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Abstract

Motivated by the success of T5 (Text-To-
Text Transfer Transformer) in pre-trained nat-
ural language processing models, we pro-
pose a unified-modal SpeechT5 framework
that explores the encoder-decoder pre-training
for self-supervised speech/text representation
learning. The SpeechT5 framework consists
of a shared encoder-decoder network and six
modal-specific (speech/text) pre/post-nets. Af-
ter preprocessing the input speech/text through
the pre-nets, the shared encoder-decoder net-
work models the sequence-to-sequence trans-
formation, and then the post-nets generate the
output in the speech/text modality based on the
output of the decoder. Leveraging large-scale
unlabeled speech and text data, we pre-train
SpeechT5 to learn a unified-modal representa-
tion, hoping to improve the modeling capabil-
ity for both speech and text. To align the tex-
tual and speech information into this unified
semantic space, we propose a cross-modal vec-
tor quantization approach that randomly mixes
up speech/text states with latent units as the
interface between encoder and decoder. Ex-
tensive evaluations show the superiority of the
proposed SpeechT5 framework on a wide va-
riety of spoken language processing tasks, in-
cluding automatic speech recognition, speech
synthesis, speech translation, voice conver-
sion, speech enhancement, and speaker iden-
tification. We release our code and model
at https://github.com/microsoft/
SpeechT5.

1 Introduction

Starting with ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019), substantial work has shown
that pre-trained models can significantly improve
in various natural language processing (NLP) tasks

∗Equal contribution. Work is done by the first two authors
during internship at Microsoft Research Asia. Correspondence
to: Long Zhou (lozhou@microsoft.com)

Figure 1: An illustration of the SpeechT5 frame-
work, which treats spoken language processing tasks
as a speech/text to speech/text format, including au-
tomatic speech recognition (ASR), speech translation
(ST), speech identification (SID), text to speech (TTS),
voice conversion (VC), and speech enhancement (SE).

(Radford et al., 2019; CONNEAU and Lample,
2019; Yang et al., 2019; Dong et al., 2019; Lewis
et al., 2020). Following the pre-training techniques
in NLP, self-supervised speech representation learn-
ing has also been investigated and shown promising
results, benefiting from richly learned representa-
tions (Chung and Glass, 2018; Chuang et al., 2020;
Song et al., 2019; Baevski et al., 2020; Wang et al.,
2021; Hsu et al., 2021; Chung et al., 2021a), such
as wav2vec 2.0 (Baevski et al., 2020) and HuBERT
(Hsu et al., 2021).

However, previous speech pre-training work suf-
fers from two problems: (1) most of them learn the
speech representation with only unlabeled speech
data but ignore the importance of textual data
to spoken language tasks (e.g., automatic speech
recognition) which require the modality transfor-
mation; (2) most of these models solely rely on a
pre-trained speech encoder for various downstream
tasks, leaving the decoder not pre-trained for the
sequence-to-sequence generation tasks. How to de-
sign a unified encoder-decoder model that can take
advantage of both unlabeled speech and text data to
improve various spoken language processing tasks
is not well explored.

Inspired by the T5 method (Raffel et al., 2020),
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we attempt to formulate each spoken language pro-
cessing task as a speech/text to speech/text prob-
lem via an encoder-decoder framework, which en-
ables us to use the same pre-trained model with
bimodal data across diverse tasks, as shown in
Figure 1. To achieve this, we propose a unified-
modal pre-training framework, SpeechT5, contain-
ing an encoder-decoder backbone network and
modal-specific pre/post-nets. With the pre-nets,
the input speech/text is embedded in a shared
space, and the encoder-decoder backbone net-
work models the sequence-to-sequence conversion,
from which the model-specific post-nets generate
the speech/text output. Particularly, SpeechT5 is
mainly pre-trained with a denoising sequence-to-
sequence method by leveraging large-scale unla-
beled text and speech corpus. To align the textual
and acoustic information into a unified semantic
space, the proposed SpeechT5 model (1) maps text
and speech representations into a shared vector
quantization space, and (2) randomly mixes up the
quantized latent representations and the contextual
states, which can better guide the quantizer to learn
the cross-modal features.

We fine-tune SpeechT5 on a wide variety of
downstream spoken language processing tasks, in-
cluding automatic speech recognition (ASR), text-
to-speech (TTS), speech translation (ST), voice
conversion (VC), speech enhancement (SE), and
speaker identification (SID). Massive experiments
show that the proposed SpeechT5 model achieves a
significant improvement on these spoken language
processing tasks compared with the state-of-the-
art baselines. Specifically, the proposed SpeechT5
outperforms wav2vec 2.0 (Baevski et al., 2020)
and HuBERT (Hsu et al., 2021) with the BASE

model on the ASR task and also performs better
than the state-of-the-art voice Transformer network
(Huang et al., 2021) on the VC task. Besides,
SpeechT5 is significantly superior to SpeechNet
(Chen et al., 2021b) and pre-trained models from
SUPERB (Yang et al., 2021) and achieves the state-
of-the-art performance (i.e., 96.49%) on the SID
task. We further provide an empirical comparison
of the pre-training tasks and modules, and the ab-
lation study demonstrates the effectiveness of the
proposed joint speech-text pre-training method.

The contributions of this paper are summarized
as follows.

• To the best of our knowledge, this is the first
work to investigate a unified encoder-decoder

framework for various spoken language pro-
cessing tasks.

• We propose a cross-modal vector quantiza-
tion approach, which learns the implicit align-
ment between acoustic and textual represen-
tation with large-scale unlabeled speech and
text data.

• Extensive experiments on spoken language
processing tasks demonstrate the effectiveness
and superiority of the proposed SpeechT5
model.

2 SpeechT5

In this section, we propose SpeechT5, a unified-
modal framework for learning joint contextual rep-
resentations for speech and text data via a shared
encoder-decoder structure.

2.1 Model Architecture
Figure 2(a) shows the model architecture of the pro-
posed SpeechT5 model. It consists of an encoder-
decoder module and six modal-specific pre/post-
nets. The pre-nets convert the input speech Xs ∈
Ds or text Xt ∈ Dt to a unified space of hid-
den representations and then feed them into the
shared encoder-decoder to perform the sequence-to-
sequence conversion. Finally, the post-nets gener-
ate the output in the speech or text modality, based
on the decoder output.

Input/Output Representations To train a single
model for a diverse set of spoken language process-
ing tasks, we formulate them as “speech/text to
speech/text” tasks, where the model is fed with
speech/text as the input and generates the corre-
sponding output in the speech/text format. Specif-
ically, a text is split into a sequence of charac-
ters Xt = (xt

1, ...,x
t
Nt) as the input and output.

For speech modality, the raw waveform Xs =
(xs

1, ...,x
s
Ns) is used as the input, and a sequence of

the log Mel-filterbank features Xf = (xf
1 , ...,x

f
Nf )

extracted from raw audio using librosa tool1 is
adopted as the target output. A vocoder (Kong
et al., 2020) is leveraged to generate the final wave-
form from the generated features.

Encoder-Decoder Backbone The Transformer
encoder-decoder model (Vaswani et al., 2017) is
used as the backbone network of SpeechT5. Please

1https://librosa.org/doc/latest/index.html.
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Figure 2: (a) The model architecture of SpeechT5, which contains an encoder-decoder module and six modal-
specific pre/post-nets. Most spoken language processing tasks can be learned by concatenating the encoder-decoder
module and the corresponding pre-net and post-net. (b) By sharing discrete tokens across modalities, the joint pre-
training approach builds bridges between speech and text. Hidden states and latent units are mixed up and used as
the inputs of the cross-attention module in the decoder.

refer to Vaswani et al. (2017) for more details.
We employ the relative position embedding (Shaw
et al., 2018) to help capture the relative position
differences between elements in the input. Specifi-
cally, we only add the relative position embedding
to the dot-product weights of the self-attention.

Speech Pre/Post-Net The convolutional feature
extractor of wav2vec 2.0 (Baevski et al., 2020)
serves as the speech-encoder pre-net to downsam-
ple raw waveform Xs and produce a sequence of a
speech utterance H = (h1, ...,hNh). The speech-
decoder pre-net is a neural network composed of
three fully connected layers with the ReLU acti-
vation, fed with the log Mel-filterbank Xf . To
support multi-speaker TTS and VC, the speaker
embedding extracted with the x-vector (Snyder
et al., 2018) is concatenated with the output of
the speech-decoder pre-net followed by a linear
layer. The speech-decoder post-net consists of two
modules. The first module uses a linear layer fed
with the decoder output to predict the log Mel-
filterbank Yf = (yf

1 , ...,y
f
Nf ), followed by five

1-dimensional convolutional layers to produce a
residual to refine the predicted Yf . Another linear
module is added to project the decoder output to a
scalar for predicting the stop token.

Text Pre/Post-Net We use shared embeddings as
the text-encoder pre-net and text-decoder pre/post-
nets. The pre-net transforms a token index into an
embedding vector. The post-net transforms the hid-
den state into the probability distribution of tokens,
normalized by the softmax function.

2.2 Pre-Training

The proposed SpeechT5 model can be pre-trained
with large-scale collections of unlabeled speech
and text corpus. The proposed joint pre-training
method can align the textual and acoustic informa-
tion into a unified semantic space.

Speech Pre-Training Leveraging unlabeled
speech data Ds to learn general speech repre-
sentations for both classification and generation
tasks, SpeechT5 is trained with two types of
tasks: bidirectional masked prediction and
sequence-to-sequence generation.

Following HuBERT (Hsu et al., 2021), the bidi-
rectional masked prediction leverages a masked
language model similar to BERT (Devlin et al.,
2019) for the encoder, in which an acoustic unit
discovery model provides the frame-level targets
Z = (z1, ..., zNh)2. Specifically, we apply span
mask strategies to the output H from speech-
encoder pre-net, where 8% of timesteps are ran-
domly selected as start indices, and spans of 10
steps are masked. The Transformer encoder takes
masked H as the input and produces hidden rep-
resentations U = (u1, ...,uNh). Based on these
hidden representations, the cross-entropy loss is
computed over masked timesteps as

Lsmlm =
∑
n∈M

log p(zn|Ĥ, n), (1)

where Ĥ denotes the masked version of H, M
2The target labels are generated by clustering outputs of

the 6-th Transformer layer in the first iteration HuBERT BASE
model via the k-means clustering method with 500 clusters.
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denotes the set of masked timesteps, and zn denotes
the frame-level target at timestep n from Z.

Furthermore, we propose to reconstruct the orig-
inal speech via a sequence-to-sequence generation
task, given the randomly masked input as intro-
duced in bidirectional masked prediction. Fol-
lowing seq2seq TTS models (Li et al., 2019), we
enforce the corresponding predicted output Yf ,
which is generated through the speech-decoder pre-
net, Transformer decoder, and speech-decoder post-
net, to be close to the original Xf by minimizing
their L1-distance as

Ls1 =
Nf∑
n=1

‖yf
n − xf

n‖1, (2)

where xf
n denotes n-th an 80-dimensional log Mel-

filterbank from Xf . Besides, we use the binary
cross-entropy (BCE) loss Lsbce for the stop token.

Text Pre-Training With unlabeled text data Dt,
SpeechT5 is trained to reconstruct the model output
Yt = (yt

1, ...,y
t
Nt) to the original text Xt, using

the corrupted text X̂t = (x̂t1, ..., x̂
t
M ) as the input

generated with a mask-based noising function. Fol-
lowing the text infilling approach in BART3 (Lewis
et al., 2020), we randomly sample 30% of text
spans to mask, where the span length of text spans
draws from a Poisson distribution (λ = 3.5), and
each span is replaced with a single mask token. For-
mally, SpeechT5, including text-encoder pre-net,
encoder-decoder model, and text-decoder pre/post
nets, is optimized to generate the original sequence
with the maximum likelihood estimation as

Ltmle =
Nt∑
n=1

log p(yt
n|yt

<n, X̂
t), (3)

Joint Pre-Training The above pre-training
methods can only leverage speech or text data to
model acoustic or language information individu-
ally. To build a cross-modality mapping between
speech and text, which is essential for tasks such
as ASR and TTS, we propose a cross-modal vec-
tor quantization method to learn representations
capturing the modality-invariant information.

Specifically, we utilize vector quantized embed-
dings as a bridge to align the speech representation
and text representation through a shared codebook,

3We conducted experiments to compare the BART (Lewis
et al., 2020) and T5 (Raffel et al., 2020) mask strategies, which
can be found in Appendix A.

as shown in Figure 2(b). Inspired by VQ-VAE
(Oord et al., 2017) and SemFace (Ren et al., 2021),
we first use the quantizer to convert these contin-
uous speech/text representations ui from the out-
put of the encoder into discrete representations ci
from a fixed-size codebook CK , which contains K
learnable embeddings. Then, the nearest neighbor
search is performed between the encoder output
and the embedding of each latent code via the L2

distance as

ci = arg min
j∈[K]

‖ui − cj‖2, (4)

where cj is the j-th quantized vector in the code-
book. Note that we do the same operation for the
output of the speech and text encoders with a shared
codebook.

Then, we randomly replace a proportion (10%)
of the contextual representations with quantized
latent representations in the corresponding time
steps and calculate the cross-attention upon the
mixed representations, which can explicitly guide
the quantizer to utilize the cross-modal informa-
tion. The diversity loss is used to encourage shar-
ing more codes by maximizing the entropy of the
averaged Softmax distribution as

Ld =
1

K

K∑
k=1

pk log pk, (5)

where pk is the averaged probability of choosing
the k-th code in the codebook.

The final pre-training loss with unlabeled speech
and text data can be formulated as

L = Lsmlm + Ls1 + Lsbce + Ltmle + γLd. (6)

where γ is set to 0.1 during pre-training.

2.3 Fine-Tuning
After pre-training, we fine-tune the encoder-
decoder backbone via the loss of the downstream
task. The goal is to measure the learning abilities
of SpeechT5, and we study the performance on a
diverse set of downstream tasks such as ASR, TTS,
ST, VC, SE, and SID. All of the spoken language
processing tasks that we consider can be learned by
concatenating the outputs of the encoder-decoder
backbone and corresponding pre-net and post-net.
Taking ASR as an example, the final model consists
of the speech-encoder pre-net, encoder-decoder,
text-decoder pre-net, and text-decoder post-net,

5726



Model LM dev-clean dev-other test-clean test-other

wav2vec 2.0 BASE (Baevski et al., 2020) - 6.1 13.5 6.1 13.3
HuBERT BASE (Hsu et al., 2021) † - 5.5 13.1 5.8 13.3
Baseline (w/o CTC) - 5.8 12.3 6.2 12.3
Baseline - 4.9 11.7 5.0 11.9
SpeechT5 (w/o CTC) - 5.4 10.7 5.8 10.7
SpeechT5 - 4.3 10.3 4.4 10.4
DiscreteBERT (Baevski et al., 2019) 4-gram 4.0 10.9 4.5 12.1
wav2vec 2.0 BASE (Baevski et al., 2020) 4-gram 2.7 7.9 3.4 8.0
HuBERT BASE (Hsu et al., 2021) 4-gram 2.7 7.8 3.4 8.1
wav2vec 2.0 BASE (Baevski et al., 2020) Transf. 2.2 6.3 2.6 6.3
Baseline Transf. 2.3 6.3 2.5 6.3
SpeechT5 Transf. 2.1 5.5 2.4 5.8

Table 1: Results of ASR (speech to text) on the LibriSpeech dev and test sets when training on the 100 hours subset
of LibriSpeech. † indicates that results are not reported in the corresponding paper and evaluated by ourselves.

which are initialized by SpeechT5 and fine-tuned
via the cross-entropy loss on the corresponding
training data. The baseline systems have the same
architecture as SpeechT5, but the weights of the
baseline encoder are initialized by the HuBERT
BASE model (Hsu et al., 2021) if the input data
of the downstream tasks is speech. It allows raw
waveform as the model input and can provide a
strong baseline.

3 Experiments

3.1 Pre-Training Setup

All models are implemented in Fairseq4 (Ott et al.,
2019). The encoder-decoder backbone contains
12 Transformer encoder blocks and 6 Transformer
decoder blocks, where the model dimension is
768, the inner dimension (FFN) is 3,072, and the
number of attention heads is 12. The above en-
coder setting is the same as that in wav2vec 2.0
BASE and HuBERT BASE. The speech-encoder
pre-net contains 7 blocks of temporal convolu-
tions, each of which is composed of 512 chan-
nels with strides (5, 2, 2, 2, 2, 2, 2) and kernel sizes
(10, 3, 3, 3, 3, 2, 2). For the speech-decoder pre-net
and post-net, we use the same setting as the pre-net
and post-net in Shen et al. (2018) except that the
number of channels of the post-net is 256. For text-
encoder/decoder pre/post-net, a shared embedding
layer with dimension 768 is used. For the vector
quantization, we use two codebooks with 100 en-
tries for the shared codebook module, resulting in
a theoretical maximum of K = 104 code entries.

For speech pre-training, we use the full 960
hours of LibriSpeech audio (Panayotov et al., 2015).

4https://github.com/pytorch/fairseq

For text pre-training, we use the normalized lan-
guage model training text of LibriSpeech as unla-
beled data, which contains 400M sentences.5 We
optimize the model with Adam (Kingma and Ba,
2014) by warming up the learning rate for the first
8% of updates to a peak of 2×10−4, which is linear
decayed for the following updates. We pre-train
the proposed SpeechT5 model on 32 V100 GPUs
with a batch size of around 90s samples per GPU
for speech and 12k tokens per GPU for text and set
the update frequency to 2 for 500k steps.

3.2 Evaluation on ASR

We fine-tune the ASR model with the LibriSpeech
100/960 hours data and train the language model
(LM) with the LibriSpeech LM text data, which is
used for shallow fusion (Gulcehre et al., 2015) dur-
ing the ASR inference. Besides the cross-entropy
loss for the decoder, we add an extra linear layer
to calculate the connectionist temporal classifica-
tion (CTC) loss on the top of the encoder (Watan-
abe et al., 2017), so that we can apply the joint
CTC/attention decoding (Hori et al., 2017) to boost
the performance. We measure the performance of
ASR by the word error rate (WER). The implemen-
tation details can be found in Appendix B.1.

The results of ASR on the 100 hours set of Lib-
riSpeech are reported in Table 1. We compare with
several state-of-the-art self-supervised approaches,
including DiscreteBERT (Baevski et al., 2019),
wav2vec 2.0 (Baevski et al., 2020), and HuBERT
(Hsu et al., 2021). Without LM fusion, the base-
line outperforms wav2vec 2.0 BASE and HuBERT
BASE with the help of the joint CTC/attention de-
coding, which shows the importance of the decoder.

5https://www.openslr.org/11
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Model WER MCD
bdl to slt clb to slt bdl to slt clb to slt

VTN w/ ASR (Huang et al., 2021) 11.1% 10.9% 6.50 6.11
VTN w/ TTS (Huang et al., 2021) 7.6% 9.1% 6.33 6.02
Many-to-many VTN (Kameoka et al., 2021) - - 6.13 5.97

Baseline 21.5% 10.8% 6.26 6.16
SpeechT5 7.8% 6.4% 5.93 5.87

Table 2: Results of VC (speech to speech) on the CMU Arctic. The bdl, clb, and slt denote three speakers.

The proposed SpeechT5 model achieves significant
improvements on all settings compared to wav2vec
2.0 BASE, HuBERT BASE and our strong base-
lines, demonstrating the superiority of the proposed
pre-training method. Furthermore, when decoding
with LM fusion, SpeechT5 obtains the lower WERs
than wav2vec 2.0 BASE on all sets and achieves
the state-of-the-art performance. Due to space con-
straints, the results of 960h fine-tuning experiments
are reported in Appendix C.

3.3 Evaluation on TTS

We fine-tune the pre-trained model on the 460-
hours LibriTTS clean sets (Zen et al., 2019) with
the L1 loss, Lsbce loss, and attention loss (Tachibana
et al., 2018). We utilize the HiFi-GAN (Kong et al.,
2020) vocoder to convert the log Mel-filterbank
to the raw waveform. We evaluate the Natural-
ness with the open-source NISQA-TTS (Mittag
and Möller, 2020), the mean option score (MOS),
and the comparison mean option score (CMOS) by
native speakers on the randomly selected 200 sen-
tences with various lengths (no overlapping with
training data) generated by different models, in
which case we keep the text content consistent.
More details can be found in Appendix B.2.

Model Naturalness MOS CMOS

Ground Truth - 3.87 ± 0.04 -
Baseline 2.76 3.56 ± 0.05 0
SpeechT5 2.91 3.65 ± 0.04 +0.290

Table 3: Results of TTS (text to speech) on the Lib-
riTTS.

Table 3 shows the experimental results of TTS.
The proposed SpeechT5 trained without Lsmlm is
considered because the bidirectional masked pre-
diction loss is proposed to help the encoder learn to
encode the speech signal, and this variant achieves
superior Naturalness, as shown in Table 13 (in Ap-
pendix D). The proposed SpeechT5 model behaves

better than baseline and achieves a performance
of 2.91 Naturalness and 3.65 MOS. Furthermore,
our proposed SpeechT5 obtains a gain of +0.29 in
CMOS with respect to the baseline model, which
suggests the proposed pre-training method signifi-
cantly improves the speech generation quality.

3.4 Evaluation on ST
We evaluate the ST task on the MUST-C dataset
(Di Gangi et al., 2019), including English-German
(EN-DE) and English-French (EN-FR) translation
tasks. We use the default training setting of speech
translation in Fairseq ST (Wang et al., 2020), and
we also average the last 10 checkpoints and use a
beam size of 5 for decoding. Translation results
are evaluated with case-sensitive BLEU (Papineni
et al., 2002). Details about the dataset and fine-tune
setting are introduced in Appendix B.3.

Model EN-DE EN-FR

Fairseq ST (Wang et al., 2020) 22.70 32.90
ESPnet ST (Inaguma et al., 2020) 22.91 32.69
Adapter Tuning (Le et al., 2021) 24.63 34.98

Baseline 23.43 33.76
SpeechT5 (w/o initializing decoder) 24.44 34.53
SpeechT5 25.18 35.30

Table 4: Results of ST (speech to text) on the MUST-C
EN-DE and EN-FR.

We list the BLEU scores of ST in Table 4. The re-
sult of SpeechT5 without initializing the decoder is
also reported since we do not pre-train the decoder
with German or French data, and it outperforms
the strong baseline whose encoder is initialized by
HuBERT encoder. The proposed SpeechT5 further
beats the SpeechT5 without initializing the decoder,
and achieves a significant improvement of 1.75 and
1.54 BLEU scores than baseline in EN-DE and
EN-FR tasks, respectively, which demonstrates the
effectiveness and superiority of our method. Be-
sides, our SpeechT5 model outperforms existing
models such as Fairseq ST (Wang et al., 2020),
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ESPnet ST (Inaguma et al., 2020), and Adapter
Tuning (Le et al., 2021) that employs adapter mod-
ules to be further specialized in each language pair
from different pre-trained models.

3.5 Evaluation on VC
VC aims to convert a speaker-dependent source
speech waveform into a different one while pre-
serving linguistic information of the source speech
waveform. We follow the many-to-many setting
and utilize speech recordings of four speakers in the
CMU Arctic (Kominek and Black, 2004), including
clb, bdl, slt, and rms. For the waveform synthesis,
we use the Parallel WaveGAN (Yamamoto et al.,
2020), a non-autoregressive variant of the WaveNet
vocoder. We employ the average of MCD (Mel-
Cepstral Distortion) and WER as the metrics for
the VC task. More details about the dataset and
fine-tune setting are given in Appendix B.4.

We show the results of VC in Table 2, where
we list the conversion from speaker bdl to slt and
clb to slt as used in the voice Transformer network
(VTN) (Huang et al., 2021). The experimental
results demonstrate that the proposed SpeechT5
model achieves a significant gain than the strong
baseline model. The proposed SpeechT5 model
also outperforms the state-of-the-art VTN variants
in terms of MCD, including VTN fine-tuned from
ASR or TTS (Huang et al., 2021) and many-to-
many VTN (Kameoka et al., 2021).

3.6 Evaluation on SE
SE is the task of removing background noise from
a degraded speech signal and improving the intelli-
gibility and the perceived quality of the signal. We
use the WSJ0 Hipster Ambient Mixtures (WHAM!)
dataset (Wichern et al., 2019) and conduct the 16
kHz max enhance-single task that recovers the sig-
nal from a mixture of only the first WSJ0 speaker
and noise. We utilize HiFi-GAN to transform the
log Mel-filterbank to the raw waveform. Since the
input and output lengths are probably different in
the encoder-decoder model, we can not evaluate it
by PESQ (Rix et al., 2001) and ESTOI (Jensen and
Taal, 2016), so we evaluate the negative impact on
the ASR performance by WER. The implementa-
tion details of SE are in Appendix B.5.

As shown in Table 5, our strong baseline model
recovers contents from the noisy speech, achiev-
ing 10.9% WER from 76.1% WER. Moreover, the
proposed SpeechT5 model gets a relative 9% WER
reduction compared to the strong baseline model.

Model WER

Ground Truth Speech 3.2%
Noisy Speech (Wichern et al., 2019) 76.1%

Baseline 10.9%
SpeechT5 8.9%

Table 5: Results of SE (speech to speech) on the
WHAM!.

The results suggest that although the noisy speech
with WHAM! is challenging as summarized in Ta-
ble 12 (in Appendix B.5), the proposed encoder-
decoder framework can effectively suppress the
noise and recover the content.

3.7 Evaluation on SID
We convert SID, a multi-class classification task of
classifying each utterance for its speaker identity,
to a speech to text task by sequence to sequence
model. Compared to the ASR task, the text embed-
ding table is replaced by a speaker embedding table,
and the decoder predicts speaker identifies at the
first step. We adopt the VoxCeleb1 dataset (Nagrani
et al., 2017), which contains over 100,000 speech
records uttered by 1,251 celebrities extracted from
videos uploaded to YouTube. The top-1 speaker
classification accuracy (ACC) is used as the eval-
uation metric of SID. Refer to Appendix B.6 for
more details about the dataset and fine-tuning.

Model ACC

SUPERB (Yang et al., 2021)
wav2vec 2.0 BASE (Baevski et al., 2020) 75.18%
HuBERT BASE (Hsu et al., 2021) 81.42%
HuBERT LARGE (Hsu et al., 2021) 90.33%

SpeechNet (Chen et al., 2021b)
Single Task 86.00%
Multi-Task with TTS 87.90%

Thin ResNet-34 (Chung et al., 2020) 89.00%

Ours
Baseline 91.92%
SpeechT5 96.49%

Table 6: Results of SID (speech to text) on the Vox-
Celeb1. The SUPERB fine-tuning freezes the encoder.

As shown in Table 6, our baseline is superior
to existing Transformer-based methods such as
SpeechNet (Chen et al., 2021b) and pre-trained
models from SUPERB (Yang et al., 2021). More-
over, it outperforms ResNet-based architectures
such as Thin ResNet-34 (Chung et al., 2020), in-
dicating the superiority of the encoder-decoder ar-
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chitecture for the SID task. The SpeechT5 further
improves the performance compared to baseline
and achieves the state-of-the-art performance (i.e.,
96.49% accuracy), which demonstrates the effec-
tiveness of the proposed pre-training technique.

3.8 Ablation Study

To better understand why the proposed SpeechT5
model is effective, we investigate the influence of
the pre-training methods by removing each of them
independently.

Model ASR VC SIDclean other

SpeechT5 4.4 10.7 5.93 96.49%
w/o Speech PT - - 6.49 38.61%
w/o Text PT 5.4 12.8 6.03 95.60%
w/o Joint PT 4.6 11.3 6.18 95.54%
w/o Ls

mlm 7.6 22.4 6.29 90.91%

Table 7: Ablation study for the SpeechT5 model. Dif-
ferent variants of the SpeechT5 model, including the
SpeechT5 model without speech pre-training (PT), text
pre-training, joint pre-training method, or the bidirec-
tional masked prediction loss, are evaluated on the ASR
(test subsets with WER), VC (bdl to slt with MCD), and
SID (test set with ACC) tasks.

As shown in Table 7, we can draw the following
conclusions: (1) The pre-training methods, includ-
ing speech pre-training, text pre-training, and joint
pre-training method, are important to SpeechT5
since without each of them, the performance of
all tasks will degrade significantly; (2) Speech pre-
training is more critical than text pre-training on
these tasks that need to encode speech, and the ASR
model fine-tuned from SpeechT5 without speech
pre-training even can not converge; (3) Without the
joint pre-training method, the performance of the
ASR model decreases, which demonstrates that the
learned alignment from joint pre-training brings
benefits for cross-modality tasks; (4) The masked
language model learning Lsmlm of speech data is
mainly responsible for extracting acoustic features
and learning better speech representation, which is
beneficial to ASR and SID tasks.

4 Related Work

Large-scale pre-training models such as BERT (De-
vlin et al., 2019), T5 (Raffel et al., 2020), wav2vec
2.0 (Baevski et al., 2020), and HuBERT (Hsu
et al., 2021) have drawn much attention in the NLP
and speech communities, due to its strong capabil-

ity of generalization and efficient usage of large-
scale data (Devlin et al., 2019; Liu et al., 2019;
Yang et al., 2019; Lewis et al., 2020; Chen et al.,
2021c; Baevski et al., 2020; Lakhotia et al., 2021;
Kharitonov et al., 2021; Chen et al., 2021a). How-
ever, the research mentioned above effects gear
towards single-modal learning, hence they can only
be used in either text or speech modeling. Although
some speech-language pre-training work (Chung
et al., 2021b; Kim et al., 2021; Qian et al., 2021)
attempts to improve spoken language understand-
ing tasks, these methods only focus on an encoder
with task-specific layers for different tasks and do
not pre-train a decoder for generation tasks such
as speech synthesis or text generation. Besides, a
series of research work begins to investigate joint
text and speech training (Han et al., 2021; Ye et al.,
2021; Tang et al., 2021a; Zheng et al., 2021; Tang
et al., 2021b), but they are mainly designed for
speech to text tasks.

The proposed SpeechT5 method is most related
to T5 (Raffel et al., 2020). The core idea of the
T5 model, a unified framework for a variety of
text-based language problems, is to treat every text
processing problem as a “text-to-text” problem.
SpeechT5 is also related to Speech Chain (Tjandra
et al., 2020), which leverages the ASR model and
TTS model to build a closed-loop machine speech
chain to train models on the concatenation of both
labeled and unlabeled data, and SpeechNet (Chen
et al., 2021b), which designs a universal modular-
ized model to perform multiple speech processing
tasks with multi-task learning. The differences
from the above models are that (1) SpeechT5 is
a shared cross-modal encoder-decoder framework,
whose input and output are speech or text through
multiple pre/post-nets; (2) SpeechT5 attempts to
pre-train and improve the universal model with
large-scale unlabeled text and speech data.

Another related work is SUPERB (Yang et al.,
2021), a benchmark to examine the capability of
pre-trained models such as HuBERT (Hsu et al.,
2021). SUPERB focuses on investigating a simple
framework to learn SUPERB tasks with a frozen
and shared pre-trained encoder and lightweight pre-
diction modules fine-tuned for each task. In con-
trast, the goal of SpeechT5 is to learn all spoken
language processing tasks by fine-tuning a unified-
modal encoder-decoder model, which is pre-trained
on unlabeled speech and text corpus.
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5 Conclusion

In this paper, we have proposed SpeechT5 as a pre-
trained encoder-decoder model for various spoken
language processing tasks. We convert all spo-
ken language processing tasks into a speech/text to
speech/text format and propose a novel joint pre-
training method to utilize cross-modal information
by leveraging the unlabeled speech and text data.
The proposed unified encoder-decoder model can
support generation tasks such as speech transla-
tion and voice conversion. Massive experiments
show that SpeechT5 significantly outperforms all
baselines in several spoken language processing
tasks. In the future, we are going to pre-train the
SpeechT5 with a larger model and more unlabeled
data. We are also interested in extending the pro-
posed SpeechT5 framework to address multilingual
spoken language processing tasks for future work.
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A Comparisons of Text Mask Strategies

We compare the performance when using the
BART (Lewis et al., 2020) or T5 (Raffel et al.,
2020) strategies for text masking on the ASR
task, as reported in Table 10. The BART strategy
achieves comparable or better performance than
the T5 strategy under different inference settings.

B Implementation Details

B.1 ASR

Dataset We use the LibriSpeech corpus and fine-
tune on two labeled data settings: 960 hours of tran-
scribed Librispeech and the train-clean-100 subset
comprising 100 hours (100 hours labeled). We train
the language model by the LibriSpeech language
model (LM) text data, which is used for shallow
fusion (Gulcehre et al., 2015) during the ASR in-
ference.

Fine-Tuning Details We fine-tune the model
with the CTC loss and the cross-entropy loss, where
the loss weights are 0.5 for both of them. We train
on 8 V100 GPUs with a batch size of up to 256k au-
dio samples per GPU. The learning rate is warmed
up for the first 10% steps, hold as a constant for the
following 40% steps, and is decayed linearly for
the rest steps. Table 8 summarizes the hyperparam-
eters for ASR experiments of 100 hours and 960
hours sets.

Hyperparameter 100 hours 960 hours

updates 80k 320k
learning rate 6e-5 1.3e-4
time-step mask prob. 0.075 0.05
channel mask prob 0.008 0.0016

Table 8: The setting of hyperparameters for ASR fine-
tuning.

Language Model and Decoding We train a
character-level LM for the ASR inference. The
model has the same architecture as the Transformer
LM in Synnaeve et al. (2020), which is used for
decoding of wav2vec 2.0 (Baevski et al., 2020) and
HuBERT (Hsu et al., 2021). The LM contains 20
blocks of Transformer decoder with the model di-
mension of 1280, inner dimension of 6144, and 16
attention heads. To investigate the difference of
the performance between our LM and the LM in
Synnaeve et al. (2020), we evaluate the word-level

Language Model dev
clean other

Word 4-gram (Synnaeve et al., 2020) 148.0 136.6
Word Transf. (Synnaeve et al., 2020) 48.2 50.2
Character Transf. 56.5 59.3

Table 9: Word-level perplexities of language models
on dev-clean/other sets of LibriSpeech.

perplexities of these LMs on the LibriSpeech dev-
clean/other sets as shown in Table 9. The Trans-
former LM used for SpeechT5 gets 56.5 perplexity
on the dev-clean set and 59.3 perplexity on the dev-
other set, which are higher than the perplexities of
word Transformer LM in Synnaeve et al. (2020). It
suggests that we may achieve better performance
on the ASR task if the perplexities of our LM are
similar to the LM in Synnaeve et al. (2020).

During decoding, the beam size is set to 30 for
all experiments. We select the model with the high-
est accuracy on dev-other set for inference and
apply the joint CTC/attention decoding (Hori et al.,
2017) to further improve the performance. The
model generates the output transcription by the
beam search algorithm, which aims to maximize

α logPDec+(1−α) logPCTC +β logPLM (7)

where α and β are weights for the log probabilities,
PDec, PCTC , and PLM are the probabilities of the
decoder, CTC, and LM, respectively. We set α
to 0.5 and β to 1.0 for fine-tuning experiments of
100 hours set, and set α to 0.9 and β to 0.7 for
fine-tuning experiments of 960 hours set.

B.2 TTS

Dataset and Evaluation Metrics We use the
460-hours LibriTTS clean sets (Zen et al., 2019), a
multispeaker corpus of read English speech from
the audiobooks of the LibriVox project, as TTS
training dataset. We trim the waveform as ESPnet
recipe (Watanabe et al., 2018). The WER is evalu-
ated by using the open-source ASR model wav2vec
2.0 CTC6. The naturalness of synthetic speech is
estimated by using the open-source TTS natural-
ness prediction model NISQA-TTS7 (Mittag and
Möller, 2020).

Fine-Tuning Details Besides the L1 loss and
BCE loss, we add an additional attention loss

6https://huggingface.co/facebook/wav2vec2-base-960h
7https://github.com/gabrielmittag/NISQA
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Mask Strategies CTC LM dev test
clean other clean other

BART (Lewis et al., 2020) - - 5.4 10.7 5.8 10.7
X - 4.3 10.3 4.4 10.4
X X 2.1 5.5 2.4 5.8

T5 (Raffel et al., 2020) - - 5.4 11.3 5.7 11.3
X - 4.3 10.7 4.4 10.7
X X 2.3 5.8 2.3 5.8

Table 10: Comparisons of mask strategies for the text pre-training under different inference settings. Models are
pre-trained on the 960 hours speech data of LibriSpeech and 400M text sentences of LibriSpeech-LM corpus, and
fine-tuned on the 100 hours labeled data of LibriSpeech. CTC and LM mean the Joint CTC/attention decoding
(Hori et al., 2017), and language model fusion, respectively.

(Tachibana et al., 2018) to speed up model con-
vergence. We train on 8 V100 GPUs in a speaker-
independent manner by using the training data of
the LibriTTS. The model is updated for 120k steps
with a learning rate of 0.0004, while each GPU
processes up to 45,000 tokens for a batch. The
learning rate is warmed up for the first 10k steps
and decayed in an inverse square root manner for
the rest steps.

B.3 ST
Dataset and Evaluation Metrics We evaluate
the ST task on the MUST-C dataset (Di Gangi
et al., 2019), including English-German (EN-DE)
and English-French (EN-FR) translation tasks. The
EN-DE/EN-FR language pair consists of 408/492
hours of speech data aligned with 234K/280K trans-
lated sentences. We report the results on EN-DE
and EN-FR tst-COMMON set (2641 and 2632 ut-
terances). Translation results are computed with
case-sensitive BLEU (Papineni et al., 2002).

Fine-Tuning Details ST translates speech sig-
nals in a language to text in another language. We
use raw audio as speech inputs in our experiments.
The training setting is the same as that in S2T
model in Fairseq. We set training steps to 80K
and warm-up steps to 10K. Baseline and SpeechT5
models are trained with 8 GPUs via Adam opti-
mizer. We use 8K unigram vocabulary for both
EN-DE and EN-FR. Following Fairseq ST (Wang
et al., 2020), we average the last 10 checkpoints
and use a beam size of 5 for decoding.

B.4 VC
Dataset and Evaluation Metrics We consider
the many-to-many setting for the CMU Arctic
(Kominek and Black, 2004), which contains speech
recordings of four speakers, such as clb (female),

bdl (male), slt (female), and rms (male), who read
the same 1,132 phonetically balanced English ut-
terances. Thus, there are twelve different combi-
nations of source and target speakers. For each
speaker, the first 932, the last 100, and the rest 100
sentences of the 1,132 sentences are used for train-
ing, test, and validation as (Huang et al., 2021),
respectively. The average of MCD is estimated
by using the DTW (dynamic time warping) path
between the output and ground-truth Mel-cepstra.
A smaller MCD indicates better performance. The
WER is evaluated by using the public ASR model
HuBERT LARGE8, where the WER of the test set
with this ASR model is comparable to that of VTN
(Huang et al., 2021).

Fine-Tuning Details Besides the L1 loss and
BCE loss, we add an additional attention loss
(Tachibana et al., 2018) to speed up the model con-
vergence. The model is trained on 8 V100 GPUs
by the Adam optimizer with a batch size of 20000
tokens per GPU. We assign the learning rate based
on the inverse square root with the maximum learn-
ing rate of 10−4 within 60k steps and apply 6k
warm-up steps.

B.5 SE

Dataset and Evaluation Metrics We aim to re-
cover the content of signals contaminated by vari-
ous noises and reduce the negative impact on the
performance of ASR systems. The 16 kHz enhance-
single task of the WHAM! dataset (Wichern et al.,
2019) is used as the SE dataset. It contains 20,000
training utterances, 5,000 validation utterances, and
3,000 test utterances, where the input waveform is
a mixture of only the first WSJ09 speaker and noise.

8https://huggingface.co/facebook/hubert-xlarge-ls960-ft
9https://catalog.ldc.upenn.edu/LDC93S6A
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Model LM dev-clean dev-other test-clean test-other

wav2vec 2.0 BASE (Baevski et al., 2020) - 3.2 8.9 3.4 8.5
Baseline (w/o CTC) - 3.1 7.8 3.1 7.6
Baseline - 2.8 7.6 2.8 7.4
SpeechT5 (w/o CTC) - 2.8 7.6 3.1 7.3
SpeechT5 - 2.5 7.4 2.7 7.1
wav2vec 2.0 BASE (Baevski et al., 2020) 4-gram 2.0 5.9 2.6 6.1
wav2vec 2.0 BASE (Baevski et al., 2020) Transf. 1.8 4.7 2.1 4.8
Baseline Transf. 2.0 4.5 1.9 4.5
SpeechT5 Transf. 1.8 4.3 1.9 4.4

Table 11: WER of ASR when training on the 960 hours labeled data of LibriSpeech.

Metric WHAM!

PESQ 1.12
ESTOI 0.48
WER (NSNet2 (Sebastian and Ivan, 2020)) 45.8%

Table 12: Results of noisy speech utterances on the test
set in terms of PEQS, ESTOI, and WER.

We trim the noisy segment without contents. The
WER is evaluated by using the open-source ASR
model10 because lengths of inputs and outputs are
probably different in the encoder-decoder model.
Since lengths of noisy speech utterances are the
same as lengths of clean utterances, we measure
the test set via speech quality (PESQ) (Rix et al.,
2001), extended short-time objective intelligibil-
ity (ESTOI) (Jensen and Taal, 2016), and WER to
quantify the difficulty of noisy speech, as shown
in Table 12. NSNet2 is the baseline model on the
2020 Deep Noise Suppression (DNS) challenge
(Reddy et al., 2021) and obtains WER of 45.8%,
probably due to the mismatch between the noise
intensity of the WHAM! and DNS corpus.

Fine-Tuning Details We employ the loss func-
tion as used in the fine-tuning of the VC task. The
model is trained on 8 V100 GPUs by the Adam op-
timizer with a batch size of 16000 tokens per GPU.
We assign the learning rate based on the inverse
square root with the maximum learning rate 10−4

within 100k steps and apply 10k warm-up steps.

B.6 SID

Dataset and Evaluation Metrics We use the of-
ficial split of the VoxCeleb1 dataset (Nagrani et al.,
2017) for the SID task, where the test set contains
8,251 utterances from these 1,251 celebrities. The
capability of identifying speakers is assessed by

10https://doi.org/10.5281/zenodo.4243201

classifying an utterance into the ground-truth cat-
egory. Specifically, the whole utterance is taken
as an input to the model to determine the speaker
identity.

Fine-Tuning Details We use the cross-entropy
loss and fine-tune all models on 8 V100 GPUs
by the Adam optimizer with a batch size of 64
segments per GPU and the inputs of 3 seconds.
The learning rate is set based on one cycle of a
triangular cyclical schedule between 10−8 and 5×
10−4 in 60k steps. We initialize the weights of
the text embeddings layer because there are no
overlapping text tokens between the vocabularies
during the pre-training and the SID fine-tuning.

C Results for 960 Hours Set of
LibriSpeech

We also fine-tune the model on the 960 hours set of
LibriSpeech, as reported in Table 11. Experiments
show that the proposed SpeechT5 model achieves
significant improvement even without LM fusion,
and it performs comparable or even better than
wav2vec 2.0 with LM fusion.

D Results of the SpeechT5 without Ls
mlm

on the TTS task

Model Naturalness

SpeechT5 2.79
w/o Ls

mlm 2.91

Table 13: Comparisons between SpeechT5 and its vari-
ant without using Ls

mlm.

We use the automatic evaluation tool NISQA-
TTS to verify the performance of TTS results here,
because it is convenient and cheap compared with
MOS and CMOS, which need to be evaluated by
humans. As shown in Table 13, the variant of
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SpeechT5 trained without the loss Lsmlm achieves
an improvement in terms of naturalness when com-
pared with the SpeechT5. It suggests that the pre-
training without the speech-specific loss brings a
significant gain. Thus, we select the SpeechT5
without the loss Lsmlm for MOS and CMOS evalu-
ations.
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