely
to be relevant to the given images. Grammatical
errors and absurdities are also common in gener-
ated text, which can lead to ambiguous stories that
humans are unable to comprehend. The prevalence
of errors makes it essential for evaluation metrics
to automatically detect these errors.

4 Vrank

We propose Vrank, a reference-free automatic met-
ric that inputs story pairs to predict human pref-
erences between the two stories. We utilize SIM-
CSE (Gao et al., 2021) to leverage better sentence
representations. SIMCSE uses contrastive learn-
ing with dropout as augmentation, then trained on
natural langauge inference datasets to obtain better
sentence embeddings from BERT (Devlin et al.,

2019). First, we pre-trained the SIMCSE model
using SIND reference stories with the Masked Lan-
guage Model objective. Then, we input two sto-
ries with a [SEP] token in between through the
pre-trained model. We use the acquired sentence
embeddings and feed it through a regression layer
to predict a ranking gap. We used mean squared
error to calculate the loss between the predicted
ranking gap and true ranking gap. After obtaining
the ranking gap, we predict which story is better
according to the sign of the predicted ranking gap.
Although Vrank is a simple model fine-tuned solely
on human judgment, it still outperforms current ex-
isting metrics in our assessments. This suggests
further potential for use with VHED; more studies
can be conducted to replace Vrank with stronger
neural network models.

During model training, since the number of pos-
itives and negatives were not balanced in the orig-
inal dataset, we augmented the data to create a
symmetric dataset of VHED to minimize dataset
bias.3 The ranking gap in the resulting dataset was
close to normally distributed. We hypothesize that
utilizing this feature makes it possible to extract
more information, making it easier for the model
to learn human judgment. However, due to the
small amount of data available, high variance is
likely (Mosbach et al., 2020) to occur during infer-
ence. Hence, we used all data from VHED, includ-
ing human agreement=3 to increase the stability
of our model following Mosbach et al. (2020).

5 Metric Assessment

In this section, we describe a series of assessments
conducted on existing metrics on VHED, in which
the assessment methods are based on the analyses
in VHED. The objective is to examine whether
Vrank is superior to other metrics based on our
analysis of VHED.

5.1 Experimental Settings

Story-Pair Ranking A recent study (Wei and
Jia, 2021) illustrates that pairwise accuracy reflects
metric performance better than using correlation
with human evaluation. Hence, we propose simple
story-pair ranking to evaluate automatic evaluation
metrics for visual storytelling. The task is to de-
termine the correct ranking order of the stories in

3Other configurations, including utilizing visual features
and changing the task objective to classifying better- and
worse-ranked stories did not perform better.
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Dataset VHED VIST-Edit VHED
Subset Ω4 Ω5 Ω{4,5} AREL-edit GLAC-edit R&M M&M
Metrics Reference-based metric Reference-based metric
Random .516 .495 .511 .503 .481 .481 .528
BLEU-1 .470 .413 .459 .482 .405 .346 .529
BLEU-4 .205 .134 .192 .146 .103 .346 .097
SacreBLEU .531 .557 .536 .424 .456 .528 .541
METEOR .493 .432 .481 .437 .501 .461 .494
ROUGE-L .506 .480 .501 .375 .389 .519 .491
BERT-Score .527 .548 .531 .567 .450 .533 .529

Reference-free/hybrid metric Reference-free/hybrid metric
BLEURT .497 .451 .489 .546 .532 .509 .476
UNION-ROC .488 .521 .496 .727 .475 .445 .525
UNION-WP .449 .504 .461 .740 .612 .507 .435
Vrank .786 .826 .796 .696 .626 .816 .789

Table 4: (Left) Average ranking accuracy for each metric on VIST-Eval and VIST-Edit. (Right) Evaluation results
for reference-and-machine (R&M) story pairs and machine-and-machine (M&M) story pairs from Ω{4,5}. The
Random baseline indicates that metrics that perform around 50% correspond to random guesses. Vrank’s standard
deviation for accuracy is calculated by training over 10 different seeds and taking the average.

a story pair based on the story quality scores pre-
dicted by the automatic evaluation metrics being as-
sessed. Given the story pair (x1, x2), the automatic
metric being assessed predicts the corresponding
story quality scores (s1, s2) which we compare to
the averaged ranks y1 and y2 of x1 and x1 from hu-
man evaluation. The performance of the evaluation
metric on the i-th story pair is formulated as

ranking_acci =


1, if s1 > s2 and y1 < y2

1, if s1 < s2 and y1 > y2

0, otherwise,
(1)

where ranking_acci = 1 indicates correct (incor-
rect) prediction. Note that low scores indicate high
rank. The overall metric performance over M story
pairs is defined as:

avg_ranking_acc =
1

M

M∑
i=1

ranking_acci.

(2)

Datasets In addition to VHED, we also collected
VIST-Edit4 (Hsu et al., 2019) for story-pair ranking.
VIST-Edit includes 2,981 visual stories generated
by AREL (Wang et al., 2018a) and GLAC (Kim
et al., 2018), and 14,905 human-edited visual sto-
ries, that is, AREL and GLAC-generated stories
edited by workers. Their paper shows that the
crowd workers’ edits systematically increased the
lexical diversity of the stories. Since the pur-
pose of the editing was to improve the machine-

4VIST-Edit: https://github.com/tingyaohsu/
VIST-Edit

generated stories, we paired up human-edited sto-
ries and machine-generated stories as better-ranked
and worse-ranked samples (labeled as 1 and 2), re-
sulting in 14,905 story pairs. Comparing VHED to
VIST-Edit, VHED contains reference and multiple
models’ generated stories, but VIST-Edit has only
human-machine story pairs. Additionally, VIST-
Edit is not in Vrank’s training data. VIST-Edit is
utilized only for metric performance reports, serv-
ing as an unseen dataset for Vrank.

Baseline Automatic Metrics We first consider
traditional n-gram-based reference-based met-
rics, BLEU, ROUGE-L, METEOR, and Sacre-
BLEU (Keenan, 2017). We also implement the
more recent BERT-Score, BLEURT, and UNION
as baseline metrics. In addition to the above auto-
matic metrics, we also include a random baseline,
denoted as Random in Table 4, to provide a random
score for each story as the lower bound.

A common practice for reference-based metrics:
a candidate story is scored against each reference
rj in a gold reference set R = {ri}ni=1; the highest
score was used. However, applying this method
on a reference-machine story pair would always
result in reference having a full score, because of
the exact match between reference and the gold
reference set. To ensure a fair evaluation and avoid
meaningless matching, we first check that the gold
references do not include the reference. To this
end, we propose the Reference Absent Algorithm
for evaluating story pairs containing the reference
story (or stories) as in Eq. 3, which removes the rj
from R when any of the candidate stories in a story
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pair (x = {x1, x2}) is identical to rj .

sj = max(metric(xj , R− x)), j = {1, 2}, (3)

where metric(·) can be any reference-based metric
and sj is the story quality scores for the j-th story
in a story pair. This algorithm only applies when
evaluating story pairs containing references, i.e.,
reference-machine pairs in this paper.

5.2 Results and Discussion
Pairwise Story Evaluation Accuracy: Metric’s
ability to determine the correct ranking order
in story pairs. The average ranking accuracy of
each automatic metric on VHED and VIST-Edit
are presented in Table 4 (left). Around 50% corre-
sponds to random guessing, as shown as Random
in the table. Vrank shows superior performance
in VHED and VIST-Edit, which VIST-Edit is the
unknown dataset to Vrank. High performance on
VIST-Edit and VHED indicates Vrank has the abil-
ity to distinguish diverse story pairs. In contrast,
we observe unexpectedly low performance for most
baseline metrics, as they perform no better than the
Random baseline. BLEU-4 especially struggles
to rank the stories in both datasets. Further anal-
ysis suggests that BLEU-4 marked ∼80% of the
stories as 0, and Equation 1 coincidentally treated
them as incorrect prediction because it discourages
ties. BLEURT, in turn, also performed poorly be-
cause it relies on reference-based metrics as sig-
nals for training. Reference-free metrics, especially
UNION, perform well on VIST-Edit. However, its
design is not generalizeable to VHED.

Worker Ranking Behavior on Metrics: The
larger the ranking gap, the easier is it to rank.
The ranking gap is the difference between a better-
ranked and worse-ranked sample’s average ranks.
VHED is categorized into four sub-datasets with
different ranking gaps. This assessment tests each
metrics’ ability to mimic worker ranking behavior
observed in the analysis. Story pairs with larger
gaps suggest stronger linguistic differences and are
likely easier to rank, whereas those with smaller
gaps are likely more difficult. In Fig. 3, all baseline
automatic metrics, including metrics not reported
in the figure, show randomly distributed scores,
most of which remain around 50%, thus failing
to exhibit such behavior. On the contrary, Vrank
yields an ideal decrease. Starting with ranking gaps
over 0.3, the accuracy reaches ∼0.85 and a grad-
ual decrease afterward. We believe such behavior
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Figure 3: Average ranking accuracy for each metric on
four sub-datasets with different ranking gaps r. Based
on our analyses, metrics should perform better when the
ranking gap is larger, and gradually decrease when the
gap is smaller.

reveals Vrank to be a more preferable metric for
visual story evaluation.

Machine and Human on Metrics: Machines are
sometimes better than humans. Two aspects
are studied in this section. First, we evaluate the
ability of Vrank and reference-based metrics to
rank reference-machine (R&M) pairs. Although
some machine texts have progressed to human-
level, to our knowledge, there has been little inves-
tigation of metrics’ ability to evaluate references
and machines. We apply reference-based metrics
with Eq. 3. This results in poor performance for
reference-based metrics as shown in R&M in Ta-
ble 45. An explanation is that since the reference is
removed from the reference set by Eq. 3, the refer-
ence needs to match with the remaining references
in the reference set. Although most references are
on topic, the stories are highly diverse (Zhu et al.,
2020). These metrics are unable to calculate the
similarity to semantic levels; thus, they result in
poor performance. On the contrary, Vrank is a deep
learning model, trained on VHED and thus learned
to rate based on story quality rather than similarity.
We also find that Vrank ranks correctly when ma-
chine is better than reference, showing that Vrank
yields 26.5% recall when the other metrics have 0
recall without Eq. 3 and ∼18% with Eq. 3.

Second, we observe the performance of metrics
on M&M (machine-machine pairs). M&M ranking
gaps are smaller than those of R&M pairs (0.18
v.s. 0.21), making them harder to rank because
their story qualities are closer. However, Vrank
still shows promising performance when ranking

5A complete table without Eq. 3 can be found in the ap-
pendix (Table 7)
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Error Types Human Vrank UNION-ROC UNION-WP BLEURT BERT-Score ROUGE-L METEOR
Gram -0.107 -0.021 -0.099 -0.087 -0.228 -0.124 0.024 -0.167
Desc -0.212 -0.154 -0.149 0.154 -0.081 0.080 0.114 -0.018
Rep -0.130 -0.042 -0.120 -0.411 0.168 0.134 0.079 -0.034
Abs -0.309 -0.308 0.003 0.120 -0.113 0.105 0.092 -0.025
Obj -0.067 -0.157 -0.089 0.158 -0.302 -0.111 -0.048 -0.098

Event -0.191 -0.093 0.008 -0.001 -0.131 0.043 0.138 -0.099

Table 5: This table shows the correlation of human rankings, automatic metric scores with the corresponding error
categories. An ideal correlation should be closer to Human. Negative correlation illustrates that higher rankings
(average ranking closer to 1) co-occur with few errors in the story. Hence, an high error detection rate is a correlation
coefficient closer to -1.

such story pairs, outperforming existing metrics.

Errors in Metrics: Metric’s ability to detect
errors. Current generated stories often contain
errors which prompt human evaluators to assign
lower scores. It is crucial for automatic metrics to
also recognize such errors to judge generated text.
To do this, we adapted the point-biserial correla-
tion coefficient to analyze the correlation between
binary annotated errors and metric scores.

The correlation between metrics and errors is
presented in Table 5: existing metrics are not able
to detect errors as the correlation coefficients are
low. From the correlation coefficients between the
human ranking score and each error aspect, we
observe that human evaluation for stories may be
influenced by error aspects, especially absurdity
and description in isolation. In general, Vrank per-
forms best in detecting absurdity and description
in isolation. UNION-WP performs best in corre-
lation with repetition, which is reasonable since
UNION is trained to discriminate erroneous stories
that are repetitive in structure. In summary, current
metrics remain unable to detect errors to evaluate
coherency efficiently. Metrics ability to detect er-
rors may give clearer indications of the quality of
generated texts.

6 Dataset Generalization

In addition to VIST, we expect Vrank to reasonably
evaluate the quality of text as well. To determine
whether Vrank generalizes to textual stories, we se-
lected MANS dataset (Guan et al., 2021), an image-
free storytelling dataset in which the stories are de-
rived from the ROCStories corpus (Mostafazadeh
et al., 2016). MANS includes 200 story prompts,
where each prompt includes five model-generated
stories and a reference. However, it does not con-
tain human story rankings. Thus, for each story
prompt, we asked five workers from Amazon Me-

chanical Turk to rank the five stories to obtain rank-
ing scores.

Reference-based metric
Subset Ω4 Ω5 Ω{4,5}

BLEU-1 .486 .530 .494
BLEU-4 .007 .030 .001
SacreBLEU .537 .545 .539
METEOR .489 .576 .505
ROUGE-L .506 .508 .506
BERT-Score .509 .530 .513

Reference-free/Hybrid metric
BLEURT .531 .538 .532
UNION-ROC .493 .553 .503
UNION-WP .444 .500 .455
Vrank .575 .644 .588

Table 6: Average accuracy for generalizing to MANS.

Following the VHED construction procedure,
the ranked stories were converted into story pairs,
making for 1,112 story pairs for which 3 workers
agreed on the ranking, 605 story pairs for which
4 workers agreed, and 132 story pairs for which 5
workers agreed. Likewise, we evaluate story pairs
with k ≥ 4.

The results of Vrank and the baseline automatic
metrics when ranking MANS are shown in Table 6.
We find that Vrank outperforms baseline metrics
in story pairs with k ≥ 4, whereas the latter still
show limited abilities to rank the MANS dataset.
In general, the accuracy of automatic evaluation on
MANS is lower than that on VHED. This may be
due to the comparably unconstrained writing styles
of pure textual stories. An example of the evalua-
tion on stories is given in the appendix (Table 8).

7 Conclusion and Discussion

We present VHED and Vrank, the first dataset of
human evaluation results and evaluation metric
for VIST. We show that Vrank performs signif-
icantly better in three assessment tasks and gen-
eralizes to other datasets. Also, recent automatic
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metrics are ill-suited to evaluating visual stories, es-
pecially human-level written stories. We welcome
researchers to share their human evaluation results
to the community to broaden the data domain to ob-
tain more knowledge about human judgment and
improve the performance of Vrank. As the gap
between machines and humans continues to de-
crease, stronger metrics will be needed to evaluate
machine and human stories. Improving Vrank per-
formance to replace reference-based metrics is our
future goal.
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9 Appendix

Application In this section, we introduce an ap-
plication for Vrank and other reference-free met-
rics. Our assessment indicates that Vrank’s predic-
tions strongly agree with human judgment. We
quantify the distance between humans and ma-
chines by pairing up reference and generated sto-
ries and calculating the ratio of generated stories
that outmatch the references. Unlike human evalu-
ation, which can be conducted only on a portion of
the testing data, this method allows researchers to
evaluate the proposed model over the entire testing
dataset.

After applying Vrank to assess five recent VIST
models, we present the results in Figure 4: the mod-
els are gradually approaching human-level writing,
outlining an exciting development of NLG in VIST.

Figure 4: Ratio of generated stories that outmatch the
references. Colors denote the publication years. A result
of 50% indicates half of them outmatch the references.

Error Type Examples and Correlation In Ta-
ble 9, we show examples of error types mentioned
in our error analysis. We also show the correlation
between different error types in Figure 5. As the
error types are mutually independent, there is the
potential to construct tools to automatically detect
each error, since they do not overlap with each
other.

Figure 5: Correlation matrix between different kinds
of errors, including Grammatical errors, Repetitions,
Descriptions in isolation, Absurdity, Event mismatches,
and Object detection errors

Reference-based metric
Subset Ω4 Ω5 Ω{4,5} R&M M&M
BLEU-1 .597 .647 .607 .657 .571
BLEU-4 .569 .689 .593 .657 .547
SacreBLEU .533 .647 .556 .657 .482
METEOR .546 .638 .564 .657 .497
ROUGE-L .541 .647 .563 .657 .494
BERT-Score .516 .663 .546 .657 .464

Hybrid metric
BLEURT .552 .664 .575 .657 .514

Table 7: Ranking accuracy for each metric on VIST-
Eval. Reference-based metrics without Reference Ab-
sent Algorithm accuracy results. Reference-free metrics
are not affected by this algorithm.

Figure 6: Normalized ranking gap distribution of
machine-machine pairs, human-machine pairs, and all
story pairs. The dashed lines are the ranking gap means
for H&M and M&M pairs, and the full line is the mean
for all story-pair ranking gaps.

Ranking Gap Distribution The ranking gap dis-
tribution is shown in Figure 6, in which both the
ranking gaps and the number of stories are normal-
ized. Also, since the ranking gaps contain both
negative and positive values, we took the absolute
value of the gap for the histogram. We observe that
the machine-machine pairs are centered closer to
zero. However, the human-machine pairs are dis-
tributed more evenly than the M&M pairs, which
indicates that human-machine pairs are easier to
distinguish than machine-machine pairs.

Without Reference Absent Algorithm Here, we
show the results of automatic metric accuracy in
story-pair ranking without the proposed Reference
Absent Algorithm. As expected, the accuracies
for H&M pairs are the same. Since all references
are regarded as ground truth for reference-based
automatic metrics, the accuracy is shown as the per-
centage of the human-written stories that are better

6376



than machine-generated stories. Hence, these met-
rics are unable to identify any machine-generated
stories that are better than human-written stories.
This demonstrates the importance of our proposed
algorithm in the experiment results.

Data Collection Details We sampled 250 to 500
image prompts from SIND’s testing dataset and
hired crowd workers from Amazon Mechanical
Turk to evaluate the visual stories that were gener-
ated based of these image prompts. The workers
were adult workers in the US with 98% assign-
ments approved and who had completed at least
3,000 HITs. A user interface for workers to com-
plete was called a task. A task displayed one image
prompt on the top with several stories at the bottom,
and five workers were recruited to rank the stories.
The stories usually included a reference, stories
generated using the proposed model, and several
baseline stories. The compensation was USD 0.10
per task.

Training Details We use the pre-trained base
model from Huggingface (Wolf et al., 2020) and
fine-tune it to our regression objective. We uti-
lized Adam as optimizer with learning rate 2e-5
and trained for 30 epochs. The batch size is set as
32 and the random seed for training can be set as
7,777 for reproduction. Checkpoints are stored for
every 500 steps and we also utilized mixed preci-
sion training for more efficient training. The envi-
ronment of our operating system is Ubuntu 20.0.4.
Training was completed on two NVidia RTX 3090
GPUs, each of which contains 24 GB of memory.

Model Design Before we came up with the final
model using SIMCSE, we tried several settings.
Formulating the task as a binary classification task
didn’t achieve good accuracy, we speculate that
this is because the boundaries for a good and bad
story is hard to find. Also, we tried to augment the
story-pairs with agreement=5. We found out that
it didn’t improve the performance. Moreover, we
tested using CLIP (Radford et al., 2021) to extract
image features for additional features and vision-
language models also did not improve performance.
Hence, we picked a simple model architecture to
demonstrate our performance.

Details of Story Generation Models in VHED

• GLAC (Kim et al., 2018): combines global and
local attention to construct image-dependent

sentences. A context cascading mechanism is
incorporated to improve story coherency.

• AREL (Wang et al., 2018a): uses a policy model
and reward model to associate reward learning.
The policy model is used to generate stories, and
the reward model learns from human demonstra-
tions.

• KGStory (Hsu et al., 2020): a three-stage frame-
work which distills a set of representive words
from the input text and utilizes knowledge
graphs to enrich the content. It generates stories
from the enriched word set.

• PRVIST (Hsu et al., 2021a): a two-stage frame-
work that finds an optimal path through the con-
structed story graph which forms the best sto-
ryline. This path is then used to generate the
story.

• Stretch-VST (Hsu et al., 2021b): a modification
of KGStory that produces more sentences in the
story while maintaining quality. Appropriate
knowledge added to the story results in a more
detailed story.
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Story Vrank UNION BLEURT Human
Story1 i learned of my baby ’s birthday . i was very sad because my

parents made her cake . i went to get my cake . [FEMALE]
family surprised me and made me a very happy face .

Rank 2 Rank 1 Rank 1 Rank 2

Story2 one night , my parents and i decided to go to the movies . after-
wards , we decided to sleep together . i fell asleep while my dad
was watching movies . i was never able to sleep with my parents
since my parents were away .

Rank 1 Rank 2 Rank 2 Rank 1

Reference i told my mother bye as i went to school . after school later that
day my brother picked me up . he told me and my twin brother
our mother had died . i went home and cried my eyes out .

NaN NaN NaN NaN

Table 8: Example of stories in MANS datasets, and the each metrics’ rankings for stories.

Error types Examples
Grammatical error there was a lot of students . the space was very small . this is our hotel area . we got to town on

our trip . everyone had a great game .
Repetitions i went to the city yesterday . the streets were empty and the streets were empty . the city was very

tall . the city was very tall . it was a beautiful day .
Description in isolation i went on a hike . i met some people there . they were playing around the house . we got very

scared . it was a sheep .
Absurdity the city was beautiful . there was a lot of traffic . it was a nice day . and the streets were empty .

but i had a great time .
Object mismatch our trip to the town were amazing . it was a long trip to many different formations . my dad took

pictures of the view . it was a great view of the snow . i also saw water in the stone .(See Figure 7)
Event mismatch the parade was a lot of fun . there were many people there . they were all very excited . it was a

great time . everyone was dressed up .(See Figure 8)

Table 9: Error types with examples

Figure 7: Illustration for object detection error. The last sentence:"i also saw water in the stone" is incorrect. Since
there isn’t water seen in the photo, it should be snow instead. StoryID:47608.

Figure 8: Illustration for event mismatch error. The event should be a peaceful protest for civil rights, while the
example story regard the event as a festival parade. StoryID:47670.
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