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Abstract

Temporal factors are tied to the growth of facts
in realistic applications, such as the progress of
diseases and the development of political situ-
ation, therefore, research on Temporal Knowl-
edge Graph (TKG) attracks much attention. In
TKG, relation patterns inherent with temporal-
ity are required to be studied for representation
learning and reasoning across temporal facts.
However, existing methods can hardly model
temporal relation patterns, nor can capture the
intrinsic connections between relations when
evolving over time, lacking of interpretability.
In this paper, we propose a novel temporal mod-
eling method which represents temporal enti-
ties as Rotations in Quaternion Vector Space
(RotateQVS) and relations as complex vectors
in Hamilton’s quaternion space. We demon-
strate our method can model key patterns of re-
lations in TKG, such as symmetry, asymmetry,
inverse, and can further capture time-evolved
relations by theory. Empirically, we show that
our method can boost the performance of link
prediction tasks over four temporal knowledge
graph benchmarks.

1 Introduction

Knowledge Graphs (KGs) have been widely
adopted to represent informative knowledge or
facts in real-world applications (Bollacker et al.,
2008; Miller, 1995; Suchanek et al., 2007). How-
ever, as known facts are usually sparse, KGs are
far from completeness. Thus, Knowledge Graph
Completion (KGC) methods are proposed to pre-
dict missing facts, i.e. links between entities (Bor-
des et al., 2013; Yang et al., 2015; Dettmers et al.,
2018; Chen et al., 2021b). Furthermore, in real
world, many facts are bonded with a particular
time by nature. For example, Barack Obama is
the president of USA is only valid for the time pe-
riod 2009 - 2017. To model such time-sensitive
facts, Temporal Knowledge Graphs (TKGs) have
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recently drawn growing attention from both aca-
demic and industrial communities (Lautenschlager
et al., 2015; Leetaru and Schrodt, 2013).

TKG Embedding (TKGE) methods (Jiang et al.,
2016; Dasgupta et al., 2018; Jin et al., 2020;
Sadeghian et al., 2021) were proposed to repre-
sent entities and relations with temporal features
in TKGs (Lautenschlager et al., 2015; Leetaru and
Schrodt, 2013). But how to present them with
temporal interpretability remains a challenge for
state-of-the-art TKGE models. Further, it is cru-
cial for TKG Completion (TKGC) to leverage the
learned temporal information. Previous static KGC
works (Sun et al., 2020; Schlichtkrull et al., 2018;
Gao et al., 2020) learn explainable embeddings of
various relation patterns, so that symmetric pattern
(e.g. “co-author”), asymmetric pattern (e.g. “affili-
ation”), inverse pattern (e.g. “buyer” vs. “seller”)
and complex composition pattern (e.g. “father’s
wife (mother)” vs. “wife’s father (father in law)”)
can be captured in static KGs. However, in TKGs,
there are inherent connections between entities and
their relations along with time-evolving. For exam-
ple, the relation between Kit Harington and Rose
Leslie is in love in 2012, becomes engaged in 2017,
and then turns into married in 2018. To the best
of our knowledge, very few of the existing TKGE
methods can capture them.

To address this problem, we take inspira-
tions from Hamilton’s quaternion number system
(Hamilton, 1844; Zhang et al., 2019a; Gao et al.,
2020) and propose a novel method based on quater-
nion. To be specific, we encode both entities and
relations as quaternion embeddings, and then tem-
poral entity embeddings can be represented as
Rotations in Quaternion Vector Space (Rotate-
QVS). Theoretically, we show the limitations of
previous methods and demonstrate that perform-
ing quaternion embeddings can model symmetric,
asymmetric, and inverse relation patterns. Mean-
while, we prove our method is capable of cap-
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turing time-evolving information in TKG expli-
cably. We empirically evaluate our method over
four TKGC benchmarks and report state-of-the-
art performance consistently. Further, we perform
analysis of the learned quaternion embeddings and
show the abilities of our RotateQVS for model-
ing various relation patterns, including temporal
evolution.

We summarize our main contributions as fol-
lows:

1. We propose an original quaternion based
TKGC method, namely RotateQVS, which
represents temporal information as rotations
in quaternion vector space.

2. We study temporal evolving relations, and
we demonstrate the proposed RotateQVS can
model various relation patterns including tem-
poral evolution both theoretically and empiri-
cally.

3. Our RotateQVS outperforms the SOTA meth-
ods over all of ICEWS14, ICEWS05-15,
YAGO11k and GDELT datasets on link pre-
diction task.

2 Preliminaries on Hamilton’s
Quaternions

Quaternion number system (Hamilton, 1844) is
an extension of traditional complex numbers. Re-
cently, quaternion has been applied in static knowl-
edge graph embedding (Zhang et al., 2019a; Gao
et al., 2020). For readers better understanding our
method in Section 3, we introduce the definition
and basic operations of quaternion in this section.

2.1 Quaternion Operations

A quaternion is expressed as q = a+ bi+ cj+ dk,
and some key quaternion operations are defined as:

Conjugate Similar to a traditional complex num-
ber, the conjugate of a quaternion is defined with
the same real part and the opposite imaginary parts,
that is

q = a− bi− cj− dk .

Inner Product The inner product between q1 =
a1+b1i+c1j+d1k and q2 = a2+b2i+c2j+d2k
is the sum of product of each corresponding factor

q1 · q2 = ⟨a1, a2⟩+ ⟨b1, b2⟩+ ⟨c1, c2⟩+ ⟨d1, d2⟩ .

Norm With the definition of conjugate and inner
product, the norm of a quaternion is defined as:

||q|| =
√
q · q =

√
q · q =

√
a2 + b2 + c2 + d2

(1)

Inverse The inverse of a quaternion is defined
from q−1 · q = q · q−1 = 1. Multiplying by q, we
have q · q · q−1 = q, derived from which we get:

q−1 =
q

||q||2
(2)

Hamilton Product For two quaternions q1 and
q2, their product is determined by the products of
the basis elements and the distributive law. The
quaternion multiplication formula is:

q1q2 = (a1a2 − b1b2 − c1c2 − d1d2)

+ (a1b2 + b1a2 + c1d2 − d1c2)i

+ (a1c2 − b1d2 + c1a2 + d1b2)j

+ (a1d2 + b1c2 − c1b2 + d1a2)k (3)

Considering the conjugate of Hamilton product,
we can further deduce:

q1q2 = q2 q1 ,

q1q2q3 = q3 q2 q1 . (4)

2.2 3D Vector Space

In fact, the imaginary part bi+ cj+ dk of a quater-
nion behaves like a vector v = (b, c, d) in a 3D
vector space. Thus, conveniently, we rewrite a
quaternion using imaginary vectors:

q = a+bi+cj+dk = a+v = (a,0)+(0,v) . (5)

Multiplication rule The multiplication of two
imaginary vectors v1 and v2 is

v1v2 = v1 × v2 − v1 · v2 , (6)

where v1 × v2 is vector cross product, resulting
in a vector, and v1 · v2 is the dot product, which
gives a scalar. Obviously, the multiplication of two
imaginary vectors is non-commutative, as the cross
product is non-commutative.

Thus, the multiplication of two quaternions can
be rewritten in 3D vector perspective:

q1q2 = (a1,v1) (a2,v2)

=(a1a2 − v1 · v2, a1v2 + a2v1 + v1 × v2) (7)
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3 Proposed Method

In this section, we introduce a novel temporal mod-
eling approach for TKG by representing temporal
information as Rotations in Quaternion Vector
Space (RotateQVS).

3.1 Notations
Suppose that we have a temporal knowledge graph,
noted as G. We use E to denote the set of entities,
R to denote the set of relations, and T to denote the
set of time stamps. Then, the temporal knowledge
graph G can be defined as a collection of quadru-
ples, noted as (s, r, o, t), where a relation r ∈ R
holds between a head entity s ∈ E and an tail entity
o ∈ E at time t. The actual time t is represented by
a time stamp τ ∈ T .

3.2 Representing Temporal Information using
Rotations in 3D Vector Space

Similar to Tero (Xu et al., 2020a) which utilizes a
rotation in complex space, we also represent tempo-
ral information using rotations while in the quater-
nion vector space.

In 3D vector space, according to Euler’s rotation
theorem (Euler, 1776; Verhoeff, 2014), any rota-
tion or sequence of rotations of a rigid body or a
coordinate system about a fixed point is equivalent
to a single rotation by a given angle θ about a fixed
axis (called the Euler axis) that runs through the
fixed point. And an extension of Euler’s formula
for quaternion can be expressed as follows:

q = e
θ
2
(vxi+vyj+uzk)

= cos
θ

2
+ (vxi+ vyj+ uzk) sin

θ

2
,

(8)

where i, j, k are unit vectors representing the three
Cartesian axes.

3.2.1 Representing Time, Entities, and
Relations:

Quaternions provide us with a simple way to en-
code this axis–angle representation in four num-
bers, and can be used to perform the rotation proce-
dure in 3D vector space. By doing so, we constrain
the time stamp embedding τττ as a unit quaternion
as

τττ = cos
θτ
2

+ uτ sin
θτ
2
, (9)

where uτ is a unit vector in the quaternion space.
And for other elements of a quadruple (s, r, o, t),
based on the Hamilton’s quaternions in Section 2,

Figure 1: An illustration of the proposed rotation in 3D
vector space, where v′ is the result of vector v rotating
θ around the rotation axis u.

we map each of them to its base, which is a time-
independent quaternion embedding:

s = {as + bsi+ csj+ dsk}
r = {ar + bri+ crj+ drk}
o = {ao + boi+ coj+ dok} , (10)

where a{.},b{.}, c{.},d{.} ∈ Rk.

3.2.2 Temporal Entities:
We make use of the quaternion rules to represent
temporal information as rotations in 3D vector
space. An abstract rotation procedure is illustrated
in Figure 1.

Theorem 1. Given a unit quaternion q = cos θ
2 +

u sin θ
2 , where u ∈ Ri+ Rj+ Rk is a unit vector

(rotation axis) in a three-dimensional space, the
result of vector v rotating θ around the rotation
axis u is

v′ = qvq−1 = qvq . (11)

Theorem 1 is supported by Rodrigues’ rotation
formula (Rodrigues, 1840).1 We then define the
functional mapping that reflects the temporal evolu-
tion of an entity embedding. For each time stamp τ ,
the functional mapping is an element-wise rotation
from the basic entity embedding e (quaternion rep-
resentation) to the time-specific entity embedding
et, which is as follows:

et = τττeτττ−1 = τττ(ae + ve)τττ
−1

= aeττττττ
−1 + τττveτττ

−1

= ae + τττveτττ
−1 , (12)

where ae and ve are the scalar/real and vec-
tor/imaginary part of the entity quaternion represen-
tation e respectively. And according to Theorem 1,
τττveτττ

−1 is the result of vector ve rotating θτ around
the rotation axis uτ (τττ = cos θτ

2 + uτ sin
θτ
2 , see

1See proof in Appendix A
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Equation 9) which constitutes the vector/imaginary
part of et. Thus, we can get a lemma:

Lemma 1. The vector (imaginary) part is rotated
while the scalar (real) part remains unchanged in
the functional mapping (Equation 12) which re-
flects the temporal evolution of an entity embed-
ding.

For a quadruple (s, r, o, t), we make use of the
functional mapping to get the time-specific entity
embeddings st and ot from the basic entity embed-
dings s and o:

st = τττsτττ−1, ot = τττoτττ−1 . (13)

Considering the temporal evolution of entity em-
bedding, the relation embedding r is regarded as
a translation from the time-specific subject embed-
ding st to the conjugate of the time-specific object
embedding ot. In other words, we aim to make
st + r = ot for all positive quadruples. Then, the
score function can be defined as:

f(s, r, o, t) = ||st + r− ot|| . (14)

Note that each embedding above is a quaternion
representation, and “||” denotes the norm computa-
tion (see Equation 1).

3.2.3 Loss Function
We use the same margin loss function with multiple
negative sampling as proposed in (Sun et al., 2019),
which has been proved to be effective on distance-
based KGE models (Bordes et al., 2013; Sun et al.,
2019) and as well as the TKGE models (Xu et al.,
2019, 2020a). In details, our loss function is

L = − log σ(γ − f(ξ))−
η∑

i=1

log σ(f(ξ′i)− γ) ,

(15)
where η is the number of negative training sam-
ples over the positive one, ξ is the positive training
quadruple, σ(·) denotes the sigmoid function, γ is
a fixed margin, and ξ′i denotes the i-th negative sam-
ple generated by randomly corrupting the subject
or the object of ξ such as (s′, r, o, t) and (s, r, o′, t).

3.3 Modeling Various Relation Patterns
In this section, we demonstrate that our RotateQVS
can model various relation patterns. In TKGE, four
kinds of relation patterns are mostly considered and
studied in previous static KGE and TKGE works
(Sun et al., 2019; Gao et al., 2020). Their defini-
tions are given as follows:

Definition 1. A relation r is symmetric, if ∀s, o, t,
r(s, o, t) ∧ r(o, s, t) holds True.

Definition 2. A relation r is asymmetric, if ∀s, o, t,
r(s, o, t) ∧ ¬r(o, s, t) holds True.

Definition 3. Relation r1 is the inverse of r2, if
∀s, o, t, r1(s, o, t) ∧r2(o, s, t) holds True.

Definition 4. Relation r1 and r2 are evolving over
time from t1 (time stamp τ1) to t2 (time stamp τ2),
if ∀s, o, r1(s, o, t1) ∧ r2(s, o, t2) holds True.

Comparing with other TKGE methods, we show
RotateQVS can model all these four patterns, while
previous methods (see Section 4.3) fail to do so.2

One advantage of applying quaternion embeddings
is that our method supports all these relation pat-
terns, while other representation forms cannot, such
as TeRo (Xu et al., 2020a) using complex number
system a+ bi.3

As seen in our score function (Equation 14), our
aim is to make

τττsτττ−1 + r = τττoτττ−1 = τττoτττ−1

⇔ o− s = τττ−1rτττ .
(16)

Then we can get following results:

Lemma 2. RotateQVS can model the symmetric
pattern for TKG. (See proof in Appendix B)

Lemma 3. RotateQVS can model the asymmetric
pattern for TKG. (See proof in Appendix C)

Lemma 4. RotateQVS can model the inversion
pattern for TKG. (See proof in Appendix D)

Lemma 5. RotateQVS can model the temporal-
evolution pattern for TKG.

Proof. For temporal-evolution pattern, r1(s, o, t1)
∧ r2(s, o, t2) in Definition 4 can be expressed as:{

o− s = τττ−1
1 r1τττ1

o− s = τττ−1
2 r2τττ2

⇔ τττ2τττ
−1
1 r1(τττ2τττ

−1
1 )−1 = r2 .

(17)

For the same head entity and tail entity, if a relation
r1 holds at time t1 (time stamp τ1) and a relation r2
holds at time t2 (time stamp τ2), we are supposed
to get τττ2τττ−1

1 r1(τττ2τττ
−1
1 )−1 = r2.

In addition, based on Equation 17, we have

τττ−1
1 r1τττ1 = τττ−1

2 r2τττ2 . (18)
2Statistics of several baselines modeling on various rela-

tion patterns are summarised in Appendix E.
3Theoretical analysis of TeRo’s defect is shown in Sec-

tion 3.4.
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Model Space Complexity

TransE O(ned+ nrd)
TTransE O(ned+ nrd+ nτd)
HyTE O(ned+ nrd+ nτd)
TA-DistMult O(ned+ nrd+ ntokend)
ATiSE O(ned+ nrd)
DE-SimplE O(ned+ nrd)
TeRo O(ned+ nrd+ nτd)

RotateQVS O(ned+ nrd+ nτd)

Table 1: Space complexity comparison of our Rotate-
QVS with several baselines.

Since we have Theorem 1, τττ−1
1 r1τττ1 and τττ−1

2 r2τττ2
can be regarded as rotations in quaternion vector
space for r1 and r2, respectively, which indicates
the norm of r1 is the same as that of r2. Further-
more, Lemma 1 indicates the rotation mapping
keeps the scalar/real part unchanged for a vector.
Thus, we can have the following deductions:{

||r1|| = ||r2||
Re(r1) = Re(r2) .

(19)

Notice that Equation 19 is a sufficient and un-
necessary conclusion of Equation 18.

3.4 Theoretical Comparison Against TeRo

TeRo (Xu et al., 2020a) is the main baseline for
our model. The rotated head entity embedding and
tail entity embedding of TeRo in complex number
system are s ◦ τττ , and o ◦ τττ respectively, where ◦
denotes Hermitian dot product. The translational
score function of TeRo f(s, r, o, t) = ||st+r−ot||
is to make

s ◦ τττ + r = o ◦ τττ = τττ ◦ o = o ◦ τττ . (20)

And we further prove that TeRo can not model
relations with temporal evolution by means of re-
duction to absurdity.4

To this end, taking advantages of quaternion
representation, our RotateQVS can deduce further
derivation:

τττsτττ−1 + r = τττoτττ−1 = τττoτττ−1

⇔ o− s = τττ−1rτττ ,
(21)

where time stamp embeddings and relation em-
beddings can be particularly extracted to analyse
the influence of temporal evolution on relations,

4See proof in Appendix F.

Dataset ICEWS14 ICEWS05-15 YAGO11k GDELT

Entities 7,128 10,488 10,623 500
Relations 230 251 10 20
Time Stamps 365 4,017 70 366
Train 72,826 386,962 16,408 2,735,685
Validation 8,941 46,275 2,050 341,961
Test 8,963 46,092 2,051 341,961

Table 2: Statistics of four experimented datasets.

since our derivation result is independent with en-
tity embeddings. Above all, we demonstrate that
our RotateQVS can model relations with temporal
evolution while TeRo cannot.5

3.5 Complexity Comparison

Table 1 summarizes the space complexities of sev-
eral baselines and our model. ne, nr, nτ and
ntoken denote numbers of entities, relations, time
stamps, and temporal tokens used in (García-Durán
et al., 2018); and d is the dimension of embed-
dings. The space complexity of our RotateQVS is
O(ned+nrd+nτd), the same as TTransE (Leblay
and Chekol, 2018), HyTE (Dasgupta et al., 2018)
and TeRo (Xu et al., 2020a).

4 Experiments

4.1 Benchmark Datasets

To evaluate our proposed Quaternion embeddings,
we perform link prediction task on four com-
monly used TKG benchmark datasets, namely
ICEWS14, ICEWS05-15 (García-Durán et al.,
2018), YAGO11k (Dasgupta et al., 2018) and
GDELT (Trivedi et al., 2017).6 Table 2 summarises
the details of the four datasets, where it is easy to
find ICEWS14 and ICEWS05-15 have more quan-
titative relations than the other two datasets.

ICEWS (Lautenschlager et al., 2015) is a repos-
itory containing political events with a specific
timestamp. ICEWS14 and ICEWS05-15 (García-
Durán et al., 2018) are two subsets of ICWES cor-
responding to facts in 2014 and facts between 2005
and 2015.

YAGO11k (Dasgupta et al., 2018) is a subset of
YAGO3 (Mahdisoltani et al., 2015), where time an-
notations are represented as time intervals. We de-
rive the dataset from HyTE (Dasgupta et al., 2018)

5Proof process is shown in Lemma 5, and case based anal-
ysis is shown in Section 4.5.2.

6GDELT is derived from https://github.com/BorealisAI/
de-simple/tree/master/datasets/gdelt, and other datasets can
be downloaded from https://github.com/soledad921/ATISE.
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to obtain the same year-level granularity by drop-
ping the month and date information, which results
in 70 different time stamps.

For GDELT, we use the subset extracted by
Trivedi et al., consisting of the facts from April
1, 2015 to March 31, 2016. We take the same
pretreatment of the train, validation and test sets
as (Goel et al., 2020), to make the problem into a
TKGC rather than an extrapolation problem.

4.2 Evaluation Protocol

Link prediction task that aims to infer incomplete
time-wise fact with a missing entity ((s, r, ?, t)
or (?, r, o, t)) is adopted to evaluate the proposed
model. During the inference, we follow the same
procedure of Xu et al. to generate candidates.
For a test sample (s, r, o, t), we first generate can-
didate quadruples set C = {(s, r, o, t) : o ∈
E} ∪ {(s, r, o, t) : s ∈ E} by replacing s or o with
all possible entities, and then rank all the quadru-
ples by their scores (Equation 14) under the time-
wise filtered settings (Xu et al., 2019; Goel et al.,
2020).

The performance is reported on the standard eval-
uation metrics: the proportion of correct triples
ranked in top 1, 3 and 10 (Hits@1, Hits@3, and
Hits@10), and Mean Reciprocal Rank (MRR). All
the metrics (Hits@1, Hits@3, Hits@10 and MRR)
are the higher the better. For all experiments, we
report averaged results across 5 runs, and we omit
the variance as it is generally low.

4.3 Baselines

We compare with both sota static and temporal
KGE baselines. For static baselines, we use TransE
(Bordes et al., 2013), DistMult (Yang et al., 2015),
RotatE (Sun et al., 2019), and QuatE (Zhang et al.,
2019a). For TKGE methods, we consider TTransE
(Leblay and Chekol, 2018), HyTE (Dasgupta et al.,
2018), TA-DistMult (García-Durán et al., 2018),
DE-SimplE (Goel et al., 2020), ATiSE (Xu et al.,
2019), and TeRo (Xu et al., 2020a).7

Note that TeRo (Xu et al., 2020a) is also based on
the idea of rotations, and thus we consider TeRo as
a directly baseline. Because our quaternion repre-
sentation (a+bi+cj+dk) doubles the embedding
parameters of TeRo which uses complex represen-
tation (a + bi), we further adopt two models for
fair comparisons: (i) TeRo-Large: TeRo using dou-

7See complexity comparison in Appendix 3.5.

ble embedding dimension;8 (ii) RotateQVS-Small:
The proposed RotateQVS with half embedding di-
mension. By doing so, their parameter complexi-
ties can be comparable with TeRo’s.

4.4 Results

The experimental results over four TKG datasets
are shown in Table 3.9 Overall, TKGE methods
are better than static KGE methods, which shows
the effectiveness of modeling temporal informa-
tion. For the proposed RotateQVS, we observe
that our model outperforms all the baseline mod-
els over the four datasets across all metrics con-
sistently.10 To demonstrate the superiority of the
proposed quaternion method, we compare our Ro-
tateQVS with the direct baseline TeRo (Xu et al.,
2020a). For fair comparisons of model sizes, we ob-
serve that our RotateQVS outperforms TeRo-Large
and RotateQVS-Small outperforms TeRo. This
shows our methods with quaternion embeddings
makes great improvements, demonstrating our ad-
vantages. Specially, we see that our RotateQVS
achieves more improvements on ICEWS14 and
ICEWS05-15 datasets. We believe this is because
these two datasets have much more quantitative
relations (see Table 2) and it is also evident our
method behaves better on datasets with complex
relation patterns.

4.5 Analysis and Case Study

To further demonstrate the learned quaternion em-
beddings and the ability of our model, we perform
case studies on multiple relation patterns, through
visualization and quantitative analysis on intuitive
examples from ICEWS14.

4.5.1 Symmetric/Asymmetric/Inversion
Patterns

Since symmetric, asymmetric and inversion pat-
terns have been discussed in previous work (Sun
et al., 2019; Xu et al., 2020a), we present the case
studies of them to Appendix J.

4.5.2 Temporal-evolution Pattern
As shown in Lemma 5, if a relation r1 and a relation
r2 are evolving over time from t1 (time stamp τ1)

8We reuse the original implementation of (Xu et al., 2020a)
from https://github.com/soledad921/ATISE and follow the
their best setups.

9See hyperparameter setup in Appendix G.
10We also take time granularity analysis and embedding

dimension analysis in Appendix H and I.
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Dataset ICEWS14 ICEWS05-15

Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

TransE (Bordes et al., 2013) 0.094 - 0.637 0.280 0.090 - 0.663 0.294
DistMult (Yang et al., 2015) 0.323 - 0.672 0.439 0.337 - 0.691 0.456
RotatE (Sun et al., 2019) 0.291 0.478 0.690 0.418 0.164 0.355 0.595 0.304
QuatE (Zhang et al., 2019a) 0.353 0.530 0.712 0.471 0.370 0.529 0.727 0.482

TTransE (Leblay and Chekol, 2018) 0.074 - 0.601 0.255 0.084 - 0.616 0.271
HyTE (Dasgupta et al., 2018) 0.108 0.416 0.655 0.297 0.116 0.445 0.681 0.316
TA-DistMult (García-Durán et al., 2018) 0.363 - 0.686 0.477 0.346 - 0.728 0.474
ATiSE (Xu et al., 2019) 0.436 0.629 0.750 0.550 0.378 0.606 0.794 0.519
DE-SimplE (Goel et al., 2020) 0.418 0.592 0.725 0.526 0.392 0.578 0.748 0.513

TeRo (Xu et al., 2020a) 0.468 0.621 0.732 0.562 0.469 0.668 0.795 0.586
TeRo-Large 0.432 0.596 0.722 0.534 0.395 0.627 0.800 0.534

RotateQVS-Small (ours) 0.489 0.625 0.737 0.575 0.473 0.685 0.802 0.591
RotateQVS (ours) 0.507 0.642 0.754 0.591 0.529 0.709 0.813 0.633

YAGO11k GDELT

Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

TransE 0.015 0.138 0.244 0.100 0.0 0.158 0.312 0.113
DistMult 0.107 0.161 0.268 0.158 0.117 0.208 0.348 0.196
RotatE 0.103 0.167 0.305 0.167 - - - -
QuatE 0.107 0.148 0.270 0.164 - - - -

TTransE 0.020 0.150 0.251 0.108 0.0 0.160 0.318 0.115
HyTE 0.015 0.143 0.272 0.105 0.0 0.165 0.326 0.118
TA-DistMult 0.103 0.171 0.292 0.161 0.124 0.219 0.365 0.206
ATiSE 0.110 0.171 0.288 0.170 - - - -
DE-SimplE - - - - 0.141 0.248 0.403 0.230

TeRo 0.121 0.197 0.319 0.187 0.154 0.264 0.420 0.245
TeRo-Large 0.094 0.199 0.323 0.181 0.163 0.278 0.437 0.256

RotateQVS-Small 0.124 0.193 0.320 0.187 0.165 0.270 0.428 0.259
RotateQVS 0.124 0.199 0.323 0.189 0.175 0.293 0.458 0.270

Table 3: Results on link prediction task over four experimented datasets. The best score is in bold and second best
score is underlined.

to t2 (time stamp τ2), we have

τττ2τττ
−1
1 r1(τττ2τττ

−1
1 )−1 = r2. (22)

To analyse the temporal-evolution pattern, we
focus on the relations between the same head and
tail entities with different time stamps. For exam-
ple, from ICEWS14, we observe a base fact (South
Korea, Engage in negotiation, North Korea, 2014-
02-12) and a temporal-evolution fact (South Korea,
Sign formal agreement, North Korea, 2014-02-15),
where Sign formal agreement is considered as the
consequence of Engage in negotiation. Thus, in our
model, the embeddings of Sign formal agreement
at time stamp 2014-02-15 and of Engage in negoti-
ation at 2014-02-12 should satisfy Equation 22.

To illustrate this pattern, we measure the ma-
trix cosine similarity between r2 (base) and
τττ2τττ

−1
1 r1(τττ2τττ

−1
1 )−1 (temporal-evolved). For each

true fact, we sample a random negative relation
and show their similarity difference. Figure 2 illus-

Figure 2: Density histogram with bin size 1% of similar-
ity scores for temporal-evolution relations. All positive
and negative examples are randomly sampled and com-
pared with the base relation Engage in negotiation.

trates the density histogram of similarities with ran-
dom 250 fact quadruples at different time stamps
between South Korea and North Korea. We ob-
serve that the distributions of positive examples
and negative examples are distinct, which explains
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Head entity Relation Tail entity Time Similarity

E
xa

m
pl

e
1 Base fact

John Kerry
Express intent to meet or negotiate

Pietro Parolin
2014-01-13

0.810
True fact Consult

2014-01-16
Negative Detonate nuclear weapons 0.508

E
xa

m
pl

e
2 Base fact

Member of Legislative (Govt) (Iran)
Make statement

Iran
2014-03-16

0.819
True Fact Make statement

2014-05-04
Negative Detonate nuclear weapons 0.492

E
xa

m
pl

e
3 Base fact

Federal Bank
Make a visit

European Central Bank
2014-02-04

0.815
True fact Make statement

2014-02-25
Negative Receive inspectors 0.510

Table 4: Examples of temporal-evolution patterns in ICEWS14 dataset. The similarity score is based on base fact.

(a) Re(r1)−Re(r2) = 0 (b) ||r1|| − ||r2|| = 0

Figure 3: Quaternion representations of Equation 19 for
temporal-evolution pattern.

our RotateQVS can model temporal-evolution pat-
terns more effectively. Comparing with TeRo (Xu
et al., 2020a), which is the main baseline for our
model, we show TeRo cannot model this pattern
theoretically (see Section 3.4).

In addition, Figure 3 shows our quaternion rep-
resentation do well in reflecting Equation 19, the
sufficient and unnecessary deductions of theoretical
analysis for temporal-evolution pattern.

More examples of temporal-evolution pattern
are shown in Table 4, where we use the relation
in base fact and time information to get a gen-
erated embedding τ2τ2τ2τ1τ1τ1

−1r1(τ2τ2τ2τ1τ1τ1
−1)−1, and also

sample a random negative relation for each exam-
ple. We compute the matrix cosine similarity be-
tween τ2τ2τ2τ1τ1τ1

−1r1(τ2τ2τ2τ1τ1τ1
−1)−1 and r2, and also com-

pute the similarity between τ2τ2τ2τ1τ1τ1
−1r1(τ2τ2τ2τ1τ1τ1

−1)−1

and the embedding of another relation in the nega-
tive sample. Time stamps in negatives are taken as
same as the true facts. The comparison between the
two sets of results can once again prove the ability
of our model in modeling this pattern.

4.6 Convergence Analysis

For convergence analysis, we consider two fair
comparisons, where the compared two methods
have the same number of parameters:11 Rotate-
QVS (blue solid line) vs. TeRo-Large (yellow solid
line) and RotateQVS-Small (green dotted line) vs.

11Refer to Section 4.3 for more details

Figure 4: The convergence study of RotateQVS, TeRo-
Large, RotateQVS-Small and TeRo by epochs on
ICEWS14 test set, and we use the metric MRR here.

TeRo (red dotted line) in Figure 4. We observe that
RotateQVS and TeRo-Large converge at approxi-
mately the same rate, and so do RotateQVS-Small
and TeRo. We can conclude that our proposed Ro-
tateQVS can achieve better results in comparisons
of both large and small levels without sacrificing
additional training efforts.

5 Related work

Models working on Static Knowledge graph have
been well studied (Zhang et al., 2019b; Xu et al.,
2020b; Mao et al., 2020; Chen et al., 2021a) with
semantic and structure information. Translation
based methods, e.g. TransE (Bordes et al., 2013)
and TransR (Lin et al., 2015), formalise the fac-
tual distance between a head entity s and a tail
entity o with the translation carried out by the re-
lation. Adopting tensor factorization with a bi-
linear transformation, semantic matching models,
e.g. RESCAL (Nickel and Tresp, 2013) and Dist-
Mult (Yang et al., 2015), capture the semantic rel-
evance of entities. Recently, more attention were
paid to study various relation patterns. RotatE (Sun
et al., 2019) treat each relation as a rotation so
that symmetric/asymmetric, inversion and compo-
sition patterns can be inferred to predict missing
links. Further, quaternion number system (Hamil-
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ton, 1844) is applied to model more complex com-
position patterns in 3D space, such as Rotate3D
(Gao et al., 2020) and QuatE (Zhang et al., 2019a).

Many aforementioned methods (Dasgupta et al.,
2018; Leblay and Chekol, 2018; Trivedi et al.,
2017; García-Durán et al., 2018; Goel et al., 2020;
Sadeghian et al., 2021) are extended from static
Static KGs to TKGs. They integrate time informa-
tion into previous static methods as independent
features. Others study the dynamic evolution of
TKG. ATiSE (Xu et al., 2019) regards the temporal
evolution of entity and relation embeddings as com-
binations of trend component, seasonal component
and random component. CyGNet (Zhu et al., 2021)
proposes a time-aware copy-generation mechanism
leveraging known facts in the past to predict un-
known facts in the future. TeRo (Xu et al., 2020a)
defines the temporal evolution of entity embedding
as a rotation in the complex vector space. Inspired
by TeRo, our RotateQVS further represents tempo-
ral entities as rotations in quaternion vector space
and obtains more advantages.12

Modeling various temporal relation patterns
(Goel et al., 2020; Xu et al., 2020a), especially the
temporal-evolution patterns, is crucial for TKGE
and the following TKGC. Zhang et al. mentions
the time-evolution property, but does not make a
systematic research on it. It remains an open re-
search question with few researches. Our work
(RotateQVS) takes inspirations from the idea of ro-
tation and generalises it into the quaternion number
system to model the complex temporal-evolution
pattern that TeRo can hardly do.

6 Conclusion

In this paper, we introduce a novel TKGC method
RotateQVS which represents temporal information
of TKGs as rotations in quaternion vector space.
Targeting temporal interpretability, we theoretically
analyse that RotateQVS can model various relation
patterns and demonstrate it with extensive exper-
iments. Compared to previous methods, Rotate-
QVS has made significant improvements on link
prediction tasks over four benchmark datasets. Fur-
thermore, we show our RotateQVS has great ad-
vantages in modeling various relation patterns with
temporal evolution.

12Refer to Section 3.4 for more details.
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A Proof of Theorem 1

Proof. Based on Equation 2, for a unit quaternion
q, it follows that q−1 = q. Unfolding the Equation
11, we can get

v′ = (cos
θ

2
+ u sin

θ

2
)v(cos

θ

2
− u sin

θ

2
)

= vcos2
θ

2
+ (uv − vu) sin

θ

2
cos

θ

2

− uvusin2
θ

2
. (23)

Bearing in mind that uv = u×v−u ·v (based
on the Equation 6), further we can get

v′ = vcos2
θ

2
+ 2(u× v) sin

θ

2
cos

θ

2

− ((u× v)− (u · v))usin2 θ
2

= v(cos2
θ

2
− sin2

θ

2
) + (u× v)(2 sin

θ

2
cos

θ

2
)

+ u(u · v)(2 sin2 θ
2
) . (24)

Using trigonometric identities, we can get

v′ = v cos θ + (u× v) sin θ

+ u(u · v)(1− cos θ)

= (v − u(u · v)) cos θ + (u× v) sin θ

+ u(u · v)
= v⊥ cos θ + (u× v) sin θ + v∥ (25)

where v⊥ = v−u(u ·v) and v∥ = u(u ·v) are the
components of v (perpendicular and parallel to the
axis u respectively). Our Equation 25 satisfies the
Rodrigues’ rotation formula (Rodrigues, 1840) in
3D vector space (illustrated in Figure 5). Therefore,
the Equation 11 is proven to be a rotation in 3D
vector space.

B Proof of Lemma 2

Proof. For symmetric pattern, considering our ro-
tation based temporal representation, we express
the r(s, o, t) ∧ r(o, s, t) in Definition 1 as:{

o− s = τττ−1rτττ

s− o = τττ−1rτττ
⇔ r+ r = 0 ⇔ Re(r) = 0 ,

(26)
where Re denotes the real part of a quaternion
representation.

Figure 5: An illustration of our rotation equation, which
satisfies the Rodrigues’ rotation formula (Rodrigues,
1840), where v′ is the result of vector v rotating θ
around rotation axis u.

C Proof of Lemma 3

Proof. For asymmetric pattern, r(s, o, t) ∧
¬r(o, s, t) in Definition 2 can be expressed as:{
o− s = τττ−1rτττ

s− o ̸= τττ−1rτττ
⇔ r+ r ̸= 0 ⇔ Re(r) ̸= 0 .

(27)

D Proof of Lemma 4

Proof. For inversion pattern, r1(s, o, t)∧r2(o, s, t)
in Definition 3 can be expressed as:{

o− s = τττ−1r1τττ

s− o = τττ−1r2τττ

⇔ r1 + r2 = 0 ⇔

{
Re(r1) +Re(r2) = 0

Im(r1)− Im(r2) = 0 ,

(28)
where Im denotes the imaginary part of a quater-
nion representation.

E Statistics of several previous TKGE
methods modeling on various relation
patterns

Table 5 shows the statistics of several previous
TKGE methods modeling on various relation pat-
terns, containing symmetry, asymmetry, inversion
and temporal-evolution.

F Proof by Contradiction for TeRo

Proof. Supposing TeRo (Xu et al., 2020a) can
model the temporal-evolution relation pattern (de-
fined in Definition 4), then relations with temporal-
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Methods Symmetry Asymmetry Inversion Temporal-evolution

TTransE # ! ! #

TA-DistMult ! # # #

DE-SimplE ! ! ! #

TeRo ! ! ! #

RotateQVS (ours) ! ! ! !

Table 5: Statistics of several previous TKGE methods
modeling on various relation patterns.

evolution pattern will satisfy the Equation 20. No-
tice that our relation patterns defined are uncon-
cerned with some specific entities, but focusing on
the general rules among relations inside the univer-
sal entities.

If relation r1 and r2 are evolving over time
from t1 to t2, considering the same head entity
s and two different tail entities o1 and o2 which sat-
isfy r1(s, o1, t1) ∧ r2(s, o1, t2) and r1(s, o2, t1) ∧
r2(s, o2, t2), we can get{

s ◦ τττ1 + r1 = o1 ◦ τττ1

s ◦ τττ2 + r2 = o1 ◦ τττ2
∧

{
s ◦ τττ1 + r1 = o2 ◦ τττ1

s ◦ τττ2 + r2 = o2 ◦ τττ2
,

(29)

where we can find the derivations depend on entity
embeddings. And we can further derive that{

s ◦ (τττ2 − τττ1) + (r2 − r1) = o1 ◦ (τττ2 − τττ1)

s ◦ (τττ2 − τττ1) + (r2 − r1) = o2 ◦ (τττ2 − τττ1)

⇔ o1 = o2 ,

(30)

where two different tail entities o1 and o2 have the
exactly same embeddings in TeRo. Obviously, it
is not in line with our common sense and has a
big problem in modelling the temporal-evolution
relation pattern.

G Hyperparameter

To seek and find proper hyperparameters, we uti-
lize a grid search empirically over the following
ranges for all three datasets: embedding dimen-
sion in {100, 200, 300, 400, 500}, learning rate
in {1, 0.5, 0.3, 0.1, 0.05, 0.03, 0.02, 0.01}, the ra-
tio of negative over positive training sample in
{1, 3, 5, 10}, the margin used in loss function in
{1, 2, 3, 5, 10, 20, · · · , 120}, the time granularity
parameter in {1, 2}, and the optimizer we use is
Adagrad.

And we have found out the best hyperparameters
combination as follows: for ICEWS14, we set the
margin as 110, the time granularity parameter as
1; for ICEWS05-15, we set the margin as 120, the
time granularity parameter as 2; for YAGO11k, we
set the margin as 50, the time granularity parameter
as 100; for GDELT, we set the margin as 110, the

Figure 6: Results of RotateQVS with different time
granularities on ICEWS14 dataset.

time granularity parameter as 1; and for all the
datasets, we choose the learning rate as 0.1, the
embedding dimension as 500, the ratio of negative
over positive training sample as 10.

H Time Granularity Analysis

As shown in Figure 6, we take time granularity anal-
ysis on ICEWS14 dataset. It find that the results of
smaller granularities are better than that of larger
granularities, as larger-granularity setups fuzz the
time information. Smaller granularity means more
time stamps to compute, while we believe in cur-
rent dataset the number of time-stamps are rela-
tively small compared with the numbers of rela-
tions and entities, and thus we suggest small time
granularity in TKG tasks.

I Size of Embedding Dimension

As shown in Figure 7, we take embedding dimen-
sion analysis on ICEWS14 dataset. We can find out
that the values of all the four metrics increase as
the dimension increases from 100 to 500, while the
improvement gains decrease when approaching the
size of 500. This indicates that larger embedding
size are recommended, while larger embeddings
can drag time efficiency and requires more com-
putational resources, thus it is a time-efficiency
trade-off.

J Analysis and Case Study for
Symmetric/Asymmetric/Inversion
Pattern

J.1 Symmetric Pattern
As shown in Lemma 2 and its proof (see Ap-
pendix B), if r is a symmetric relation, we have
r+ r = 0 ⇔ Re(r) = 0. That is if r is a symmet-
ric relation, the real part of quaternion representa-
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Figure 7: Results of RotateQVS with different embed-
ding dimensions on ICEWS14 dataset.

(a) relation:Consult (b) relation:Engage in nego-
tiation

Figure 8: Illustrations of the real parts (Re) closing to
0 for two symmetric relations, Consult and Engage in
negotiation, in quaternion embeddings with size 500.

(a) relation:Threaten to halt
mediation

(b) relation:Demand policy
change

Figure 9: Illustrations of the real parts Re(r) ̸= 0 for
two asymmetric relations in quaternion embeddings.

tion of r is close to zero. To empirically study the
learned quaternion embedding of r, we illustrate
the real parts of quaternion embeddings in Fig-
ure 8 for two symmetric relations, Consult and En-
gage in negotiation. For Consult, we have (France,
Consult, Canada, 2014-10-23) and (Canada, Con-
sult, France, 2014-10-23). For Engage in negotia-
tion, we have (Victor Ponta, Engage in negotiation,
Klaus Johannis, 2014-11-11) and (Klaus Johannis,
Engage in negotiation, Victor Ponta, 2014-11-11).
These suggest that the relation Consult and the re-
lation Engage in negotiation are two symmetric
relations. We observe that the learned quaternion
embeddings in Figure 8 are close to 0, which con-

(a) Re(r1) +Re(r2) = 0 (b) i(r1)− i(r2) = 0

(c) j(r1)− j(r2) = 0 (d) k(r1)− k(r2) = 0

Figure 10: Quaternion representations of Equation 28,
with the real part (Re) and three imaginary parts (i, j,
and k) for an inverse relation pair: Make a visit vs. Host
a visit.

firms the ability of our model.

J.2 Asymmetric Pattern

Opposite to symmetric pattern, if r is an asymmet-
ric relation, we have Re(r) ̸= 0. Intuitively, if r is
an asymmetric relation, the real part of quaternion
representation of r is supposed to be far away from
zero. Since we have (Nabih Berri, Threaten to halt
mediation, Israeli Defense Forces, 2014-05-12) and
(Islamic Preacher (Iran), Demand policy change,
Iran, 2014-03-02), the two relations Threaten to
halt mediation and Engage in negotiation are taken
as two asymmetric relations. Figure 9 illustrates
the real parts of quaternion representation of them.
These observations from Figure 8 and Figure 9
show that our RotateQVS can effectively model
the symmetry and asymmetry patterns and can dis-
tinguish them.

J.3 Inversion Pattern

Lemma 4 and its proof (see Appendix D) show
that if the relation r1 is the inverse of the re-
lation r2, we have Re(r1) + Re(r2) = 0 and
Im(r1) − Im(r2) = 0. From two existing facts
(Romania, Host a visit, Evangelos Venizelos, 2014-
02-20) and (Evangelos Venizelos, Make a visit, Ro-
mania, 2014-02-20) in ICEWS14, we can find out
the relation Host a visit is the inverse of the rela-
tion Make a visit, which satisfies the Definition 4.
Figure 10 shows the quaternion representation as in
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Equation 28 for the inverse relation pair, contain-
ing the real part and the imaginary part (3D), where
i, j and k denote three directions of the imaginary
parts. This demonstrates our method has effective
modeling for inverse relations.
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