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Abstract

Large Pre-trained Language Models (PLMs)
have become ubiquitous in the development
of language understanding technology and lie
at the heart of many artificial intelligence ad-
vances. While advances reported for English
using PLMs are unprecedented, reported ad-
vances using PLMs for Hebrew are few and
far between. The problem is twofold. First,
so far, Hebrew resources for training large lan-
guage models are not of the same magnitude
as their English counterparts. Second, most
benchmarks available to evaluate progress in
Hebrew NLP require morphological bound-
aries which are not available in the output of
PLMs. In this work we remedy both aspects.
We present AlephBERT, a large PLM for Mod-
ern Hebrew, trained on larger vocabulary and
a larger dataset than any Hebrew PLM before.
Moreover, we introduce a novel neural architec-
ture that recovers the morphological segments
encoded in contextualized embedding vectors.
Based on this new morphological component
we offer an evaluation suite consisting of mul-
tiple tasks and benchmarks that cover sentence-
level, word-level and sub-word level analyses.
On all tasks, AlephBERT obtains state-of-the-
art results beyond contemporary Hebrew state-
of-the-art models. We make our AlephBERT
model, the morphological extraction compo-
nent, and the Hebrew evaluation suite publicly
available, for future investigations and evalua-
tions of Hebrew PLMs.

1 Introduction

Contextualized word representations provided by
models such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), GPT3 (Brown et al.,
2020), TS5 (Raffel et al., 2020) and more, were
shown in recent years to be a critical component for
obtaining state-of-the-art performance on a wide
range of Natural Language Processing (NLP) tasks,
from surface syntactic tasks as tagging and parsing,
to downstream semantic tasks as question answer-
ing, information extraction and text summarization.
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While advances reported for English using such
models are unprecedented, previously reported re-
sults using PLMs in Modern Hebrew are far from
satisfactory. Specifically, the BERT-based Hebrew
section of multilingual-BERT (Devlin et al., 2019)
(henceforth, mBERT), did not provide a similar
boost in performance as observed by the English
section of mBERT. In fact, for several reported
tasks, the results of the mBERT model are on a par
with pre-neural models or neural models based on
non-contextual embeddings (Tsarfaty et al., 2020;
Klein and Tsarfaty, 2020). An additional Hebrew
BERT-based model, HeBERT (Chriqui and Yahav,
2021), has been recently released, yet without em-
pirical evidence of performance improvements on
key components of the Hebrew NLP pipeline.

The challenge of developing PLMs for
morphologically-rich and medium-resourced lan-
guages such as Modern Hebrew is twofold. First,
contextualized word representations are obtained
by pre-training a large language model on massive
quantities of unlabeled texts. In Hebrew, the size of
published texts available for training is relatively
small. To wit, Hebrew Wikipedia (300K articles)
used for training mBERT is orders of magnitude
smaller compared to English Wikipedia (6M arti-
cles). Second, commonly accepted benchmarks for
evaluating Hebrew models, via Morpho-Syntactic
Tagging and Parsing (Sadde et al., 2018), or Named
Entity Recognition (Bareket and Tsarfaty, 2020)
require decomposition of words into morphemes,'
which are distinct of the sub-words (a.k.a. word-
pieces) provided by standard PLMs. Such mor-
phemes are as of yet not readily available in the
PLMs’ output embeddings.

Evaluating BERT-based models on morpheme-
level tasks is thus non-trivial due to the mismatch
between the sub-word tokens used as sub-word

!"These morphemes are affixes and clitics bearing their own
POS. They are termed syntactic words in UD (Zeman et al.,
2018), or segments in previous literature on Hebrew NLP.
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Figure 1: PLM Morphological Extraction Pipeline. The
two-word phrase “1:1‘:.1 n*ab”, transliterated as “Ibit
hlbn”, mapped to word-pieces which are consumed by
a PLM to generate contextualized vectors and extract
the sub-word morphological units. In this example the
WordPiece Tokenizer splits the first word, “Ibit”, into
two pieces while leaving the second word, “hlbn”, intact.
Consequently, AlephBERT generates 3 embedded vec-
tors - the vectors associated with the split word pieces
are averaged to form a single contextualized vector. Fi-
nally, the resulting two word vectors are used by the
Morphological Extraction Model that generates the dis-
ambiguated morphological segments.

input units used by the PLMs and the sub-word
morphological units needed for evaluation. PLMs
employ sub-word tokenization mechanisms such
as WordPiece or Byte-Pair Encoding (BPE) for the
purposes of minimizing Out-Of-Vocabulary words
(Sennrich et al., 2016). These sub-word tokens are
generated in a pre-processing step, without utiliza-
tion of any linguistic information, and passed as
input to the PLM. Crucially, such word-pieces do
not reflect morphological units. Extracting morpho-
logical units from contextualized vectors provided
by PLMs is challenging yet necessary in order to
enable morphological-level evaluation of Hebrew
PLMs on standard benchmarks.

In this paper we introduce AlephBERT, a Hebrew
PLM trained on more data and a larger vocabulary
than any Hebrew PLM before.2 Moreover, we pro-
pose a novel architecture that extracts the morpho-
logical sub-word units implicitly encoded in the
contextualized vectors outputted by PLMs. Using
AlephBERT and the proposed morphological ex-
traction model we enable evaluation on all existing
Hebrew benchmarks. We thus present a process-
ing and evaluation pipeline tailored to fit Morpho-
logically Rich Languages (MRLs), i.e., covering

2We make our PLM https://huggingface.co/
onlplab/alephbert-base and demo https://nlp.

biu.ac.il/~amitse/alephbert/ publicly available,
to qualitatively assess present and future Hebrew PLMs.
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sentence-level, word-level and most importantly
sub-word morphological-level tasks (Segmentation,
Part-of-Speech Tagging, full Morphological Tag-
ging, Dependency Parsing, Named Entity Recog-
nition (NER) and Sentiment Analysis), and present
new and improved SOTA for Modern Hebrew on
all of these tasks.

2 Previous Work

Contextualized word embedding vectors are a ma-
jor driver for improved performance of deep learn-
ing models on many Natural Language Understand-
ing (NLU) tasks. Initially, ELMo (Peters et al.,
2018) and ULMFit (Howard and Ruder, 2018) in-
troduced contextualized word embedding frame-
works by training LSTM-based models on massive
amounts of texts. The linguistic quality encoded
in these models was demonstrated over 6 tasks:
Question Answering, Textual Entailment, Seman-
tic Role labeling, Coreference Resolution, Name
Entity Extraction, and Sentiment Analysis. The
next big leap was obtained with the introduction
of the GPT-1 framework by Radford and Sutskever
(2018). Instead of using LSTM layers, GPT is
based on 12 layers of Transformer decoders with
each decoder layer composed of a 768-dimensional
feed-forward layer and 12 self-attention heads. De-
vlin et al. (2019) followed along the same lines and
implemented Bidirectional Encoder Representa-
tions from Transformers, or BERT in short. BERT
attends to the input tokens in both forward and
backward directions while optimizing a Masked
Language Model and a Next Sentence Prediction
objective objectives.

BERT Benchmarks An integral part involved in
developing various PLMs is providing NLU multi-
task benchmarks used to demonstrate the linguistic
abilities of new models and approaches. English
BERT models are evaluated on 3 standard major
benchmarks. The Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) is used
for testing paragraph-level reading comprehension
abilities. Wang et al. (2018) selected a diverse and
relatively hard set of sentence and sentence-pair
tasks which comprise the General Language Un-
derstanding Evaluation (GLUE) benchmark. The
SWAG (Situations With Adversarial Generations)
dataset (Zellers et al., 2018) presents models with
partial description of grounded situations to see if
they can consistently predict subsequent scenarios,
thus indicating abilities of commonsense reasoning.


https://huggingface.co/onlplab/alephbert-base
https://huggingface.co/onlplab/alephbert-base
https://nlp.biu.ac.il/~amitse/alephbert/
https://nlp.biu.ac.il/~amitse/alephbert/

When evaluating Hebrew PLMs, one of the key pit-
falls is that there are no Hebrew versions for these
benchmarks. Furthermore, none of the suggested
benchmarks account for examining the capacity of
PLMs for encoding the word-internal morphologi-
cal structures which are inherent in MRLs. In this
work we enable a generic morphological-level eval-
uation pipeline that is suited for PLMs of MRLs.

Multilingual vs. Monolingual BERT Devlin
et al. (2019) produced 2 BERT models, for En-
glish and Chinese. To support other languages,
they trained a multilingual BERT (mBERT) model
combining texts covering over 100 languages,
in the hoped to benefit low-resource languages
with the linguistic information obtained from lan-
guages with larger datasets. In reality, however,
mBERT performance on specific languages has not
been as successful as English. Consequently, sev-
eral research efforts focused on building monolin-
gual BERT models as well as providing language-
specific evaluation benchmarks. Liu et al. (2019)
trained CamemBERT, a French BERT model eval-
uated on syntactic and semantic tasks in addition
to natural language inference tasks. Rybak et al.
(2020) trained HerBERT, a BERT PLM for Polish.
They evaluated it on a diverse set of existing NLU
benchmarks as well as a new dataset for sentiment
analysis for the e-commerce domain. Polignano
et al. (2019) created Alberto, a BERT model for
Italian, using a massive tweet collection. They
tested it on several NLU tasks — subjectivity, po-
larity (sentiment) and irony detection in tweets. In
order to obtain a large enough training corpus in
low-resources languages, such as Finnish (Virtanen
et al., 2019) and Persian (Farahani et al., 2020), a
great deal of effort went into filtering and cleaning
text samples obtained from web crawls.

BERT for MRLs Languages with rich morphol-
ogy introduce another challenge involving the iden-
tification and extraction of sub-word morphological
information. In many MRLs words are composed
of sub-word morphological units, with each unit
acting as a single syntactic unit bearing as single
POS tag (mimicking ‘words’ in English). Antoun
et al. (2020) addressed this for Arabic, a Semitic
MRLs, by pre-processing the training data using a
morphological segmenter, producing morpholog-
ical segments to be used for training AraBERT
instead of the actual words. By doing so, they
were able to produce output vectors that corre-
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‘ Language H Oscar (duped) Size Wikipedia Articles

English 2.3T 6,282,774
Russian 1.2T 1,713,164
Chinese 508G 1,188,715
French 282G 2,316,002
Arabic 82G 1,109,879
Hebrew 20G 292,201

Table 1: Corpora Size Comparison: Resource-savvy
languages vs. Hebrew.

spond to morphological segments rather than the
original space-delimited word-tokens. However,
this approach requires the application of the same
segmenter at inference time as well, and like any
pipeline approach, this setup is susceptible to er-
ror propagation. This risk is magnified as words in
MRLs may be morphologically ambiguous, and the
predicted segments might not represent the correct
interpretation of the words. As a result, the quality
of the PLM depends on the accuracy achieved by
the segmenting component. A particular novelty of
this work is not making any changes to the input,
letting the PLM encode morphological information
associated with complete Hebrew tokens. Instead,
transforming the resulting contextualized word vec-
tors into morphological-level segments via a novel
neural architecture which we discuss shortly.

Evaluating PLMs for MRLs Across all of the
above-mentioned language-specific PLMs, eval-
uation was performed on the word-,sentence- or
paragraph-level. Non examined the capacity of
PLM:s to encode sub-word morphological-level in-
formation which we focus on in this work. Sahin
et al. (2019) probed various information types en-
coded in embedded word vectors. Similarly to us,
they focused on languages with rich morphology
where linguistic signals are encoded at the morpho-
logical, subword level. Their work is more about
explainability — showing high positive correlation
of probing tasks to the downstream tasks, especially
for morphologically rich languages. Unlike us, they
assume a single POS tag and set of features per
word in their probing tasks. In Hebrew, Arabic and
other MRLs, tokens may carry multiple POS per
word, and are required to be segmented for further
processing. We provide a framework that extracts
subword morphological units given contextualized
word vectors, that enables to evaluate PLMs on
morphologically-aware datasets where words can
have multiple POS tags and feature-bundles.



‘ Corpus H File Size Sentences = Words ‘
Oscar (deduped) 9.8GB 209M 1,043M
Twitter 6.9GB 71.5M 774M
Wikipedia 1.1GB 6.3M 127M
Total 17.9GB 98.7M 1.9B

Table 2: AlephBERT’s Training Data.
3 AlephBERT Pre-Training

Data The PLM termed AlephBERT that we pro-
vide herein is trained on a larger dataset and a larger
vocabulary than any Hebrew BERT instantiation
before. The data we train on is listed in Table 2.
Concretely, we employ the following datasets for
pre-training: (i) Oscar: Deduplicated Hebrew por-
tion extracted from Common Crawl via language
classification, filtering and cleaning (Ortiz Suérez
et al., 2020). (ii) Wikipedia: Texts from all of
Hebrew Wikipedia, extracted using Attardi (2015).
(iii) Twitter: Hebrew tweets collected between
2014-09-28 and 2018-03-07. We removed markers
(“RT:”, “@” user mentions and URLSs), and elimi-
nated duplicates. For data statistics, see Table 2.

The Hebrew portions of Oscar and Wikipedia
provide us with a training-set size orders-of-
magnitude smaller compared with resource-savvy
languages, as shown in Table 1. In order to build
a strong PLM we need a considerable boost in
the amount of sentences the PLM can learn from,
which in our case comes form massive amounts of
tweets added to the training set. We acknowledge
the potential inherent concerns associated with this
data source (population bias, behavior patterns, bot
masquerading as humans etc.) and note that we
have not made any explicit attempt to identify these
cases. Honoring ethical and legal constraints we
have not manually analyzed nor published this data
source. While the free form language expressed
in tweets might differ significantly from the text
found in Oscar and Wikipedia, the sheer volume of
tweets helps us close the resource gap substantially
with minimal effort.’

Model We used the Transformers training frame-
work of Huggingface (Wolf et al., 2020) and trained
two different models — a small model with 6
hidden layers learned from the Oscar portion of
our dataset, and a base model with 12 hidden lay-
ers which was trained on the entire dataset. The
processing units used are wordpieces generated
by training BERT tokenizers over the respective

3For more details and an ethical discussion, see Section 8.
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datasets with a vocabulary size of 52K in both cases.
Following the work on RoBERTa (Liu et al., 2019)
we optimize AlephBERT with a masked-token pre-
diction loss. We deploy the default masking con-
figuration where 15% of word piece tokens are
masked. In 80% of the cases, they are replaced by
[MASK], in 10% of the cases, they are replaced
by a random token and in the remaining cases, the
masked tokens are left as is.

Operation To optimize GPU utilization and de-
crease training time we split the dataset into 4
chunks based on the number of tokens in a sen-
tence and consequently we are able to increase
batch sizes and dramatically shorten training time.

chunkl | chunk2 | chunk3 chunk4
max tokens 0>32 | 32>64 | 64>128 | 128>512
num sentences 70M 20M M 2M

We trained for 5 epochs with learning rate le-
4 followed by an additional 5 epochs with learn-
ing rate at 5e-5 for a total of 10 epochs. We
trained AlephBERT},s. over the entire dataset on
an NVidia DGX server with 8§ V100 GPUs which
took 8 days. AlephBERT a1 was trained over the
Oscar portion only, using 4 GTX 2080ti GPUs tak-
ing 5 days in total.

4 The Morphological Extraction Model

Modern Hebrew is a Semitic language with rich
morphology and complex orthography. As a re-
sult, the basic processing units in the language
are typically smaller than raw space-delimited to-
kens. Subsequently, most standard evaluation tasks
require knowledge of the internal morphological
boundaries within the raw tokens. To accommodate
this granularity requirement we developed a neu-
ral model designed to produce the disambiguated
morphological segments for each token in context.
These linguistic segmentations are distinct of the
word-pieces employed by the PLM.

In the morphological extraction neural model,
each input token is represented by (one or more)
contextualized word-vectors produced by the PLM.
Each word-piece token is associated with a vector,
and for each space-delimited token, we average the
word-piece vectors. We feed the resulting vector
into a seq2seq model and encode the surface to-
ken as a sequence of characters using a BILSTM,
followed by a decoder that generates an output
sequence of characters, using space as a special
symbol signaling morphological boundaries.



Raw input 1351 n"35 (Ibit hlbn)

Space-delimited words 1257 (hlbn) ‘ n"ab (Ibit)

Index 5 4 3 2 1
Segmentation 125 (Ibn) white 11 (h) the n"a (bit) house 11 (h) the 5()to
POS ADJ DET NOUN DET ADP
Morphology Gender=Masc|Number=Sing | PronType=Art | Gender=Masc|Number=Sing | PronType=Art -
Dependencies 3/amod 5/det 1/obj 3/def 0/ROOT
Word-level NER E-ORG B-ORG

Morpheme-level NER E-ORG | I-ORG I-ORG | BORG | O

Table 3: Illustration of Evaluated Word-Based and Morpheme-Based Downstream Tasks. The two-word input
phrase “]:‘an n"a5”, transliterated as “Ibit hlbn” (fo the White House), decompose into five morphological segments
(‘to-the-house the-white’). The Hebrew text goes from right to left.

Output segment labels
(=) =N

LsTM |

Decoder
.. n. n.
Encoder

Input word-piece
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Figure 2: Ilustration of the Morphological Extraction
Model. The embedded vectors associated with the word-
pieces (vl and v2 representing word-piece vectors gen-
erated in Figure 1) are combined (averaged) to produce
a single word context vector. This context vector ini-
tializes the hidden (forward and backward) state of a
BiLSTM that encodes the characters of the origin word.
The decoder LSTM outputs a sequence of characters,
where a special empty symbol indicates a morphologi-
cal segment boundary. In multi-task setup, a fully con-
nected linear layer is used to predict a label whenever a
segment boundary is detected.

For tasks involving both segments and labels
(Part-of-Speech Tagging, Morphological-Features
Tagging, Named-Entity Recognition) we expand
this network in a multi-task learning setup; when
generating an end-of-segment (space) symbol, the
model also predicts task label, and we combine the
segment-label losses. The complete morphological
extraction architecture is illustrated in Figure 2.

S Experimental Setup

Goal In order to empirically gauge the effect of
model size and data quantity on the quality of the
language model, we compare the performance of
AlephBERT (both small and base) with all existing
Hebrew BERT instantiations. In this Section, we
detail the tasks and evaluation metrics. In the next

; ; ; ;s
f i i 1
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Section, we present and analyze the results.

5.1 Sentence-Based Modeling

Sentiment Analysis We first report on a sentence
classification task, assigning a sentence with one of
three sentiment values: negative, positive, neutral.
Sentence-level predictions are achieved by directly
fine-tuning the PLM using an additional sentence-
classification head The sentence-level embedding
vector representation is the one associated with the
special [CLS] BERT token.

We used a version of the Hebrew Facebook Sen-
timent dataset (henceforth FB) of Amram et al.
(2018) which we corrected by removing leaked
samples.* We fine-tuned all models for 15 epochs
with 5 different seeds, and report mean accuracy.

5.2 Word-Based Modeling

Named Entity Recognition In this setup we as-
sume a sequence labeling task based on space-
delimited word-tokens. The input comprises of
the sequence of words in the sentence, and the out-
put contains BIOES tags indicating entity spans.
Word-level NER predictions are achieved by di-
rectly fine-tuning the PLMs using an additional
token-classification head In cases where a word is
split into multiple word pieces by the PLM tok-
enizer, we employ common practice and use the
first word-piece vector.

We evaluate this model on two corpora. (i) The
Ben-Mordecai (BMC) corpus (Ben Mordecai and
Elhadad, 2005), which contains 3294 sentences
with 4600 entities and seven different entity cate-
gories (Date, Location, Money, Organization, Per-
son, Percent, Time). To remain compatible with
the original work we train and test the models on 3

*This version has a total of 8,465 samples and is pub-
licly available here: https://github.com/OnlpLab/
Hebrew-Sentiment-Data


https://github.com/OnlpLab/Hebrew-Sentiment-Data
https://github.com/OnlpLab/Hebrew-Sentiment-Data

different splits as in Bareket and Tsarfaty (2020).
(i1) The Named Entities and MOrphology (NEMO)
corpus® (Bareket and Tsarfaty, 2020) which is an
extension of the SPMRL dataset with Named Enti-
ties. The NEMO corpus contains 6220 sentences
with 7713 entities of nine entity types (Language,
Product, Event, Facility, Geo-Political Entity, Lo-
cation, Organization, Person, Work-Of-Art). We
trained both models for 15 epochs with 5 different
seeds and report mean F1 scores on entity spans.

5.3 Morpheme-Based Modeling

Finally, to probe the PLM capacity to accurately
predict word-internal structure, we test all models
on five tasks that require knowledge of the internal
morphology of raw words. The input to all these
tasks is a Hebrew sentence represented as a raw
sequence of space-delimited words:

(i) Segmentation: Generating a sequence of
morphological segments representing the ba-
sic processing units. These units comply with
the 2-level representation of tokens defined by
UD, each unit with a single POS tag.®

(ii) Part-of-Speech (POS) Tagging: Tagging
each segment with a single POS.

(iii) Morphological Tagging: Tagging each
segment with a single POS and a set of fea-
tures. Equivalent to the AllTags evaluation
defined in the CoNLL18 shared task.’

(iv) Morpheme-Based NER: Tagging each
segment with a BIOES and its entity-type.
(v) Dependency Parsing: Use each segment
as a node in the predicted dependency tree.

We train and test all morphologically-aware mod-
els using two available morphologically-aware He-
brew resources:

¢ The Hebrew Section of the SPMRL Task (Sed-
dah et al., 2013).

¢ The Hebrew Section of the UD treebanks col-
lection (Sadde et al., 2018)

All models were trained for 15 epochs with 5 dif-
ferent seeds and we report two variants of mean F1
scores as described next.

5 Available here: https://github.com/OnlpLab/
NEMO-Corpus

®https://universaldependencies.org/u/
overview/tokenization.html

"https://universaldependencies.org/
conlll8/results—alltags.html
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For tasks (i)—(iv) we use the morphological ex-
traction model (Section 4) to extract the morpho-
logical segments of each word in context and also
predict the labels via Multitask training.

For task (iv) the NER task, we use the
morphologically-annotated data files of the afore-
mentioned SPMRL-based NEMO corpus (Bareket
and Tsarfaty, 2020). In addition to the multi-task
setup described earlier, we design another setup
in which we first only segment the text, and then
perform fine-tuning with a token classification at-
tention head directly applied to the PLM output
for the segmented tokens (similar to the way we
fine-tune the PLM for the word-based NER task de-
scribed in the previous section). We acknowledge
that we are fine-tuning the PLM on morphological
segments the model was not originally pre-trained
on, however, as we shall see shortly, this seemingly
unintuitive strategy performs surprisingly well.

For task (v) we set up a dependency parsing
evaluation pipeline using the standalone Hebrew
parser offered by More et al. (2019) (a.k.a YAP)
which was trained to produce SPMRL dependency
labels. The morphological information for each
word (namely the segments and POS tags) is recov-
ered by our morphological extraction model, and
is used as input features for the YAP standalone
dependency parser.

5.4 Morpheme-Based Evaluation Metrics

Aligned Segment The CoNLL18 Shared Task
evaluation campaign® reports scores for segmen-
tation and POS tagging’ for all participating lan-
guages. For multi-segment words, the gold and pre-
dicted segments are aligned by their Longest Com-
mon Sub-sequence, and only matching segments
are counted as true positives. We use the script
to compare aligned segment and tagging scores
between oracle (gold) segmentation and realistic
(predicted) segmentation.

Aligned Multi-Set In addition to the CoNLL18
metrics, we compute F1 scores, with a slight but
important difference from the shared task, as de-
fined by More et al. (2019) and Seker and Tsarfaty
(2020). For each word, counts are based on multi-
set intersections of the gold and predicted labels
ignoring the order of the segments while account-

8https://universaldependencies.org/
conlll8/results.html

‘respectively referred to as ’Segmented Words’ and
"UPOS’ in the CoNLL18 evaluation script


https://github.com/OnlpLab/NEMO-Corpus
https://github.com/OnlpLab/NEMO-Corpus
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https://universaldependencies.org/conll18/results-alltags.html
https://universaldependencies.org/conll18/results-alltags.html
https://universaldependencies.org/conll18/results.html
https://universaldependencies.org/conll18/results.html

Table 4: Word-based NER F1. Previous SOTA on both
corpora reported by the NEMO models of Bareket and
Tsarfaty (2020). Sentiment Analysis accuracy on the
corrected version of the corpus of Amram et al. (2018).

ing for the number of each segment. Aligned mset
is based on set difference which acknowledges the
possible undercover of covert morphemes which is
an appropriate measure of morphological accuracy.

Discussion To illustrate the difference between
aligned segment and aligned mset, let us take for
example the gold segmented tag sequence: b/IN,
WDET, bit/NOUN and the predicted segmented tag
sequence b/IN, bit/NOUN. According to aligned
segment, the first segment (b/IN) is aligned and
counted as a true positive, the second segment how-
ever is considered as a false positive (bit/NOUN)
and false negative (//DET) while the third gold seg-
ment is also counted as a false negative (bit/NOUN).
On the other hand with aligned multi-set both b/IN
and bit/NOUN exist in the gold and predicted sets
and counted as true positives, while //DET is mis-
matched and counted as a false negative. In both
cased the total counts across words in the entire
datasets are incremented accordingly and finally
used for computing Precision, Recall and F1.

6 Results

Sentence-Level Task Sentiment analysis accu-
racy results are provided in Table 4. All BERT-
based models substantially outperform the original
CNN Baseline reported by Amram et al. (2018).
AlephBERT},. is setting a new SOTA.

Word-Based Task On our two NER benchmarks,
we report F1 scores on the word-based fine-tuned
model in Table 4. While we see noticeable improve-
ments for the mBERT and HeBert variants over
the current SOTA, the most significant increase
is achieved by AlephBERT},s, setting a new and
improved SOTA on this task.

Morpheme-Level Tasks As a particular novelty
of this work, we report BERT-based results on sub-
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Task NER (Word) Sentiment ‘ Task H Segment POS Features UAS LAS

COI'I)US NEMO BMC FB Prev. SOTA NA 90.49 85.98 75.73  69.41

mBERT | 9736 9337 8936 80.17 749

Prev. SOTA || 77.75 85.22 NA HeBERT || 97.97 9461 9093 81.86 76.54

mBERT | 79.07 87.77 79.07 AlephBERTyman | 9771 9411 9056 815 76.07

HeBERT 81.48 89.41 81.48 AlephBERTase 98.10 9490 9141 82.07 769
AlephBERTspan || 78.69  89.07 78.69 Table 5: Morpheme-Based results on the SPMRL cor-
AlephBERThyee || 84.91  91.12 84.91 pus. Aligned MultiSet (mset) F1 for Segmentation, POS

tags and Morphological Features - previous SOTA re-
ported by Seker and Tsarfaty (2020) (POS) and More
et al. (2019) (features). Labeled and Unlabeled Accu-
racy Scores for morphological-level Dependency Pars-
ing - previous SOTA reported by More et al. (2019)
(uninfused/realistic scenario)

| Task | Segment POS  Features |
Prev. SOTA NA 94.02 NA
mBERT 97.70 94.76 90.98
HeBERT 98.05 96.07 92.53
AlephBERTman 97.86 95.58 92.06
AlephBERT} 4 98.20 96.20 93.05

Table 6: Morpheme-Based Aligned MultiSet (mset) F1
results on the UD corpus. Previous SOTA reported by
Seker and Tsarfaty (2020) (POS)

word (segment-level) information. Specifically, we
evaluate word segmentation, POS, Morphological
Features, NER and dependencies compared against
morphologically-labeled test sets.

In all cases, we use raw space-delimited tokens
as input and produce morphological segments with
our morphological extraction model.

Table 5 presents evaluation results for the
SPRML dataset, compared against the previous
SOTA of More et al. (2019). For segmentation,
POS tagging, and morphological tagging we report
aligned multiset F1 scores. BERT-based segmen-
tations are similar, all scoring in the high range of
97-98 F1, which are hard to improve further.!”

For POS tagging and morphological features, all
BERT-based models considerably outperform the
previous SOTA. For syntactic dependencies we re-
port labeled and unlabeled accuracy scores of the
trees generated by YAP (More et al., 2019) on our
predicted segmentation. Here we see impressive
improvement compared to the previous SOTA of
a joint morpho-syntactic framework. It confirms
that morphological errors early in the pipeline neg-
atively impact downstream tasks, and highlight the
importance of morphologically-driven benchmarks

!0 According to error analysis, most of these errors are an-
notation errors or truly ambiguous cases.



Task Segment POS  Features ‘
Prev. SOTA 96.03 93.75 91.24
mBERT 97.17 94.27  90.51
HeBERT 97.54 95.60 92.15
AlephBERT a1 97.31 95.13 91.65
AlephBERTy,se 97.70 95.84 92.71

Table 7: Morpheme-Based Aligned (CoNLL shared
task) F1 on the UD corpus. Previous SOTA reported by
Minh Van Nguyen and Nguyen (2021)

Architecture Pipeline Pipeline MultiTask
Segmentation (Oracle) (Predicted)

Task Seg NER | Seg | NER | Seg | NER
Prev. SOTA | 100.00 | 79.10 | 95.15 | 69.52 | 97.05 | 77.11
mBERT | 100.00 | 77.92 | 97.68 | 72.72 | 97.24 | 72.97
HeBERT | 100.00 | 82 | 98.15 | 76.74 | 97.92 | 74.86
AlephBERT 1 | 100.00 | 79.44 | 97.78 | 73.08 | 97.74 | 72.46
AlephBERTh,e | 100.00 | 83.94 | 98.29 | 80.15 | 98.19 | 79.15

Table 8: Morpheme-Based NER F1 on the NEMO cor-
pus. Previous SOTA reported by Bareket and Tsarfaty
(2020) for the Pipeline (Oracle), Pipeline (Predicted)
and a Hybrid (almost-joint) scenarios, respectively.

as an integral part of PLM evaluation for MRLs.

All in all we see a repeating trend placing
AlephBERT}. first on all morphological tasks,
indicating the depth of the model and a larger pre-
training dataset improve the ability of the PLM to
capture word-internal structure. These trends are
replicated on the UD Hebrew corpus, for two differ-
ent evaluation metrics — the Aligned MultiSet F1
Scores as in previous work on Hebrew (More et al.,
2019), (Seker and Tsarfaty, 2020), and the Aligned
Segment F1 scores metrics as described in the UD
shared task (Zeman et al., 2018) — reported in
Tables 6 and 7 respectively.

Morpheme-Level NER results Earlier in this
section we considered NER a word-level task that
simply requires fine-tuning on the word level. How-
ever, this setup is not accurate enough and less
useful for downstream tasks, since the exact entity
boundaries are often word internal (Bareket and
Tsarfaty, 2020). We hence report morpheme-based
NER evaluation, respecting the exact boundaries
of entity mentions.

To obtain morpheme-based labeled-span of
Named Entities, we could either employ a pipeline,
first predicting segmentation and then applying a
fine-tuned labeling model directly on the segments,
or employ a multi-task model and predict NER
labels while performing segmentation.

Table 8 presents segmentation and NER re-
sults for 3 different scenarios: (i) a pipeline as-
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suming gold segmentation (ii) a pipeline assum-
ing predicted segmentation (iii) segmentation and
NER labels obtained jointly in a multi-task setup.
AlephBERT},. consistently scores highest in all 3.

Looking at the Pipeline-Predicted scores, there
is a clear correlation between a higher segmenta-
tion quality of a PLM and its ability to produce
better NER results. Moreover, the differences
in NER scores are considerable (unlike the sub-
tle differences in segmentation, POS and morpho-
logical features scores) and draw our attention to
the relationship between the size of the PLM, the
size of the pre-training data and the quality of
the final NER models. Specifically, HeBERT and
AlephBERT,,;; were both pre-trained on similar
datasets and comparable vocabulary sizes (heBERT
with 30K and AlephBERT-small with 52K) but
HeBERT, with its 12 hidden layers, performs better
compared to AlephBERT ;1 which is composed
of only 6 hidden layers. It thus appears that seman-
tic information is learned in those deeper layers,
helping in both discriminating entities and improv-
ing the morphological segmentation capacity.

In addition, comparing AlephBERT},, and
HeBERT we note that they are both modeled with
the same 12 hidden layer architecture — the only
differences between them are in the size of their vo-
cabularies (30K vs 52K respectively) and the size
of the training data (Oscar-Wikipedia vs Oscar-
Wikipedia-Tweets). The improvements exhibited
by AlephBERT},.s, compared to HeBERT, suggest
large amounts of training data and larger vocabu-
lary are invaluable. By exposing AlephBERT},e to
a substantially larger amount of text we increased
the ability of the PLM to encode syntactic and se-
mantic signals associated with Named Entities.

Our NER experiments further suggest that a
pipeline composed of our accurate morphological
segmentation model followed by AlephBERT ¢
with a token classification head is the best strategy
for generating morphologically-aware NER labels.
Finally, we observe that while AlephBERT excels
at morphosyntactic tasks, on tasks with a more se-
mantic flavor there is room for improvement.

7 Conclusion

Modern Hebrew, a morphologically-rich and
medium-resourced language, has for long suffered
from a gap in the resources available for NLP ap-
plications, and lower level of empirical results than
observed in other, resource-rich languages. This



work provides the first step in remedying the situ-
ation, by making available a large Hebrew PLM,
named AlephBERT, with larger vocabulary and
larger training set than any Hebrew PLM before,
and with clear evidence as to its empirical ad-
vantages. Crucially, we augment the PLM with
a morphological disambiguation component that
matches the input granularity of the downstream
tasks. Our system does not presuppose Hebrew-
specific linguistic-rules, and can be transparently
applied to any language for which 2-level segmenta-
tion data (i.e., the standard UD benchmarks) exists.
AlephBERTy,,. obtains state-of-the-art results on
morphological segmentation, POS tagging, mor-
phological feature extraction, dependency parsing,
named-entity recognition, and sentiment analysis,
outperforming all existing Hebrew PLMs. Our pro-
posed morphologically-driven pipeline!! serves as
a solid foundation for future evaluation of Hebrew
PLMs and of MRLs in general.

8 Ethical Statement

We follow Bender and Friedman (2018) regarding
professional practice for NLP technology and ad-
dress ethical issues that result from the use of data
in the development of the models in our work.

Pre-Training Data. The two initial data sources
we used to pre-train the language models are Os-
car and Wikipedia. In using the Wikipedia and
Oscar we followed standard language model train-
ing efforts, such as BERT and RoBERTa (Devlin
etal., 2019; Liu et al., 2019). We use the language-
specific Oscar data according to the terms specified
in Ortiz Suarez et al. (2020) and we extract texts
from language-specific Wikipedia dumps. On top
of that, a big portion of the data used to train Aleph-
BERT originates from the Twitter sample stream. '?
As shown in Table 2, this data set includes 70M
Hebrew tweets which were collected over a pe-
riod of 4 years (2014 to 2018). We acknowledge
the potential concerns inherently associated with
Twitter data (population bias, behavior patterns,
bot masquerading as humans etc.) and note that we
have not made any explicit attempt to identify these
cases. We only used the text field of the tweets and
completely discard any other information included

" Available at https://github.com/OnlpLab/
AlephBERT

Phttps://developer.twitter.com/en/
docs/twitter—api/tweets/volume—-streams/
api-reference/get-tweets-sample-stream
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in the stream (such as identities, followers, struc-
ture of threads, date of publication, etc). We have
not made any effort to identify or filter out any
samples based on user properties such as age, gen-
der and location nor have we made any effort to
identify content characteristics such as genre or
topic. To reduce exposure of private information
we cleaned up all user mentions and URLs from
the text. Honoring ethical and legal constraints we
have not manually analyzed nor published this data
source. While the free-form language expressed
in tweets might differ significantly from the text
found in Oscar/Wikipedia, the sheer volume of
tweets helps us close the substantial resource gap.

Training and Evaluation Benchmarks. The
SPMRL (Seddah et al., 2013) and UD (Sadde et al.,
2018) datasets we used for evaluating segmentation,
tagging and parsing, were used to both train our
morphological extraction model as well as provide
us with the test data to evaluate on morphological
level tasks. Both datasets are publicly available and
widely used in research and industry.

The NEMO corpus (Bareket and Tsarfaty, 2020)
used to train and evaluate word and morpheme
level NER is an extension of the SPMRL dataset
augmented with entities and follows the same li-
cense terms. The BMC dataset used for training
and evaluating word-level NER was created and
published by Ben Mordecai and Elhadad (2005)
and it is publicly available for NER evaluation.

We used the sentiment analysis dataset of Am-
ram et al. (2018) for training and evaluating Ale-
phBERT on a sentence level task, and we follow
their terms of use. As mentioned, this dataset had
some flows, and we describe carefully the steps
we’ve taken to fix them before using this corpus in
our experiments for internal evaluation purposes.
We make our in-house cleaning scripts and split
information publicly available.
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